xref: /aosp_15_r20/external/webp/src/dsp/lossless_sse2.c (revision b2055c353e87c8814eb2b6b1b11112a1562253bd)
1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless decoder
11 //
12 // Author: Skal ([email protected])
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 
18 #include "src/dsp/common_sse2.h"
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/lossless_common.h"
21 #include <emmintrin.h>
22 
23 //------------------------------------------------------------------------------
24 // Predictor Transform
25 
ClampedAddSubtractFull_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)26 static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
27                                                         uint32_t c1,
28                                                         uint32_t c2) {
29   const __m128i zero = _mm_setzero_si128();
30   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
31   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
32   const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
33   const __m128i V1 = _mm_add_epi16(C0, C1);
34   const __m128i V2 = _mm_sub_epi16(V1, C2);
35   const __m128i b = _mm_packus_epi16(V2, V2);
36   return (uint32_t)_mm_cvtsi128_si32(b);
37 }
38 
ClampedAddSubtractHalf_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)39 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
40                                                         uint32_t c1,
41                                                         uint32_t c2) {
42   const __m128i zero = _mm_setzero_si128();
43   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero);
44   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero);
45   const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero);
46   const __m128i avg = _mm_add_epi16(C1, C0);
47   const __m128i A0 = _mm_srli_epi16(avg, 1);
48   const __m128i A1 = _mm_sub_epi16(A0, B0);
49   const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
50   const __m128i A2 = _mm_sub_epi16(A1, BgtA);
51   const __m128i A3 = _mm_srai_epi16(A2, 1);
52   const __m128i A4 = _mm_add_epi16(A0, A3);
53   const __m128i A5 = _mm_packus_epi16(A4, A4);
54   return (uint32_t)_mm_cvtsi128_si32(A5);
55 }
56 
Select_SSE2(uint32_t a,uint32_t b,uint32_t c)57 static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
58   int pa_minus_pb;
59   const __m128i zero = _mm_setzero_si128();
60   const __m128i A0 = _mm_cvtsi32_si128((int)a);
61   const __m128i B0 = _mm_cvtsi32_si128((int)b);
62   const __m128i C0 = _mm_cvtsi32_si128((int)c);
63   const __m128i AC0 = _mm_subs_epu8(A0, C0);
64   const __m128i CA0 = _mm_subs_epu8(C0, A0);
65   const __m128i BC0 = _mm_subs_epu8(B0, C0);
66   const __m128i CB0 = _mm_subs_epu8(C0, B0);
67   const __m128i AC = _mm_or_si128(AC0, CA0);
68   const __m128i BC = _mm_or_si128(BC0, CB0);
69   const __m128i pa = _mm_unpacklo_epi8(AC, zero);  // |a - c|
70   const __m128i pb = _mm_unpacklo_epi8(BC, zero);  // |b - c|
71   const __m128i diff = _mm_sub_epi16(pb, pa);
72   {
73     int16_t out[8];
74     _mm_storeu_si128((__m128i*)out, diff);
75     pa_minus_pb = out[0] + out[1] + out[2] + out[3];
76   }
77   return (pa_minus_pb <= 0) ? a : b;
78 }
79 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)80 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
81                                        const __m128i* const a1,
82                                        __m128i* const avg) {
83   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
84   const __m128i ones = _mm_set1_epi8(1);
85   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
86   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
87   *avg = _mm_sub_epi8(avg1, one);
88 }
89 
Average2_uint32_SSE2(const uint32_t a0,const uint32_t a1,__m128i * const avg)90 static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
91                                              const uint32_t a1,
92                                              __m128i* const avg) {
93   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
94   const __m128i ones = _mm_set1_epi8(1);
95   const __m128i A0 = _mm_cvtsi32_si128((int)a0);
96   const __m128i A1 = _mm_cvtsi32_si128((int)a1);
97   const __m128i avg1 = _mm_avg_epu8(A0, A1);
98   const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
99   *avg = _mm_sub_epi8(avg1, one);
100 }
101 
Average2_uint32_16_SSE2(uint32_t a0,uint32_t a1)102 static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
103   const __m128i zero = _mm_setzero_si128();
104   const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero);
105   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
106   const __m128i sum = _mm_add_epi16(A1, A0);
107   return _mm_srli_epi16(sum, 1);
108 }
109 
Average2_SSE2(uint32_t a0,uint32_t a1)110 static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
111   __m128i output;
112   Average2_uint32_SSE2(a0, a1, &output);
113   return (uint32_t)_mm_cvtsi128_si32(output);
114 }
115 
Average3_SSE2(uint32_t a0,uint32_t a1,uint32_t a2)116 static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
117                                           uint32_t a2) {
118   const __m128i zero = _mm_setzero_si128();
119   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
120   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero);
121   const __m128i sum = _mm_add_epi16(avg1, A1);
122   const __m128i avg2 = _mm_srli_epi16(sum, 1);
123   const __m128i A2 = _mm_packus_epi16(avg2, avg2);
124   return (uint32_t)_mm_cvtsi128_si32(A2);
125 }
126 
Average4_SSE2(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)127 static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
128                                           uint32_t a2, uint32_t a3) {
129   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
130   const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
131   const __m128i sum = _mm_add_epi16(avg2, avg1);
132   const __m128i avg3 = _mm_srli_epi16(sum, 1);
133   const __m128i A0 = _mm_packus_epi16(avg3, avg3);
134   return (uint32_t)_mm_cvtsi128_si32(A0);
135 }
136 
Predictor5_SSE2(const uint32_t * const left,const uint32_t * const top)137 static uint32_t Predictor5_SSE2(const uint32_t* const left,
138                                 const uint32_t* const top) {
139   const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
140   return pred;
141 }
Predictor6_SSE2(const uint32_t * const left,const uint32_t * const top)142 static uint32_t Predictor6_SSE2(const uint32_t* const left,
143                                 const uint32_t* const top) {
144   const uint32_t pred = Average2_SSE2(*left, top[-1]);
145   return pred;
146 }
Predictor7_SSE2(const uint32_t * const left,const uint32_t * const top)147 static uint32_t Predictor7_SSE2(const uint32_t* const left,
148                                 const uint32_t* const top) {
149   const uint32_t pred = Average2_SSE2(*left, top[0]);
150   return pred;
151 }
Predictor8_SSE2(const uint32_t * const left,const uint32_t * const top)152 static uint32_t Predictor8_SSE2(const uint32_t* const left,
153                                 const uint32_t* const top) {
154   const uint32_t pred = Average2_SSE2(top[-1], top[0]);
155   (void)left;
156   return pred;
157 }
Predictor9_SSE2(const uint32_t * const left,const uint32_t * const top)158 static uint32_t Predictor9_SSE2(const uint32_t* const left,
159                                 const uint32_t* const top) {
160   const uint32_t pred = Average2_SSE2(top[0], top[1]);
161   (void)left;
162   return pred;
163 }
Predictor10_SSE2(const uint32_t * const left,const uint32_t * const top)164 static uint32_t Predictor10_SSE2(const uint32_t* const left,
165                                  const uint32_t* const top) {
166   const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
167   return pred;
168 }
Predictor11_SSE2(const uint32_t * const left,const uint32_t * const top)169 static uint32_t Predictor11_SSE2(const uint32_t* const left,
170                                  const uint32_t* const top) {
171   const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
172   return pred;
173 }
Predictor12_SSE2(const uint32_t * const left,const uint32_t * const top)174 static uint32_t Predictor12_SSE2(const uint32_t* const left,
175                                  const uint32_t* const top) {
176   const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
177   return pred;
178 }
Predictor13_SSE2(const uint32_t * const left,const uint32_t * const top)179 static uint32_t Predictor13_SSE2(const uint32_t* const left,
180                                  const uint32_t* const top) {
181   const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
182   return pred;
183 }
184 
185 // Batch versions of those functions.
186 
187 // Predictor0: ARGB_BLACK.
PredictorAdd0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)188 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
189                                int num_pixels, uint32_t* out) {
190   int i;
191   const __m128i black = _mm_set1_epi32((int)ARGB_BLACK);
192   for (i = 0; i + 4 <= num_pixels; i += 4) {
193     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
194     const __m128i res = _mm_add_epi8(src, black);
195     _mm_storeu_si128((__m128i*)&out[i], res);
196   }
197   if (i != num_pixels) {
198     VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
199   }
200   (void)upper;
201 }
202 
203 // Predictor1: left.
PredictorAdd1_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)204 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
205                                int num_pixels, uint32_t* out) {
206   int i;
207   __m128i prev = _mm_set1_epi32((int)out[-1]);
208   for (i = 0; i + 4 <= num_pixels; i += 4) {
209     // a | b | c | d
210     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
211     // 0 | a | b | c
212     const __m128i shift0 = _mm_slli_si128(src, 4);
213     // a | a + b | b + c | c + d
214     const __m128i sum0 = _mm_add_epi8(src, shift0);
215     // 0 | 0 | a | a + b
216     const __m128i shift1 = _mm_slli_si128(sum0, 8);
217     // a | a + b | a + b + c | a + b + c + d
218     const __m128i sum1 = _mm_add_epi8(sum0, shift1);
219     const __m128i res = _mm_add_epi8(sum1, prev);
220     _mm_storeu_si128((__m128i*)&out[i], res);
221     // replicate prev output on the four lanes
222     prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
223   }
224   if (i != num_pixels) {
225     VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
226   }
227 }
228 
229 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
230 // per 8 bit channel.
231 #define GENERATE_PREDICTOR_1(X, IN)                                           \
232 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
233                                   int num_pixels, uint32_t* out) {            \
234   int i;                                                                      \
235   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
236     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
237     const __m128i other = _mm_loadu_si128((const __m128i*)&(IN));             \
238     const __m128i res = _mm_add_epi8(src, other);                             \
239     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
240   }                                                                           \
241   if (i != num_pixels) {                                                      \
242     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
243   }                                                                           \
244 }
245 
246 // Predictor2: Top.
247 GENERATE_PREDICTOR_1(2, upper[i])
248 // Predictor3: Top-right.
249 GENERATE_PREDICTOR_1(3, upper[i + 1])
250 // Predictor4: Top-left.
251 GENERATE_PREDICTOR_1(4, upper[i - 1])
252 #undef GENERATE_PREDICTOR_1
253 
254 // Due to averages with integers, values cannot be accumulated in parallel for
255 // predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2,PredictorAdd5_SSE2)256 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
257 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
258 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
259 
260 #define GENERATE_PREDICTOR_2(X, IN)                                           \
261 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
262                                    int num_pixels, uint32_t* out) {           \
263   int i;                                                                      \
264   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
265     const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN));            \
266     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);             \
267     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
268     __m128i avg, res;                                                         \
269     Average2_m128i(&T, &Tother, &avg);                                        \
270     res = _mm_add_epi8(avg, src);                                             \
271     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
272   }                                                                           \
273   if (i != num_pixels) {                                                      \
274     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
275   }                                                                           \
276 }
277 // Predictor8: average TL T.
278 GENERATE_PREDICTOR_2(8, upper[i - 1])
279 // Predictor9: average T TR.
280 GENERATE_PREDICTOR_2(9, upper[i + 1])
281 #undef GENERATE_PREDICTOR_2
282 
283 // Predictor10: average of (average of (L,TL), average of (T, TR)).
284 #define DO_PRED10(OUT) do {                         \
285   __m128i avgLTL, avg;                              \
286   Average2_m128i(&L, &TL, &avgLTL);                 \
287   Average2_m128i(&avgTTR, &avgLTL, &avg);           \
288   L = _mm_add_epi8(avg, src);                       \
289   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);  \
290 } while (0)
291 
292 #define DO_PRED10_SHIFT do {                                  \
293   /* Rotate the pre-computed values for the next iteration.*/ \
294   avgTTR = _mm_srli_si128(avgTTR, 4);                         \
295   TL = _mm_srli_si128(TL, 4);                                 \
296   src = _mm_srli_si128(src, 4);                               \
297 } while (0)
298 
299 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
300                                 int num_pixels, uint32_t* out) {
301   int i;
302   __m128i L = _mm_cvtsi32_si128((int)out[-1]);
303   for (i = 0; i + 4 <= num_pixels; i += 4) {
304     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
305     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
306     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
307     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
308     __m128i avgTTR;
309     Average2_m128i(&T, &TR, &avgTTR);
310     DO_PRED10(0);
311     DO_PRED10_SHIFT;
312     DO_PRED10(1);
313     DO_PRED10_SHIFT;
314     DO_PRED10(2);
315     DO_PRED10_SHIFT;
316     DO_PRED10(3);
317   }
318   if (i != num_pixels) {
319     VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
320   }
321 }
322 #undef DO_PRED10
323 #undef DO_PRED10_SHIFT
324 
325 // Predictor11: select.
326 #define DO_PRED11(OUT) do {                                            \
327   const __m128i L_lo = _mm_unpacklo_epi32(L, T);                       \
328   const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);                     \
329   const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/   \
330   const __m128i mask = _mm_cmpgt_epi32(pb, pa);                        \
331   const __m128i A = _mm_and_si128(mask, L);                            \
332   const __m128i B = _mm_andnot_si128(mask, T);                         \
333   const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
334   L = _mm_add_epi8(src, pred);                                         \
335   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L);                     \
336 } while (0)
337 
338 #define DO_PRED11_SHIFT do {                                \
339   /* Shift the pre-computed value for the next iteration.*/ \
340   T = _mm_srli_si128(T, 4);                                 \
341   TL = _mm_srli_si128(TL, 4);                               \
342   src = _mm_srli_si128(src, 4);                             \
343   pa = _mm_srli_si128(pa, 4);                               \
344 } while (0)
345 
PredictorAdd11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)346 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
347                                 int num_pixels, uint32_t* out) {
348   int i;
349   __m128i pa;
350   __m128i L = _mm_cvtsi32_si128((int)out[-1]);
351   for (i = 0; i + 4 <= num_pixels; i += 4) {
352     __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
353     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
354     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
355     {
356       // We can unpack with any value on the upper 32 bits, provided it's the
357       // same on both operands (so that their sum of abs diff is zero). Here we
358       // use T.
359       const __m128i T_lo = _mm_unpacklo_epi32(T, T);
360       const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
361       const __m128i T_hi = _mm_unpackhi_epi32(T, T);
362       const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
363       const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
364       const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
365       pa = _mm_packs_epi32(s_lo, s_hi);  // pa = sum |T-TL|
366     }
367     DO_PRED11(0);
368     DO_PRED11_SHIFT;
369     DO_PRED11(1);
370     DO_PRED11_SHIFT;
371     DO_PRED11(2);
372     DO_PRED11_SHIFT;
373     DO_PRED11(3);
374   }
375   if (i != num_pixels) {
376     VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
377   }
378 }
379 #undef DO_PRED11
380 #undef DO_PRED11_SHIFT
381 
382 // Predictor12: ClampedAddSubtractFull.
383 #define DO_PRED12(DIFF, LANE, OUT) do {              \
384   const __m128i all = _mm_add_epi16(L, (DIFF));      \
385   const __m128i alls = _mm_packus_epi16(all, all);   \
386   const __m128i res = _mm_add_epi8(src, alls);       \
387   out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \
388   L = _mm_unpacklo_epi8(res, zero);                  \
389 } while (0)
390 
391 #define DO_PRED12_SHIFT(DIFF, LANE) do {                    \
392   /* Shift the pre-computed value for the next iteration.*/ \
393   if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8);      \
394   src = _mm_srli_si128(src, 4);                             \
395 } while (0)
396 
PredictorAdd12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)397 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
398                                 int num_pixels, uint32_t* out) {
399   int i;
400   const __m128i zero = _mm_setzero_si128();
401   const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]);
402   __m128i L = _mm_unpacklo_epi8(L8, zero);
403   for (i = 0; i + 4 <= num_pixels; i += 4) {
404     // Load 4 pixels at a time.
405     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
406     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
407     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
408     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
409     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
410     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
411     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
412     __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
413     __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
414     DO_PRED12(diff_lo, 0, 0);
415     DO_PRED12_SHIFT(diff_lo, 0);
416     DO_PRED12(diff_lo, 1, 1);
417     DO_PRED12_SHIFT(diff_lo, 1);
418     DO_PRED12(diff_hi, 0, 2);
419     DO_PRED12_SHIFT(diff_hi, 0);
420     DO_PRED12(diff_hi, 1, 3);
421   }
422   if (i != num_pixels) {
423     VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
424   }
425 }
426 #undef DO_PRED12
427 #undef DO_PRED12_SHIFT
428 
429 // Due to averages with integers, values cannot be accumulated in parallel for
430 // predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2,PredictorAdd13_SSE2)431 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
432 
433 //------------------------------------------------------------------------------
434 // Subtract-Green Transform
435 
436 static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
437                                       uint32_t* dst) {
438   int i;
439   for (i = 0; i + 4 <= num_pixels; i += 4) {
440     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
441     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
442     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
443     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
444     const __m128i out = _mm_add_epi8(in, C);
445     _mm_storeu_si128((__m128i*)&dst[i], out);
446   }
447   // fallthrough and finish off with plain-C
448   if (i != num_pixels) {
449     VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
450   }
451 }
452 
453 //------------------------------------------------------------------------------
454 // Color Transform
455 
TransformColorInverse_SSE2(const VP8LMultipliers * const m,const uint32_t * const src,int num_pixels,uint32_t * dst)456 static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
457                                        const uint32_t* const src,
458                                        int num_pixels, uint32_t* dst) {
459 // sign-extended multiplying constants, pre-shifted by 5.
460 #define CST(X)  (((int16_t)(m->X << 8)) >> 5)   // sign-extend
461 #define MK_CST_16(HI, LO) \
462   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
463   const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
464   const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
465 #undef MK_CST_16
466 #undef CST
467   const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00);  // alpha-green masks
468   int i;
469   for (i = 0; i + 4 <= num_pixels; i += 4) {
470     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
471     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
472     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
473     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
474     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
475     const __m128i E = _mm_add_epi8(in, D);             // x r'  x   b'
476     const __m128i F = _mm_slli_epi16(E, 8);            // r' 0   b' 0
477     const __m128i G = _mm_mulhi_epi16(F, mults_b2);    // x db2  0  0
478     const __m128i H = _mm_srli_epi32(G, 8);            // 0  x db2  0
479     const __m128i I = _mm_add_epi8(H, F);              // r' x  b'' 0
480     const __m128i J = _mm_srli_epi16(I, 8);            // 0  r'  0  b''
481     const __m128i out = _mm_or_si128(J, A);
482     _mm_storeu_si128((__m128i*)&dst[i], out);
483   }
484   // Fall-back to C-version for left-overs.
485   if (i != num_pixels) {
486     VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
487   }
488 }
489 
490 //------------------------------------------------------------------------------
491 // Color-space conversion functions
492 
ConvertBGRAToRGB_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)493 static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
494                                   uint8_t* dst) {
495   const __m128i* in = (const __m128i*)src;
496   __m128i* out = (__m128i*)dst;
497 
498   while (num_pixels >= 32) {
499     // Load the BGRA buffers.
500     __m128i in0 = _mm_loadu_si128(in + 0);
501     __m128i in1 = _mm_loadu_si128(in + 1);
502     __m128i in2 = _mm_loadu_si128(in + 2);
503     __m128i in3 = _mm_loadu_si128(in + 3);
504     __m128i in4 = _mm_loadu_si128(in + 4);
505     __m128i in5 = _mm_loadu_si128(in + 5);
506     __m128i in6 = _mm_loadu_si128(in + 6);
507     __m128i in7 = _mm_loadu_si128(in + 7);
508     VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
509     VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
510     // At this points, in1/in5 contains red only, in2/in6 green only ...
511     // Pack the colors in 24b RGB.
512     VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
513     _mm_storeu_si128(out + 0, in1);
514     _mm_storeu_si128(out + 1, in5);
515     _mm_storeu_si128(out + 2, in2);
516     _mm_storeu_si128(out + 3, in6);
517     _mm_storeu_si128(out + 4, in3);
518     _mm_storeu_si128(out + 5, in7);
519     in += 8;
520     out += 6;
521     num_pixels -= 32;
522   }
523   // left-overs
524   if (num_pixels > 0) {
525     VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
526   }
527 }
528 
ConvertBGRAToRGBA_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)529 static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
530                                    int num_pixels, uint8_t* dst) {
531   const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff);
532   const __m128i* in = (const __m128i*)src;
533   __m128i* out = (__m128i*)dst;
534   while (num_pixels >= 8) {
535     const __m128i A1 = _mm_loadu_si128(in++);
536     const __m128i A2 = _mm_loadu_si128(in++);
537     const __m128i B1 = _mm_and_si128(A1, red_blue_mask);     // R 0 B 0
538     const __m128i B2 = _mm_and_si128(A2, red_blue_mask);     // R 0 B 0
539     const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1);  // 0 G 0 A
540     const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2);  // 0 G 0 A
541     const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
542     const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
543     const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
544     const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
545     const __m128i F1 = _mm_or_si128(E1, C1);
546     const __m128i F2 = _mm_or_si128(E2, C2);
547     _mm_storeu_si128(out++, F1);
548     _mm_storeu_si128(out++, F2);
549     num_pixels -= 8;
550   }
551   // left-overs
552   if (num_pixels > 0) {
553     VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
554   }
555 }
556 
ConvertBGRAToRGBA4444_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)557 static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
558                                        int num_pixels, uint8_t* dst) {
559   const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
560   const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0);
561   const __m128i* in = (const __m128i*)src;
562   __m128i* out = (__m128i*)dst;
563   while (num_pixels >= 8) {
564     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
565     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
566     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
567     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
568     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);    // b0b2b4b6g0g2g4g6...
569     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);    // b1b3b5b7g1g3g5g7...
570     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);    // b0...b7 | g0...g7
571     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);    // r0...r7 | a0...a7
572     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);   // g0...g7 | a0...a7
573     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);   // r0...r7 | b0...b7
574     const __m128i ga1 = _mm_srli_epi16(ga0, 4);         // g0-|g1-|...|a6-|a7-
575     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0);  // -r0|-r1|...|-b6|-a7
576     const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f);  // g0-|g1-|...|a6-|a7-
577     const __m128i rgba0 = _mm_or_si128(ga2, rb1);       // rg0..rg7 | ba0..ba7
578     const __m128i rgba1 = _mm_srli_si128(rgba0, 8);     // ba0..ba7 | 0
579 #if (WEBP_SWAP_16BIT_CSP == 1)
580     const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0);  // barg0...barg7
581 #else
582     const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1);  // rgba0...rgba7
583 #endif
584     _mm_storeu_si128(out++, rgba);
585     num_pixels -= 8;
586   }
587   // left-overs
588   if (num_pixels > 0) {
589     VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
590   }
591 }
592 
ConvertBGRAToRGB565_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)593 static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
594                                      int num_pixels, uint8_t* dst) {
595   const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0);
596   const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8);
597   const __m128i mask_0x07 = _mm_set1_epi8(0x07);
598   const __m128i* in = (const __m128i*)src;
599   __m128i* out = (__m128i*)dst;
600   while (num_pixels >= 8) {
601     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
602     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
603     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
604     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
605     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);      // b0b2b4b6g0g2g4g6...
606     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);      // b1b3b5b7g1g3g5g7...
607     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);      // b0...b7 | g0...g7
608     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);      // r0...r7 | a0...a7
609     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);     // g0...g7 | a0...a7
610     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);     // r0...r7 | b0...b7
611     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8);    // -r0..-r7|-b0..-b7
612     const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
613     const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07);  // g0-...g7-|xx (3b)
614     const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
615     const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0);  // -g0...-g7|xx (3b)
616     const __m128i b0 = _mm_srli_si128(rb1, 8);              // -b0...-b7|0
617     const __m128i rg1 = _mm_or_si128(rb1, g_lo2);           // gr0...gr7|xx
618     const __m128i b1 = _mm_srli_epi16(b0, 3);
619     const __m128i gb1 = _mm_or_si128(b1, g_hi2);            // bg0...bg7|xx
620 #if (WEBP_SWAP_16BIT_CSP == 1)
621     const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1);     // rggb0...rggb7
622 #else
623     const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1);     // bgrb0...bgrb7
624 #endif
625     _mm_storeu_si128(out++, rgba);
626     num_pixels -= 8;
627   }
628   // left-overs
629   if (num_pixels > 0) {
630     VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
631   }
632 }
633 
ConvertBGRAToBGR_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)634 static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
635                                   int num_pixels, uint8_t* dst) {
636   const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
637   const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
638   const __m128i* in = (const __m128i*)src;
639   const uint8_t* const end = dst + num_pixels * 3;
640   // the last storel_epi64 below writes 8 bytes starting at offset 18
641   while (dst + 26 <= end) {
642     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
643     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
644     const __m128i a0l = _mm_and_si128(bgra0, mask_l);   // bgr0|0|bgr0|0
645     const __m128i a4l = _mm_and_si128(bgra4, mask_l);   // bgr0|0|bgr0|0
646     const __m128i a0h = _mm_and_si128(bgra0, mask_h);   // 0|bgr0|0|bgr0
647     const __m128i a4h = _mm_and_si128(bgra4, mask_h);   // 0|bgr0|0|bgr0
648     const __m128i b0h = _mm_srli_epi64(a0h, 8);         // 000b|gr00|000b|gr00
649     const __m128i b4h = _mm_srli_epi64(a4h, 8);         // 000b|gr00|000b|gr00
650     const __m128i c0 = _mm_or_si128(a0l, b0h);          // rgbrgb00|rgbrgb00
651     const __m128i c4 = _mm_or_si128(a4l, b4h);          // rgbrgb00|rgbrgb00
652     const __m128i c2 = _mm_srli_si128(c0, 8);
653     const __m128i c6 = _mm_srli_si128(c4, 8);
654     _mm_storel_epi64((__m128i*)(dst +   0), c0);
655     _mm_storel_epi64((__m128i*)(dst +   6), c2);
656     _mm_storel_epi64((__m128i*)(dst +  12), c4);
657     _mm_storel_epi64((__m128i*)(dst +  18), c6);
658     dst += 24;
659     num_pixels -= 8;
660   }
661   // left-overs
662   if (num_pixels > 0) {
663     VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
664   }
665 }
666 
667 //------------------------------------------------------------------------------
668 // Entry point
669 
670 extern void VP8LDspInitSSE2(void);
671 
VP8LDspInitSSE2(void)672 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
673   VP8LPredictors[5] = Predictor5_SSE2;
674   VP8LPredictors[6] = Predictor6_SSE2;
675   VP8LPredictors[7] = Predictor7_SSE2;
676   VP8LPredictors[8] = Predictor8_SSE2;
677   VP8LPredictors[9] = Predictor9_SSE2;
678   VP8LPredictors[10] = Predictor10_SSE2;
679   VP8LPredictors[11] = Predictor11_SSE2;
680   VP8LPredictors[12] = Predictor12_SSE2;
681   VP8LPredictors[13] = Predictor13_SSE2;
682 
683   VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
684   VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
685   VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
686   VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
687   VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
688   VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
689   VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
690   VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
691   VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
692   VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
693   VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
694   VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
695   VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
696   VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
697 
698   VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
699   VP8LTransformColorInverse = TransformColorInverse_SSE2;
700 
701   VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
702   VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
703   VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
704   VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
705   VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
706 }
707 
708 #else  // !WEBP_USE_SSE2
709 
710 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
711 
712 #endif  // WEBP_USE_SSE2
713