xref: /aosp_15_r20/external/webp/src/dsp/enc_sse2.c (revision b2055c353e87c8814eb2b6b1b11112a1562253bd)
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier ([email protected])
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h>  // for abs()
19 #include <emmintrin.h>
20 
21 #include "src/dsp/common_sse2.h"
22 #include "src/enc/cost_enc.h"
23 #include "src/enc/vp8i_enc.h"
24 
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27 
28 // Does one inverse transform.
ITransform_One_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst)29 static void ITransform_One_SSE2(const uint8_t* ref, const int16_t* in,
30                                 uint8_t* dst) {
31   // This implementation makes use of 16-bit fixed point versions of two
32   // multiply constants:
33   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35   //
36   // To be able to use signed 16-bit integers, we use the following trick to
37   // have constants within range:
38   // - Associated constants are obtained by subtracting the 16-bit fixed point
39   //   version of one:
40   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
41   //      K1 = 85267  =>  k1 =  20091
42   //      K2 = 35468  =>  k2 = -30068
43   // - The multiplication of a variable by a constant become the sum of the
44   //   variable and the multiplication of that variable by the associated
45   //   constant:
46   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47   const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068,
48                                      20091, 20091, 20091, 20091);
49   const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091,
50                                      -30068, -30068, -30068, -30068);
51   const __m128i zero = _mm_setzero_si128();
52   const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4);
53   __m128i T01, T23;
54 
55   // Load and concatenate the transform coefficients.
56   const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]);
57   const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]);
58   // a00 a10 a20 a30   a01 a11 a21 a31
59   // a02 a12 a22 a32   a03 a13 a23 a33
60 
61   // Vertical pass and subsequent transpose.
62   {
63     const __m128i in1 = _mm_unpackhi_epi64(in01, in01);
64     const __m128i in3 = _mm_unpackhi_epi64(in23, in23);
65 
66     // First pass, c and d calculations are longer because of the "trick"
67     // multiplications.
68     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
69     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
70     const __m128i a_d3 = _mm_add_epi16(in01, in23);
71     const __m128i b_c3 = _mm_sub_epi16(in01, in23);
72     const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1);
73     const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2);
74     const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
75     const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
76     const __m128i c = _mm_add_epi16(c3, c4);
77     const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
78     const __m128i du = _mm_add_epi16(a_d3, d4u);
79     const __m128i d = _mm_unpackhi_epi64(du, du);
80 
81     // Second pass.
82     const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
83     const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
84 
85     const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
86     const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
87     const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
88 
89     const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23);
90     const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23);
91     // a00 a20 a01 a21   a02 a22 a03 a23
92     // a10 a30 a11 a31   a12 a32 a13 a33
93 
94     T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
95     T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
96     // a00 a10 a20 a30   a01 a11 a21 a31
97     // a02 a12 a22 a32   a03 a13 a23 a33
98   }
99 
100   // Horizontal pass and subsequent transpose.
101   {
102     const __m128i T1 = _mm_unpackhi_epi64(T01, T01);
103     const __m128i T3 = _mm_unpackhi_epi64(T23, T23);
104 
105     // First pass, c and d calculations are longer because of the "trick"
106     // multiplications.
107     const __m128i dc = _mm_add_epi16(T01, zero_four);
108 
109     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
110     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
111     const __m128i a_d3 = _mm_add_epi16(dc, T23);
112     const __m128i b_c3 = _mm_sub_epi16(dc, T23);
113     const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1);
114     const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2);
115     const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3);
116     const __m128i c4 = _mm_sub_epi16(c1d1, c2d2);
117     const __m128i c = _mm_add_epi16(c3, c4);
118     const __m128i d4u = _mm_add_epi16(c1d1, c2d2);
119     const __m128i du = _mm_add_epi16(a_d3, d4u);
120     const __m128i d = _mm_unpackhi_epi64(du, du);
121 
122     // Second pass.
123     const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3);
124     const __m128i comb_dc = _mm_unpacklo_epi64(d, c);
125 
126     const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc);
127     const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc);
128     const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2));
129 
130     const __m128i shifted01 = _mm_srai_epi16(tmp01, 3);
131     const __m128i shifted23 = _mm_srai_epi16(tmp23, 3);
132     // a00 a01 a02 a03   a10 a11 a12 a13
133     // a20 a21 a22 a23   a30 a31 a32 a33
134 
135     const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23);
136     const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23);
137     // a00 a20 a01 a21   a02 a22 a03 a23
138     // a10 a30 a11 a31   a12 a32 a13 a33
139 
140     T01 = _mm_unpacklo_epi16(transpose_0, transpose_1);
141     T23 = _mm_unpackhi_epi16(transpose_0, transpose_1);
142     // a00 a10 a20 a30   a01 a11 a21 a31
143     // a02 a12 a22 a32   a03 a13 a23 a33
144   }
145 
146   // Add inverse transform to 'ref' and store.
147   {
148     // Load the reference(s).
149     __m128i ref01, ref23, ref0123;
150     int32_t buf[4];
151 
152     // Load four bytes/pixels per line.
153     const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS]));
154     const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS]));
155     const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS]));
156     const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS]));
157     ref01 = _mm_unpacklo_epi32(ref0, ref1);
158     ref23 = _mm_unpacklo_epi32(ref2, ref3);
159 
160     // Convert to 16b.
161     ref01 = _mm_unpacklo_epi8(ref01, zero);
162     ref23 = _mm_unpacklo_epi8(ref23, zero);
163     // Add the inverse transform(s).
164     ref01 = _mm_add_epi16(ref01, T01);
165     ref23 = _mm_add_epi16(ref23, T23);
166     // Unsigned saturate to 8b.
167     ref0123 = _mm_packus_epi16(ref01, ref23);
168 
169     _mm_storeu_si128((__m128i *)buf, ref0123);
170 
171     // Store four bytes/pixels per line.
172     WebPInt32ToMem(&dst[0 * BPS], buf[0]);
173     WebPInt32ToMem(&dst[1 * BPS], buf[1]);
174     WebPInt32ToMem(&dst[2 * BPS], buf[2]);
175     WebPInt32ToMem(&dst[3 * BPS], buf[3]);
176   }
177 }
178 
179 // Does two inverse transforms.
ITransform_Two_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst)180 static void ITransform_Two_SSE2(const uint8_t* ref, const int16_t* in,
181                                 uint8_t* dst) {
182   // This implementation makes use of 16-bit fixed point versions of two
183   // multiply constants:
184   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
185   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
186   //
187   // To be able to use signed 16-bit integers, we use the following trick to
188   // have constants within range:
189   // - Associated constants are obtained by subtracting the 16-bit fixed point
190   //   version of one:
191   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
192   //      K1 = 85267  =>  k1 =  20091
193   //      K2 = 35468  =>  k2 = -30068
194   // - The multiplication of a variable by a constant become the sum of the
195   //   variable and the multiplication of that variable by the associated
196   //   constant:
197   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
198   const __m128i k1 = _mm_set1_epi16(20091);
199   const __m128i k2 = _mm_set1_epi16(-30068);
200   __m128i T0, T1, T2, T3;
201 
202   // Load and concatenate the transform coefficients (we'll do two inverse
203   // transforms in parallel).
204   __m128i in0, in1, in2, in3;
205   {
206     const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]);
207     const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]);
208     const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]);
209     const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]);
210     in0 = _mm_unpacklo_epi64(tmp0, tmp2);
211     in1 = _mm_unpackhi_epi64(tmp0, tmp2);
212     in2 = _mm_unpacklo_epi64(tmp1, tmp3);
213     in3 = _mm_unpackhi_epi64(tmp1, tmp3);
214     // a00 a10 a20 a30   b00 b10 b20 b30
215     // a01 a11 a21 a31   b01 b11 b21 b31
216     // a02 a12 a22 a32   b02 b12 b22 b32
217     // a03 a13 a23 a33   b03 b13 b23 b33
218   }
219 
220   // Vertical pass and subsequent transpose.
221   {
222     // First pass, c and d calculations are longer because of the "trick"
223     // multiplications.
224     const __m128i a = _mm_add_epi16(in0, in2);
225     const __m128i b = _mm_sub_epi16(in0, in2);
226     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
227     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
228     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
229     const __m128i c3 = _mm_sub_epi16(in1, in3);
230     const __m128i c4 = _mm_sub_epi16(c1, c2);
231     const __m128i c = _mm_add_epi16(c3, c4);
232     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
233     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
234     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
235     const __m128i d3 = _mm_add_epi16(in1, in3);
236     const __m128i d4 = _mm_add_epi16(d1, d2);
237     const __m128i d = _mm_add_epi16(d3, d4);
238 
239     // Second pass.
240     const __m128i tmp0 = _mm_add_epi16(a, d);
241     const __m128i tmp1 = _mm_add_epi16(b, c);
242     const __m128i tmp2 = _mm_sub_epi16(b, c);
243     const __m128i tmp3 = _mm_sub_epi16(a, d);
244 
245     // Transpose the two 4x4.
246     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
247   }
248 
249   // Horizontal pass and subsequent transpose.
250   {
251     // First pass, c and d calculations are longer because of the "trick"
252     // multiplications.
253     const __m128i four = _mm_set1_epi16(4);
254     const __m128i dc = _mm_add_epi16(T0, four);
255     const __m128i a =  _mm_add_epi16(dc, T2);
256     const __m128i b =  _mm_sub_epi16(dc, T2);
257     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
258     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
259     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
260     const __m128i c3 = _mm_sub_epi16(T1, T3);
261     const __m128i c4 = _mm_sub_epi16(c1, c2);
262     const __m128i c = _mm_add_epi16(c3, c4);
263     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
264     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
265     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
266     const __m128i d3 = _mm_add_epi16(T1, T3);
267     const __m128i d4 = _mm_add_epi16(d1, d2);
268     const __m128i d = _mm_add_epi16(d3, d4);
269 
270     // Second pass.
271     const __m128i tmp0 = _mm_add_epi16(a, d);
272     const __m128i tmp1 = _mm_add_epi16(b, c);
273     const __m128i tmp2 = _mm_sub_epi16(b, c);
274     const __m128i tmp3 = _mm_sub_epi16(a, d);
275     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
276     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
277     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
278     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
279 
280     // Transpose the two 4x4.
281     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
282                            &T2, &T3);
283   }
284 
285   // Add inverse transform to 'ref' and store.
286   {
287     const __m128i zero = _mm_setzero_si128();
288     // Load the reference(s).
289     __m128i ref0, ref1, ref2, ref3;
290     // Load eight bytes/pixels per line.
291     ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
292     ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
293     ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
294     ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
295     // Convert to 16b.
296     ref0 = _mm_unpacklo_epi8(ref0, zero);
297     ref1 = _mm_unpacklo_epi8(ref1, zero);
298     ref2 = _mm_unpacklo_epi8(ref2, zero);
299     ref3 = _mm_unpacklo_epi8(ref3, zero);
300     // Add the inverse transform(s).
301     ref0 = _mm_add_epi16(ref0, T0);
302     ref1 = _mm_add_epi16(ref1, T1);
303     ref2 = _mm_add_epi16(ref2, T2);
304     ref3 = _mm_add_epi16(ref3, T3);
305     // Unsigned saturate to 8b.
306     ref0 = _mm_packus_epi16(ref0, ref0);
307     ref1 = _mm_packus_epi16(ref1, ref1);
308     ref2 = _mm_packus_epi16(ref2, ref2);
309     ref3 = _mm_packus_epi16(ref3, ref3);
310     // Store eight bytes/pixels per line.
311     _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
312     _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
313     _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
314     _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
315   }
316 }
317 
318 // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)319 static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
320                             int do_two) {
321   if (do_two) {
322     ITransform_Two_SSE2(ref, in, dst);
323   } else {
324     ITransform_One_SSE2(ref, in, dst);
325   }
326 }
327 
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)328 static void FTransformPass1_SSE2(const __m128i* const in01,
329                                  const __m128i* const in23,
330                                  __m128i* const out01,
331                                  __m128i* const out32) {
332   const __m128i k937 = _mm_set1_epi32(937);
333   const __m128i k1812 = _mm_set1_epi32(1812);
334 
335   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
336   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
337   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
338                                             2217, 5352, 2217, 5352);
339   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
340                                             -5352, 2217, -5352, 2217);
341 
342   // *in01 = 00 01 10 11 02 03 12 13
343   // *in23 = 20 21 30 31 22 23 32 33
344   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
345   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
346   // 00 01 10 11 03 02 13 12
347   // 20 21 30 31 23 22 33 32
348   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
349   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
350   // 00 01 10 11 20 21 30 31
351   // 03 02 13 12 23 22 33 32
352   const __m128i a01 = _mm_add_epi16(s01, s32);
353   const __m128i a32 = _mm_sub_epi16(s01, s32);
354   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
355   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
356 
357   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
358   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
359   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
360   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
361   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
362   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
363   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
364   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
365   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
366   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
367   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
368   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
369   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
370   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
371   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
372 }
373 
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * out)374 static void FTransformPass2_SSE2(const __m128i* const v01,
375                                  const __m128i* const v32,
376                                  int16_t* out) {
377   const __m128i zero = _mm_setzero_si128();
378   const __m128i seven = _mm_set1_epi16(7);
379   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
380                                            5352,  2217, 5352,  2217);
381   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
382                                            2217, -5352, 2217, -5352);
383   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
384   const __m128i k51000 = _mm_set1_epi32(51000);
385 
386   // Same operations are done on the (0,3) and (1,2) pairs.
387   // a3 = v0 - v3
388   // a2 = v1 - v2
389   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
390   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
391 
392   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
393   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
394   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
395   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
396   const __m128i d3 = _mm_add_epi32(c3, k51000);
397   const __m128i e1 = _mm_srai_epi32(d1, 16);
398   const __m128i e3 = _mm_srai_epi32(d3, 16);
399   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
400   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
401   const __m128i f1 = _mm_packs_epi32(e1, e1);
402   const __m128i f3 = _mm_packs_epi32(e3, e3);
403   // g1 = f1 + (a3 != 0);
404   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
405   // desired (0, 1), we add one earlier through k12000_plus_one.
406   // -> g1 = f1 + 1 - (a3 == 0)
407   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
408 
409   // a0 = v0 + v3
410   // a1 = v1 + v2
411   const __m128i a01 = _mm_add_epi16(*v01, *v32);
412   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
413   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
414   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
415   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
416   // d0 = (a0 + a1 + 7) >> 4;
417   // d2 = (a0 - a1 + 7) >> 4;
418   const __m128i d0 = _mm_srai_epi16(c0, 4);
419   const __m128i d2 = _mm_srai_epi16(c2, 4);
420 
421   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
422   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
423   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
424   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
425 }
426 
FTransform_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)427 static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
428                             int16_t* out) {
429   const __m128i zero = _mm_setzero_si128();
430   // Load src.
431   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
432   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
433   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
434   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
435   // 00 01 02 03 *
436   // 10 11 12 13 *
437   // 20 21 22 23 *
438   // 30 31 32 33 *
439   // Shuffle.
440   const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
441   const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
442   // 00 01 10 11 02 03 12 13 * * ...
443   // 20 21 30 31 22 22 32 33 * * ...
444 
445   // Load ref.
446   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
447   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
448   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
449   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
450   const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
451   const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
452 
453   // Convert both to 16 bit.
454   const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
455   const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
456   const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
457   const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
458 
459   // Compute the difference.
460   const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
461   const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
462   __m128i v01, v32;
463 
464   // First pass
465   FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
466 
467   // Second pass
468   FTransformPass2_SSE2(&v01, &v32, out);
469 }
470 
FTransform2_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)471 static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
472                              int16_t* out) {
473   const __m128i zero = _mm_setzero_si128();
474 
475   // Load src and convert to 16b.
476   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
477   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
478   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
479   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
480   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
481   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
482   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
483   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
484   // Load ref and convert to 16b.
485   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
486   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
487   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
488   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
489   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
490   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
491   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
492   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
493   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
494   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
495   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
496   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
497   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
498 
499   // Unpack and shuffle
500   // 00 01 02 03   0 0 0 0
501   // 10 11 12 13   0 0 0 0
502   // 20 21 22 23   0 0 0 0
503   // 30 31 32 33   0 0 0 0
504   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
505   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
506   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
507   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
508   __m128i v01l, v32l;
509   __m128i v01h, v32h;
510 
511   // First pass
512   FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
513   FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
514 
515   // Second pass
516   FTransformPass2_SSE2(&v01l, &v32l, out + 0);
517   FTransformPass2_SSE2(&v01h, &v32h, out + 16);
518 }
519 
FTransformWHTRow_SSE2(const int16_t * const in,__m128i * const out)520 static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
521   const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
522   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
523   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
524   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
525   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
526   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
527   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
528   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
529   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
530   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
531   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
532   const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
533   *out = _mm_madd_epi16(D, kMult);
534 }
535 
FTransformWHT_SSE2(const int16_t * in,int16_t * out)536 static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
537   // Input is 12b signed.
538   __m128i row0, row1, row2, row3;
539   // Rows are 14b signed.
540   FTransformWHTRow_SSE2(in + 0 * 64, &row0);
541   FTransformWHTRow_SSE2(in + 1 * 64, &row1);
542   FTransformWHTRow_SSE2(in + 2 * 64, &row2);
543   FTransformWHTRow_SSE2(in + 3 * 64, &row3);
544 
545   {
546     // The a* are 15b signed.
547     const __m128i a0 = _mm_add_epi32(row0, row2);
548     const __m128i a1 = _mm_add_epi32(row1, row3);
549     const __m128i a2 = _mm_sub_epi32(row1, row3);
550     const __m128i a3 = _mm_sub_epi32(row0, row2);
551     const __m128i a0a3 = _mm_packs_epi32(a0, a3);
552     const __m128i a1a2 = _mm_packs_epi32(a1, a2);
553 
554     // The b* are 16b signed.
555     const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
556     const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
557     const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
558     const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
559 
560     _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
561     _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
562   }
563 }
564 
565 //------------------------------------------------------------------------------
566 // Compute susceptibility based on DCT-coeff histograms:
567 // the higher, the "easier" the macroblock is to compress.
568 
CollectHistogram_SSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)569 static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
570                                   int start_block, int end_block,
571                                   VP8Histogram* const histo) {
572   const __m128i zero = _mm_setzero_si128();
573   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
574   int j;
575   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
576   for (j = start_block; j < end_block; ++j) {
577     int16_t out[16];
578     int k;
579 
580     FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
581 
582     // Convert coefficients to bin (within out[]).
583     {
584       // Load.
585       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
586       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
587       const __m128i d0 = _mm_sub_epi16(zero, out0);
588       const __m128i d1 = _mm_sub_epi16(zero, out1);
589       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
590       const __m128i abs1 = _mm_max_epi16(out1, d1);
591       // v = abs(out) >> 3
592       const __m128i v0 = _mm_srai_epi16(abs0, 3);
593       const __m128i v1 = _mm_srai_epi16(abs1, 3);
594       // bin = min(v, MAX_COEFF_THRESH)
595       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
596       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
597       // Store.
598       _mm_storeu_si128((__m128i*)&out[0], bin0);
599       _mm_storeu_si128((__m128i*)&out[8], bin1);
600     }
601 
602     // Convert coefficients to bin.
603     for (k = 0; k < 16; ++k) {
604       ++distribution[out[k]];
605     }
606   }
607   VP8SetHistogramData(distribution, histo);
608 }
609 
610 //------------------------------------------------------------------------------
611 // Intra predictions
612 
613 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)614 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
615   int j;
616   const __m128i values = _mm_set1_epi8((char)v);
617   for (j = 0; j < 8; ++j) {
618     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
619   }
620 }
621 
Put16_SSE2(uint8_t v,uint8_t * dst)622 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
623   int j;
624   const __m128i values = _mm_set1_epi8((char)v);
625   for (j = 0; j < 16; ++j) {
626     _mm_store_si128((__m128i*)(dst + j * BPS), values);
627   }
628 }
629 
Fill_SSE2(uint8_t * dst,int value,int size)630 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
631   if (size == 4) {
632     int j;
633     for (j = 0; j < 4; ++j) {
634       memset(dst + j * BPS, value, 4);
635     }
636   } else if (size == 8) {
637     Put8x8uv_SSE2(value, dst);
638   } else {
639     Put16_SSE2(value, dst);
640   }
641 }
642 
VE8uv_SSE2(uint8_t * dst,const uint8_t * top)643 static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
644   int j;
645   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
646   for (j = 0; j < 8; ++j) {
647     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
648   }
649 }
650 
VE16_SSE2(uint8_t * dst,const uint8_t * top)651 static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
652   const __m128i top_values = _mm_load_si128((const __m128i*)top);
653   int j;
654   for (j = 0; j < 16; ++j) {
655     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
656   }
657 }
658 
VerticalPred_SSE2(uint8_t * dst,const uint8_t * top,int size)659 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
660                                           const uint8_t* top, int size) {
661   if (top != NULL) {
662     if (size == 8) {
663       VE8uv_SSE2(dst, top);
664     } else {
665       VE16_SSE2(dst, top);
666     }
667   } else {
668     Fill_SSE2(dst, 127, size);
669   }
670 }
671 
HE8uv_SSE2(uint8_t * dst,const uint8_t * left)672 static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
673   int j;
674   for (j = 0; j < 8; ++j) {
675     const __m128i values = _mm_set1_epi8((char)left[j]);
676     _mm_storel_epi64((__m128i*)dst, values);
677     dst += BPS;
678   }
679 }
680 
HE16_SSE2(uint8_t * dst,const uint8_t * left)681 static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
682   int j;
683   for (j = 0; j < 16; ++j) {
684     const __m128i values = _mm_set1_epi8((char)left[j]);
685     _mm_store_si128((__m128i*)dst, values);
686     dst += BPS;
687   }
688 }
689 
HorizontalPred_SSE2(uint8_t * dst,const uint8_t * left,int size)690 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
691                                             const uint8_t* left, int size) {
692   if (left != NULL) {
693     if (size == 8) {
694       HE8uv_SSE2(dst, left);
695     } else {
696       HE16_SSE2(dst, left);
697     }
698   } else {
699     Fill_SSE2(dst, 129, size);
700   }
701 }
702 
TM_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)703 static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
704                                 const uint8_t* top, int size) {
705   const __m128i zero = _mm_setzero_si128();
706   int y;
707   if (size == 8) {
708     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
709     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
710     for (y = 0; y < 8; ++y, dst += BPS) {
711       const int val = left[y] - left[-1];
712       const __m128i base = _mm_set1_epi16(val);
713       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
714       _mm_storel_epi64((__m128i*)dst, out);
715     }
716   } else {
717     const __m128i top_values = _mm_load_si128((const __m128i*)top);
718     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
719     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
720     for (y = 0; y < 16; ++y, dst += BPS) {
721       const int val = left[y] - left[-1];
722       const __m128i base = _mm_set1_epi16(val);
723       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
724       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
725       const __m128i out = _mm_packus_epi16(out_0, out_1);
726       _mm_store_si128((__m128i*)dst, out);
727     }
728   }
729 }
730 
TrueMotion_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)731 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
732                                         const uint8_t* top, int size) {
733   if (left != NULL) {
734     if (top != NULL) {
735       TM_SSE2(dst, left, top, size);
736     } else {
737       HorizontalPred_SSE2(dst, left, size);
738     }
739   } else {
740     // true motion without left samples (hence: with default 129 value)
741     // is equivalent to VE prediction where you just copy the top samples.
742     // Note that if top samples are not available, the default value is
743     // then 129, and not 127 as in the VerticalPred case.
744     if (top != NULL) {
745       VerticalPred_SSE2(dst, top, size);
746     } else {
747       Fill_SSE2(dst, 129, size);
748     }
749   }
750 }
751 
DC8uv_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)752 static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
753                                    const uint8_t* top) {
754   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
755   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
756   const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
757   const int DC = VP8HorizontalAdd8b(&combined) + 8;
758   Put8x8uv_SSE2(DC >> 4, dst);
759 }
760 
DC8uvNoLeft_SSE2(uint8_t * dst,const uint8_t * top)761 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
762   const __m128i zero = _mm_setzero_si128();
763   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
764   const __m128i sum = _mm_sad_epu8(top_values, zero);
765   const int DC = _mm_cvtsi128_si32(sum) + 4;
766   Put8x8uv_SSE2(DC >> 3, dst);
767 }
768 
DC8uvNoTop_SSE2(uint8_t * dst,const uint8_t * left)769 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
770   // 'left' is contiguous so we can reuse the top summation.
771   DC8uvNoLeft_SSE2(dst, left);
772 }
773 
DC8uvNoTopLeft_SSE2(uint8_t * dst)774 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
775   Put8x8uv_SSE2(0x80, dst);
776 }
777 
DC8uvMode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)778 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
779                                        const uint8_t* top) {
780   if (top != NULL) {
781     if (left != NULL) {  // top and left present
782       DC8uv_SSE2(dst, left, top);
783     } else {  // top, but no left
784       DC8uvNoLeft_SSE2(dst, top);
785     }
786   } else if (left != NULL) {  // left but no top
787     DC8uvNoTop_SSE2(dst, left);
788   } else {  // no top, no left, nothing.
789     DC8uvNoTopLeft_SSE2(dst);
790   }
791 }
792 
DC16_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)793 static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
794                                   const uint8_t* top) {
795   const __m128i top_row = _mm_load_si128((const __m128i*)top);
796   const __m128i left_row = _mm_load_si128((const __m128i*)left);
797   const int DC =
798       VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
799   Put16_SSE2(DC >> 5, dst);
800 }
801 
DC16NoLeft_SSE2(uint8_t * dst,const uint8_t * top)802 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
803   const __m128i top_row = _mm_load_si128((const __m128i*)top);
804   const int DC = VP8HorizontalAdd8b(&top_row) + 8;
805   Put16_SSE2(DC >> 4, dst);
806 }
807 
DC16NoTop_SSE2(uint8_t * dst,const uint8_t * left)808 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
809   // 'left' is contiguous so we can reuse the top summation.
810   DC16NoLeft_SSE2(dst, left);
811 }
812 
DC16NoTopLeft_SSE2(uint8_t * dst)813 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
814   Put16_SSE2(0x80, dst);
815 }
816 
DC16Mode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)817 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
818                                       const uint8_t* top) {
819   if (top != NULL) {
820     if (left != NULL) {  // top and left present
821       DC16_SSE2(dst, left, top);
822     } else {  // top, but no left
823       DC16NoLeft_SSE2(dst, top);
824     }
825   } else if (left != NULL) {  // left but no top
826     DC16NoTop_SSE2(dst, left);
827   } else {  // no top, no left, nothing.
828     DC16NoTopLeft_SSE2(dst);
829   }
830 }
831 
832 //------------------------------------------------------------------------------
833 // 4x4 predictions
834 
835 #define DST(x, y) dst[(x) + (y) * BPS]
836 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
837 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
838 
839 // We use the following 8b-arithmetic tricks:
840 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
841 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
842 // and:
843 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
844 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
845 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
846 
VE4_SSE2(uint8_t * dst,const uint8_t * top)847 static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
848                                  const uint8_t* top) {  // vertical
849   const __m128i one = _mm_set1_epi8(1);
850   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
851   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
852   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
853   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
854   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
855   const __m128i b = _mm_subs_epu8(a, lsb);
856   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
857   const int vals = _mm_cvtsi128_si32(avg);
858   int i;
859   for (i = 0; i < 4; ++i) {
860     WebPInt32ToMem(dst + i * BPS, vals);
861   }
862 }
863 
HE4_SSE2(uint8_t * dst,const uint8_t * top)864 static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
865                                  const uint8_t* top) {  // horizontal
866   const int X = top[-1];
867   const int I = top[-2];
868   const int J = top[-3];
869   const int K = top[-4];
870   const int L = top[-5];
871   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
872   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
873   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
874   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
875 }
876 
DC4_SSE2(uint8_t * dst,const uint8_t * top)877 static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
878   uint32_t dc = 4;
879   int i;
880   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
881   Fill_SSE2(dst, dc >> 3, 4);
882 }
883 
LD4_SSE2(uint8_t * dst,const uint8_t * top)884 static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
885                                  const uint8_t* top) {  // Down-Left
886   const __m128i one = _mm_set1_epi8(1);
887   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
888   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
889   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
890   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
891   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
892   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
893   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
894   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
895   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
896   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
897   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
898   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
899 }
900 
VR4_SSE2(uint8_t * dst,const uint8_t * top)901 static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
902                                  const uint8_t* top) {  // Vertical-Right
903   const __m128i one = _mm_set1_epi8(1);
904   const int I = top[-2];
905   const int J = top[-3];
906   const int K = top[-4];
907   const int X = top[-1];
908   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
909   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
910   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
911   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
912   const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0);
913   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
914   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
915   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
916   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
917   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
918   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
919   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
920   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
921 
922   // these two are hard to implement in SSE2, so we keep the C-version:
923   DST(0, 2) = AVG3(J, I, X);
924   DST(0, 3) = AVG3(K, J, I);
925 }
926 
VL4_SSE2(uint8_t * dst,const uint8_t * top)927 static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
928                                  const uint8_t* top) {  // Vertical-Left
929   const __m128i one = _mm_set1_epi8(1);
930   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
931   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
932   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
933   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
934   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
935   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
936   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
937   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
938   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
939   const __m128i abbc = _mm_or_si128(ab, bc);
940   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
941   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
942   const uint32_t extra_out =
943       (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
944   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
945   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
946   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
947   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
948 
949   // these two are hard to get and irregular
950   DST(3, 2) = (extra_out >> 0) & 0xff;
951   DST(3, 3) = (extra_out >> 8) & 0xff;
952 }
953 
RD4_SSE2(uint8_t * dst,const uint8_t * top)954 static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
955                                  const uint8_t* top) {  // Down-right
956   const __m128i one = _mm_set1_epi8(1);
957   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
958   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
959   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
960   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
961   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
962   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
963   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
964   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
965   WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
966   WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
967   WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
968   WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
969 }
970 
HU4_SSE2(uint8_t * dst,const uint8_t * top)971 static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
972   const int I = top[-2];
973   const int J = top[-3];
974   const int K = top[-4];
975   const int L = top[-5];
976   DST(0, 0) =             AVG2(I, J);
977   DST(2, 0) = DST(0, 1) = AVG2(J, K);
978   DST(2, 1) = DST(0, 2) = AVG2(K, L);
979   DST(1, 0) =             AVG3(I, J, K);
980   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
981   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
982   DST(3, 2) = DST(2, 2) =
983   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
984 }
985 
HD4_SSE2(uint8_t * dst,const uint8_t * top)986 static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
987   const int X = top[-1];
988   const int I = top[-2];
989   const int J = top[-3];
990   const int K = top[-4];
991   const int L = top[-5];
992   const int A = top[0];
993   const int B = top[1];
994   const int C = top[2];
995 
996   DST(0, 0) = DST(2, 1) = AVG2(I, X);
997   DST(0, 1) = DST(2, 2) = AVG2(J, I);
998   DST(0, 2) = DST(2, 3) = AVG2(K, J);
999   DST(0, 3)             = AVG2(L, K);
1000 
1001   DST(3, 0)             = AVG3(A, B, C);
1002   DST(2, 0)             = AVG3(X, A, B);
1003   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
1004   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
1005   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
1006   DST(1, 3)             = AVG3(L, K, J);
1007 }
1008 
TM4_SSE2(uint8_t * dst,const uint8_t * top)1009 static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
1010   const __m128i zero = _mm_setzero_si128();
1011   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top));
1012   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1013   int y;
1014   for (y = 0; y < 4; ++y, dst += BPS) {
1015     const int val = top[-2 - y] - top[-1];
1016     const __m128i base = _mm_set1_epi16(val);
1017     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1018     WebPInt32ToMem(dst, _mm_cvtsi128_si32(out));
1019   }
1020 }
1021 
1022 #undef DST
1023 #undef AVG3
1024 #undef AVG2
1025 
1026 //------------------------------------------------------------------------------
1027 // luma 4x4 prediction
1028 
1029 // Left samples are top[-5 .. -2], top_left is top[-1], top are
1030 // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * dst,const uint8_t * top)1031 static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
1032   DC4_SSE2(I4DC4 + dst, top);
1033   TM4_SSE2(I4TM4 + dst, top);
1034   VE4_SSE2(I4VE4 + dst, top);
1035   HE4_SSE2(I4HE4 + dst, top);
1036   RD4_SSE2(I4RD4 + dst, top);
1037   VR4_SSE2(I4VR4 + dst, top);
1038   LD4_SSE2(I4LD4 + dst, top);
1039   VL4_SSE2(I4VL4 + dst, top);
1040   HD4_SSE2(I4HD4 + dst, top);
1041   HU4_SSE2(I4HU4 + dst, top);
1042 }
1043 
1044 //------------------------------------------------------------------------------
1045 // Chroma 8x8 prediction (paragraph 12.2)
1046 
IntraChromaPreds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)1047 static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
1048                                   const uint8_t* top) {
1049   // U block
1050   DC8uvMode_SSE2(C8DC8 + dst, left, top);
1051   VerticalPred_SSE2(C8VE8 + dst, top, 8);
1052   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1053   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1054   // V block
1055   dst += 8;
1056   if (top != NULL) top += 8;
1057   if (left != NULL) left += 16;
1058   DC8uvMode_SSE2(C8DC8 + dst, left, top);
1059   VerticalPred_SSE2(C8VE8 + dst, top, 8);
1060   HorizontalPred_SSE2(C8HE8 + dst, left, 8);
1061   TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
1062 }
1063 
1064 //------------------------------------------------------------------------------
1065 // luma 16x16 prediction (paragraph 12.3)
1066 
Intra16Preds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)1067 static void Intra16Preds_SSE2(uint8_t* dst,
1068                               const uint8_t* left, const uint8_t* top) {
1069   DC16Mode_SSE2(I16DC16 + dst, left, top);
1070   VerticalPred_SSE2(I16VE16 + dst, top, 16);
1071   HorizontalPred_SSE2(I16HE16 + dst, left, 16);
1072   TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
1073 }
1074 
1075 //------------------------------------------------------------------------------
1076 // Metric
1077 
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)1078 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
1079                                                    const __m128i b,
1080                                                    __m128i* const sum) {
1081   // take abs(a-b) in 8b
1082   const __m128i a_b = _mm_subs_epu8(a, b);
1083   const __m128i b_a = _mm_subs_epu8(b, a);
1084   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1085   // zero-extend to 16b
1086   const __m128i zero = _mm_setzero_si128();
1087   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1088   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1089   // multiply with self
1090   const __m128i sum1 = _mm_madd_epi16(C0, C0);
1091   const __m128i sum2 = _mm_madd_epi16(C1, C1);
1092   *sum = _mm_add_epi32(sum1, sum2);
1093 }
1094 
SSE_16xN_SSE2(const uint8_t * a,const uint8_t * b,int num_pairs)1095 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
1096                                      int num_pairs) {
1097   __m128i sum = _mm_setzero_si128();
1098   int32_t tmp[4];
1099   int i;
1100 
1101   for (i = 0; i < num_pairs; ++i) {
1102     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1103     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1104     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1105     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1106     __m128i sum1, sum2;
1107     SubtractAndAccumulate_SSE2(a0, b0, &sum1);
1108     SubtractAndAccumulate_SSE2(a1, b1, &sum2);
1109     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1110     a += 2 * BPS;
1111     b += 2 * BPS;
1112   }
1113   _mm_storeu_si128((__m128i*)tmp, sum);
1114   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1115 }
1116 
SSE16x16_SSE2(const uint8_t * a,const uint8_t * b)1117 static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
1118   return SSE_16xN_SSE2(a, b, 8);
1119 }
1120 
SSE16x8_SSE2(const uint8_t * a,const uint8_t * b)1121 static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
1122   return SSE_16xN_SSE2(a, b, 4);
1123 }
1124 
1125 #define LOAD_8x16b(ptr) \
1126   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1127 
SSE8x8_SSE2(const uint8_t * a,const uint8_t * b)1128 static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
1129   const __m128i zero = _mm_setzero_si128();
1130   int num_pairs = 4;
1131   __m128i sum = zero;
1132   int32_t tmp[4];
1133   while (num_pairs-- > 0) {
1134     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1135     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1136     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1137     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1138     // subtract
1139     const __m128i c0 = _mm_subs_epi16(a0, b0);
1140     const __m128i c1 = _mm_subs_epi16(a1, b1);
1141     // multiply/accumulate with self
1142     const __m128i d0 = _mm_madd_epi16(c0, c0);
1143     const __m128i d1 = _mm_madd_epi16(c1, c1);
1144     // collect
1145     const __m128i sum01 = _mm_add_epi32(d0, d1);
1146     sum = _mm_add_epi32(sum, sum01);
1147     a += 2 * BPS;
1148     b += 2 * BPS;
1149   }
1150   _mm_storeu_si128((__m128i*)tmp, sum);
1151   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1152 }
1153 #undef LOAD_8x16b
1154 
SSE4x4_SSE2(const uint8_t * a,const uint8_t * b)1155 static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1156   const __m128i zero = _mm_setzero_si128();
1157 
1158   // Load values. Note that we read 8 pixels instead of 4,
1159   // but the a/b buffers are over-allocated to that effect.
1160   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1161   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1162   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1163   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1164   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1165   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1166   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1167   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1168   // Combine pair of lines.
1169   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1170   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1171   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1172   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1173   // Convert to 16b.
1174   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1175   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1176   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1177   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1178   // subtract, square and accumulate
1179   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1180   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1181   const __m128i e0 = _mm_madd_epi16(d0, d0);
1182   const __m128i e1 = _mm_madd_epi16(d1, d1);
1183   const __m128i sum = _mm_add_epi32(e0, e1);
1184 
1185   int32_t tmp[4];
1186   _mm_storeu_si128((__m128i*)tmp, sum);
1187   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1188 }
1189 
1190 //------------------------------------------------------------------------------
1191 
Mean16x4_SSE2(const uint8_t * ref,uint32_t dc[4])1192 static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1193   const __m128i mask = _mm_set1_epi16(0x00ff);
1194   const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1195   const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1196   const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1197   const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1198   const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1199   const __m128i b1 = _mm_srli_epi16(a1, 8);
1200   const __m128i b2 = _mm_srli_epi16(a2, 8);
1201   const __m128i b3 = _mm_srli_epi16(a3, 8);
1202   const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1203   const __m128i c1 = _mm_and_si128(a1, mask);
1204   const __m128i c2 = _mm_and_si128(a2, mask);
1205   const __m128i c3 = _mm_and_si128(a3, mask);
1206   const __m128i d0 = _mm_add_epi32(b0, c0);
1207   const __m128i d1 = _mm_add_epi32(b1, c1);
1208   const __m128i d2 = _mm_add_epi32(b2, c2);
1209   const __m128i d3 = _mm_add_epi32(b3, c3);
1210   const __m128i e0 = _mm_add_epi32(d0, d1);
1211   const __m128i e1 = _mm_add_epi32(d2, d3);
1212   const __m128i f0 = _mm_add_epi32(e0, e1);
1213   uint16_t tmp[8];
1214   _mm_storeu_si128((__m128i*)tmp, f0);
1215   dc[0] = tmp[0] + tmp[1];
1216   dc[1] = tmp[2] + tmp[3];
1217   dc[2] = tmp[4] + tmp[5];
1218   dc[3] = tmp[6] + tmp[7];
1219 }
1220 
1221 //------------------------------------------------------------------------------
1222 // Texture distortion
1223 //
1224 // We try to match the spectral content (weighted) between source and
1225 // reconstructed samples.
1226 
1227 // Hadamard transform
1228 // Returns the weighted sum of the absolute value of transformed coefficients.
1229 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1230 static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1231                            const uint16_t* const w) {
1232   int32_t sum[4];
1233   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1234   const __m128i zero = _mm_setzero_si128();
1235 
1236   // Load and combine inputs.
1237   {
1238     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1239     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1240     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1241     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1242     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1243     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1244     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1245     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1246 
1247     // Combine inA and inB (we'll do two transforms in parallel).
1248     const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1249     const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1250     const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1251     const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1252     tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1253     tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1254     tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1255     tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1256     // a00 a01 a02 a03   b00 b01 b02 b03
1257     // a10 a11 a12 a13   b10 b11 b12 b13
1258     // a20 a21 a22 a23   b20 b21 b22 b23
1259     // a30 a31 a32 a33   b30 b31 b32 b33
1260   }
1261 
1262   // Vertical pass first to avoid a transpose (vertical and horizontal passes
1263   // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1264   {
1265     // Calculate a and b (two 4x4 at once).
1266     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1267     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1268     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1269     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1270     const __m128i b0 = _mm_add_epi16(a0, a1);
1271     const __m128i b1 = _mm_add_epi16(a3, a2);
1272     const __m128i b2 = _mm_sub_epi16(a3, a2);
1273     const __m128i b3 = _mm_sub_epi16(a0, a1);
1274     // a00 a01 a02 a03   b00 b01 b02 b03
1275     // a10 a11 a12 a13   b10 b11 b12 b13
1276     // a20 a21 a22 a23   b20 b21 b22 b23
1277     // a30 a31 a32 a33   b30 b31 b32 b33
1278 
1279     // Transpose the two 4x4.
1280     VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1281   }
1282 
1283   // Horizontal pass and difference of weighted sums.
1284   {
1285     // Load all inputs.
1286     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1287     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1288 
1289     // Calculate a and b (two 4x4 at once).
1290     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1291     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1292     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1293     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1294     const __m128i b0 = _mm_add_epi16(a0, a1);
1295     const __m128i b1 = _mm_add_epi16(a3, a2);
1296     const __m128i b2 = _mm_sub_epi16(a3, a2);
1297     const __m128i b3 = _mm_sub_epi16(a0, a1);
1298 
1299     // Separate the transforms of inA and inB.
1300     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1301     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1302     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1303     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1304 
1305     {
1306       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1307       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1308       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1309       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1310       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1311       A_b2 = _mm_max_epi16(A_b2, d1);
1312       B_b0 = _mm_max_epi16(B_b0, d2);
1313       B_b2 = _mm_max_epi16(B_b2, d3);
1314     }
1315 
1316     // weighted sums
1317     A_b0 = _mm_madd_epi16(A_b0, w_0);
1318     A_b2 = _mm_madd_epi16(A_b2, w_8);
1319     B_b0 = _mm_madd_epi16(B_b0, w_0);
1320     B_b2 = _mm_madd_epi16(B_b2, w_8);
1321     A_b0 = _mm_add_epi32(A_b0, A_b2);
1322     B_b0 = _mm_add_epi32(B_b0, B_b2);
1323 
1324     // difference of weighted sums
1325     A_b0 = _mm_sub_epi32(A_b0, B_b0);
1326     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1327   }
1328   return sum[0] + sum[1] + sum[2] + sum[3];
1329 }
1330 
Disto4x4_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1331 static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1332                          const uint16_t* const w) {
1333   const int diff_sum = TTransform_SSE2(a, b, w);
1334   return abs(diff_sum) >> 5;
1335 }
1336 
Disto16x16_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1337 static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1338                            const uint16_t* const w) {
1339   int D = 0;
1340   int x, y;
1341   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1342     for (x = 0; x < 16; x += 4) {
1343       D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1344     }
1345   }
1346   return D;
1347 }
1348 
1349 //------------------------------------------------------------------------------
1350 // Quantization
1351 //
1352 
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1353 static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1354                                             const uint16_t* const sharpen,
1355                                             const VP8Matrix* const mtx) {
1356   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1357   const __m128i zero = _mm_setzero_si128();
1358   __m128i coeff0, coeff8;
1359   __m128i out0, out8;
1360   __m128i packed_out;
1361 
1362   // Load all inputs.
1363   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1364   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1365   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1366   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1367   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1368   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1369 
1370   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1371   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1372   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1373 
1374   // coeff = abs(in) = (in ^ sign) - sign
1375   coeff0 = _mm_xor_si128(in0, sign0);
1376   coeff8 = _mm_xor_si128(in8, sign8);
1377   coeff0 = _mm_sub_epi16(coeff0, sign0);
1378   coeff8 = _mm_sub_epi16(coeff8, sign8);
1379 
1380   // coeff = abs(in) + sharpen
1381   if (sharpen != NULL) {
1382     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1383     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1384     coeff0 = _mm_add_epi16(coeff0, sharpen0);
1385     coeff8 = _mm_add_epi16(coeff8, sharpen8);
1386   }
1387 
1388   // out = (coeff * iQ + B) >> QFIX
1389   {
1390     // doing calculations with 32b precision (QFIX=17)
1391     // out = (coeff * iQ)
1392     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1393     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1394     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1395     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1396     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1397     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1398     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1399     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1400     // out = (coeff * iQ + B)
1401     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1402     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1403     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1404     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1405     out_00 = _mm_add_epi32(out_00, bias_00);
1406     out_04 = _mm_add_epi32(out_04, bias_04);
1407     out_08 = _mm_add_epi32(out_08, bias_08);
1408     out_12 = _mm_add_epi32(out_12, bias_12);
1409     // out = QUANTDIV(coeff, iQ, B, QFIX)
1410     out_00 = _mm_srai_epi32(out_00, QFIX);
1411     out_04 = _mm_srai_epi32(out_04, QFIX);
1412     out_08 = _mm_srai_epi32(out_08, QFIX);
1413     out_12 = _mm_srai_epi32(out_12, QFIX);
1414 
1415     // pack result as 16b
1416     out0 = _mm_packs_epi32(out_00, out_04);
1417     out8 = _mm_packs_epi32(out_08, out_12);
1418 
1419     // if (coeff > 2047) coeff = 2047
1420     out0 = _mm_min_epi16(out0, max_coeff_2047);
1421     out8 = _mm_min_epi16(out8, max_coeff_2047);
1422   }
1423 
1424   // get sign back (if (sign[j]) out_n = -out_n)
1425   out0 = _mm_xor_si128(out0, sign0);
1426   out8 = _mm_xor_si128(out8, sign8);
1427   out0 = _mm_sub_epi16(out0, sign0);
1428   out8 = _mm_sub_epi16(out8, sign8);
1429 
1430   // in = out * Q
1431   in0 = _mm_mullo_epi16(out0, q0);
1432   in8 = _mm_mullo_epi16(out8, q8);
1433 
1434   _mm_storeu_si128((__m128i*)&in[0], in0);
1435   _mm_storeu_si128((__m128i*)&in[8], in8);
1436 
1437   // zigzag the output before storing it.
1438   //
1439   // The zigzag pattern can almost be reproduced with a small sequence of
1440   // shuffles. After it, we only need to swap the 7th (ending up in third
1441   // position instead of twelfth) and 8th values.
1442   {
1443     __m128i outZ0, outZ8;
1444     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1445     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1446     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1447     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1448     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1449     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1450     _mm_storeu_si128((__m128i*)&out[0], outZ0);
1451     _mm_storeu_si128((__m128i*)&out[8], outZ8);
1452     packed_out = _mm_packs_epi16(outZ0, outZ8);
1453   }
1454   {
1455     const int16_t outZ_12 = out[12];
1456     const int16_t outZ_3 = out[3];
1457     out[3] = outZ_12;
1458     out[12] = outZ_3;
1459   }
1460 
1461   // detect if all 'out' values are zeroes or not
1462   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1463 }
1464 
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1465 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1466                               const VP8Matrix* const mtx) {
1467   return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1468 }
1469 
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1470 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1471                                  const VP8Matrix* const mtx) {
1472   return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1473 }
1474 
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1475 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1476                                 const VP8Matrix* const mtx) {
1477   int nz;
1478   const uint16_t* const sharpen = &mtx->sharpen_[0];
1479   nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1480   nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1481   return nz;
1482 }
1483 
1484 //------------------------------------------------------------------------------
1485 // Entry point
1486 
1487 extern void VP8EncDspInitSSE2(void);
1488 
VP8EncDspInitSSE2(void)1489 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1490   VP8CollectHistogram = CollectHistogram_SSE2;
1491   VP8EncPredLuma16 = Intra16Preds_SSE2;
1492   VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1493   VP8EncPredLuma4 = Intra4Preds_SSE2;
1494   VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1495   VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1496   VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1497   VP8ITransform = ITransform_SSE2;
1498   VP8FTransform = FTransform_SSE2;
1499   VP8FTransform2 = FTransform2_SSE2;
1500   VP8FTransformWHT = FTransformWHT_SSE2;
1501   VP8SSE16x16 = SSE16x16_SSE2;
1502   VP8SSE16x8 = SSE16x8_SSE2;
1503   VP8SSE8x8 = SSE8x8_SSE2;
1504   VP8SSE4x4 = SSE4x4_SSE2;
1505   VP8TDisto4x4 = Disto4x4_SSE2;
1506   VP8TDisto16x16 = Disto16x16_SSE2;
1507   VP8Mean16x4 = Mean16x4_SSE2;
1508 }
1509 
1510 #else  // !WEBP_USE_SSE2
1511 
1512 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1513 
1514 #endif  // WEBP_USE_SSE2
1515