xref: /aosp_15_r20/external/webp/src/enc/histogram_enc.c (revision b2055c353e87c8814eb2b6b1b11112a1562253bd)
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala ([email protected])
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "src/webp/config.h"
14 #endif
15 
16 #include <float.h>
17 #include <math.h>
18 
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/lossless_common.h"
21 #include "src/enc/backward_references_enc.h"
22 #include "src/enc/histogram_enc.h"
23 #include "src/enc/vp8i_enc.h"
24 #include "src/utils/utils.h"
25 
26 #define MAX_BIT_COST FLT_MAX
27 
28 // Number of partitions for the three dominant (literal, red and blue) symbol
29 // costs.
30 #define NUM_PARTITIONS 4
31 // The size of the bin-hash corresponding to the three dominant costs.
32 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
33 // Maximum number of histograms allowed in greedy combining algorithm.
34 #define MAX_HISTO_GREEDY 100
35 
HistogramClear(VP8LHistogram * const p)36 static void HistogramClear(VP8LHistogram* const p) {
37   uint32_t* const literal = p->literal_;
38   const int cache_bits = p->palette_code_bits_;
39   const int histo_size = VP8LGetHistogramSize(cache_bits);
40   memset(p, 0, histo_size);
41   p->palette_code_bits_ = cache_bits;
42   p->literal_ = literal;
43 }
44 
45 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)46 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
47   VP8LHistogram* const tmp = *A;
48   *A = *B;
49   *B = tmp;
50 }
51 
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)52 static void HistogramCopy(const VP8LHistogram* const src,
53                           VP8LHistogram* const dst) {
54   uint32_t* const dst_literal = dst->literal_;
55   const int dst_cache_bits = dst->palette_code_bits_;
56   const int literal_size = VP8LHistogramNumCodes(dst_cache_bits);
57   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
58   assert(src->palette_code_bits_ == dst_cache_bits);
59   memcpy(dst, src, histo_size);
60   dst->literal_ = dst_literal;
61   memcpy(dst->literal_, src->literal_, literal_size * sizeof(*dst->literal_));
62 }
63 
VP8LGetHistogramSize(int cache_bits)64 int VP8LGetHistogramSize(int cache_bits) {
65   const int literal_size = VP8LHistogramNumCodes(cache_bits);
66   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
67   assert(total_size <= (size_t)0x7fffffff);
68   return (int)total_size;
69 }
70 
VP8LFreeHistogram(VP8LHistogram * const histo)71 void VP8LFreeHistogram(VP8LHistogram* const histo) {
72   WebPSafeFree(histo);
73 }
74 
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)75 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
76   WebPSafeFree(histo);
77 }
78 
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)79 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
80                             VP8LHistogram* const histo) {
81   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
82   while (VP8LRefsCursorOk(&c)) {
83     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
84     VP8LRefsCursorNext(&c);
85   }
86 }
87 
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)88 void VP8LHistogramCreate(VP8LHistogram* const p,
89                          const VP8LBackwardRefs* const refs,
90                          int palette_code_bits) {
91   if (palette_code_bits >= 0) {
92     p->palette_code_bits_ = palette_code_bits;
93   }
94   HistogramClear(p);
95   VP8LHistogramStoreRefs(refs, p);
96 }
97 
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits,int init_arrays)98 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits,
99                        int init_arrays) {
100   p->palette_code_bits_ = palette_code_bits;
101   if (init_arrays) {
102     HistogramClear(p);
103   } else {
104     p->trivial_symbol_ = 0;
105     p->bit_cost_ = 0.;
106     p->literal_cost_ = 0.;
107     p->red_cost_ = 0.;
108     p->blue_cost_ = 0.;
109     memset(p->is_used_, 0, sizeof(p->is_used_));
110   }
111 }
112 
VP8LAllocateHistogram(int cache_bits)113 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
114   VP8LHistogram* histo = NULL;
115   const int total_size = VP8LGetHistogramSize(cache_bits);
116   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
117   if (memory == NULL) return NULL;
118   histo = (VP8LHistogram*)memory;
119   // literal_ won't necessary be aligned.
120   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
121   VP8LHistogramInit(histo, cache_bits, /*init_arrays=*/ 0);
122   return histo;
123 }
124 
125 // Resets the pointers of the histograms to point to the bit buffer in the set.
HistogramSetResetPointers(VP8LHistogramSet * const set,int cache_bits)126 static void HistogramSetResetPointers(VP8LHistogramSet* const set,
127                                       int cache_bits) {
128   int i;
129   const int histo_size = VP8LGetHistogramSize(cache_bits);
130   uint8_t* memory = (uint8_t*) (set->histograms);
131   memory += set->max_size * sizeof(*set->histograms);
132   for (i = 0; i < set->max_size; ++i) {
133     memory = (uint8_t*) WEBP_ALIGN(memory);
134     set->histograms[i] = (VP8LHistogram*) memory;
135     // literal_ won't necessary be aligned.
136     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
137     memory += histo_size;
138   }
139 }
140 
141 // Returns the total size of the VP8LHistogramSet.
HistogramSetTotalSize(int size,int cache_bits)142 static size_t HistogramSetTotalSize(int size, int cache_bits) {
143   const int histo_size = VP8LGetHistogramSize(cache_bits);
144   return (sizeof(VP8LHistogramSet) + size * (sizeof(VP8LHistogram*) +
145           histo_size + WEBP_ALIGN_CST));
146 }
147 
VP8LAllocateHistogramSet(int size,int cache_bits)148 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
149   int i;
150   VP8LHistogramSet* set;
151   const size_t total_size = HistogramSetTotalSize(size, cache_bits);
152   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
153   if (memory == NULL) return NULL;
154 
155   set = (VP8LHistogramSet*)memory;
156   memory += sizeof(*set);
157   set->histograms = (VP8LHistogram**)memory;
158   set->max_size = size;
159   set->size = size;
160   HistogramSetResetPointers(set, cache_bits);
161   for (i = 0; i < size; ++i) {
162     VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0);
163   }
164   return set;
165 }
166 
VP8LHistogramSetClear(VP8LHistogramSet * const set)167 void VP8LHistogramSetClear(VP8LHistogramSet* const set) {
168   int i;
169   const int cache_bits = set->histograms[0]->palette_code_bits_;
170   const int size = set->max_size;
171   const size_t total_size = HistogramSetTotalSize(size, cache_bits);
172   uint8_t* memory = (uint8_t*)set;
173 
174   memset(memory, 0, total_size);
175   memory += sizeof(*set);
176   set->histograms = (VP8LHistogram**)memory;
177   set->max_size = size;
178   set->size = size;
179   HistogramSetResetPointers(set, cache_bits);
180   for (i = 0; i < size; ++i) {
181     set->histograms[i]->palette_code_bits_ = cache_bits;
182   }
183 }
184 
185 // Removes the histogram 'i' from 'set' by setting it to NULL.
HistogramSetRemoveHistogram(VP8LHistogramSet * const set,int i,int * const num_used)186 static void HistogramSetRemoveHistogram(VP8LHistogramSet* const set, int i,
187                                         int* const num_used) {
188   assert(set->histograms[i] != NULL);
189   set->histograms[i] = NULL;
190   --*num_used;
191   // If we remove the last valid one, shrink until the next valid one.
192   if (i == set->size - 1) {
193     while (set->size >= 1 && set->histograms[set->size - 1] == NULL) {
194       --set->size;
195     }
196   }
197 }
198 
199 // -----------------------------------------------------------------------------
200 
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v,int (* const distance_modifier)(int,int),int distance_modifier_arg0)201 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
202                                      const PixOrCopy* const v,
203                                      int (*const distance_modifier)(int, int),
204                                      int distance_modifier_arg0) {
205   if (PixOrCopyIsLiteral(v)) {
206     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
207     ++histo->red_[PixOrCopyLiteral(v, 2)];
208     ++histo->literal_[PixOrCopyLiteral(v, 1)];
209     ++histo->blue_[PixOrCopyLiteral(v, 0)];
210   } else if (PixOrCopyIsCacheIdx(v)) {
211     const int literal_ix =
212         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
213     assert(histo->palette_code_bits_ != 0);
214     ++histo->literal_[literal_ix];
215   } else {
216     int code, extra_bits;
217     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
218     ++histo->literal_[NUM_LITERAL_CODES + code];
219     if (distance_modifier == NULL) {
220       VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
221     } else {
222       VP8LPrefixEncodeBits(
223           distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
224           &code, &extra_bits);
225     }
226     ++histo->distance_[code];
227   }
228 }
229 
230 // -----------------------------------------------------------------------------
231 // Entropy-related functions.
232 
BitsEntropyRefine(const VP8LBitEntropy * entropy)233 static WEBP_INLINE float BitsEntropyRefine(const VP8LBitEntropy* entropy) {
234   float mix;
235   if (entropy->nonzeros < 5) {
236     if (entropy->nonzeros <= 1) {
237       return 0;
238     }
239     // Two symbols, they will be 0 and 1 in a Huffman code.
240     // Let's mix in a bit of entropy to favor good clustering when
241     // distributions of these are combined.
242     if (entropy->nonzeros == 2) {
243       return 0.99f * entropy->sum + 0.01f * entropy->entropy;
244     }
245     // No matter what the entropy says, we cannot be better than min_limit
246     // with Huffman coding. I am mixing a bit of entropy into the
247     // min_limit since it produces much better (~0.5 %) compression results
248     // perhaps because of better entropy clustering.
249     if (entropy->nonzeros == 3) {
250       mix = 0.95f;
251     } else {
252       mix = 0.7f;  // nonzeros == 4.
253     }
254   } else {
255     mix = 0.627f;
256   }
257 
258   {
259     float min_limit = 2.f * entropy->sum - entropy->max_val;
260     min_limit = mix * min_limit + (1.f - mix) * entropy->entropy;
261     return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
262   }
263 }
264 
VP8LBitsEntropy(const uint32_t * const array,int n)265 float VP8LBitsEntropy(const uint32_t* const array, int n) {
266   VP8LBitEntropy entropy;
267   VP8LBitsEntropyUnrefined(array, n, &entropy);
268 
269   return BitsEntropyRefine(&entropy);
270 }
271 
InitialHuffmanCost(void)272 static float InitialHuffmanCost(void) {
273   // Small bias because Huffman code length is typically not stored in
274   // full length.
275   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
276   static const float kSmallBias = 9.1f;
277   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
278 }
279 
280 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)281 static float FinalHuffmanCost(const VP8LStreaks* const stats) {
282   // The constants in this function are experimental and got rounded from
283   // their original values in 1/8 when switched to 1/1024.
284   float retval = InitialHuffmanCost();
285   // Second coefficient: Many zeros in the histogram are covered efficiently
286   // by a run-length encode. Originally 2/8.
287   retval += stats->counts[0] * 1.5625f + 0.234375f * stats->streaks[0][1];
288   // Second coefficient: Constant values are encoded less efficiently, but still
289   // RLE'ed. Originally 6/8.
290   retval += stats->counts[1] * 2.578125f + 0.703125f * stats->streaks[1][1];
291   // 0s are usually encoded more efficiently than non-0s.
292   // Originally 15/8.
293   retval += 1.796875f * stats->streaks[0][0];
294   // Originally 26/8.
295   retval += 3.28125f * stats->streaks[1][0];
296   return retval;
297 }
298 
299 // Get the symbol entropy for the distribution 'population'.
300 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym,uint8_t * const is_used)301 static float PopulationCost(const uint32_t* const population, int length,
302                             uint32_t* const trivial_sym,
303                             uint8_t* const is_used) {
304   VP8LBitEntropy bit_entropy;
305   VP8LStreaks stats;
306   VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
307   if (trivial_sym != NULL) {
308     *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
309                                                : VP8L_NON_TRIVIAL_SYM;
310   }
311   // The histogram is used if there is at least one non-zero streak.
312   *is_used = (stats.streaks[1][0] != 0 || stats.streaks[1][1] != 0);
313 
314   return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
315 }
316 
317 // trivial_at_end is 1 if the two histograms only have one element that is
318 // non-zero: both the zero-th one, or both the last one.
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length,int is_X_used,int is_Y_used,int trivial_at_end)319 static WEBP_INLINE float GetCombinedEntropy(const uint32_t* const X,
320                                             const uint32_t* const Y, int length,
321                                             int is_X_used, int is_Y_used,
322                                             int trivial_at_end) {
323   VP8LStreaks stats;
324   if (trivial_at_end) {
325     // This configuration is due to palettization that transforms an indexed
326     // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
327     // BitsEntropyRefine is 0 for histograms with only one non-zero value.
328     // Only FinalHuffmanCost needs to be evaluated.
329     memset(&stats, 0, sizeof(stats));
330     // Deal with the non-zero value at index 0 or length-1.
331     stats.streaks[1][0] = 1;
332     // Deal with the following/previous zero streak.
333     stats.counts[0] = 1;
334     stats.streaks[0][1] = length - 1;
335     return FinalHuffmanCost(&stats);
336   } else {
337     VP8LBitEntropy bit_entropy;
338     if (is_X_used) {
339       if (is_Y_used) {
340         VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
341       } else {
342         VP8LGetEntropyUnrefined(X, length, &bit_entropy, &stats);
343       }
344     } else {
345       if (is_Y_used) {
346         VP8LGetEntropyUnrefined(Y, length, &bit_entropy, &stats);
347       } else {
348         memset(&stats, 0, sizeof(stats));
349         stats.counts[0] = 1;
350         stats.streaks[0][length > 3] = length;
351         VP8LBitEntropyInit(&bit_entropy);
352       }
353     }
354 
355     return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
356   }
357 }
358 
359 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(VP8LHistogram * const p)360 float VP8LHistogramEstimateBits(VP8LHistogram* const p) {
361   return PopulationCost(p->literal_,
362                         VP8LHistogramNumCodes(p->palette_code_bits_), NULL,
363                         &p->is_used_[0]) +
364          PopulationCost(p->red_, NUM_LITERAL_CODES, NULL, &p->is_used_[1]) +
365          PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL, &p->is_used_[2]) +
366          PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL, &p->is_used_[3]) +
367          PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL,
368                         &p->is_used_[4]) +
369          (float)VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES,
370                               NUM_LENGTH_CODES) +
371          (float)VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
372 }
373 
374 // -----------------------------------------------------------------------------
375 // Various histogram combine/cost-eval functions
376 
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,float cost_threshold,float * cost)377 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
378                                        const VP8LHistogram* const b,
379                                        float cost_threshold, float* cost) {
380   const int palette_code_bits = a->palette_code_bits_;
381   int trivial_at_end = 0;
382   assert(a->palette_code_bits_ == b->palette_code_bits_);
383   *cost += GetCombinedEntropy(a->literal_, b->literal_,
384                               VP8LHistogramNumCodes(palette_code_bits),
385                               a->is_used_[0], b->is_used_[0], 0);
386   *cost += (float)VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
387                                         b->literal_ + NUM_LITERAL_CODES,
388                                         NUM_LENGTH_CODES);
389   if (*cost > cost_threshold) return 0;
390 
391   if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
392       a->trivial_symbol_ == b->trivial_symbol_) {
393     // A, R and B are all 0 or 0xff.
394     const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
395     const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
396     const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
397     if ((color_a == 0 || color_a == 0xff) &&
398         (color_r == 0 || color_r == 0xff) &&
399         (color_b == 0 || color_b == 0xff)) {
400       trivial_at_end = 1;
401     }
402   }
403 
404   *cost +=
405       GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, a->is_used_[1],
406                          b->is_used_[1], trivial_at_end);
407   if (*cost > cost_threshold) return 0;
408 
409   *cost +=
410       GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, a->is_used_[2],
411                          b->is_used_[2], trivial_at_end);
412   if (*cost > cost_threshold) return 0;
413 
414   *cost +=
415       GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
416                          a->is_used_[3], b->is_used_[3], trivial_at_end);
417   if (*cost > cost_threshold) return 0;
418 
419   *cost +=
420       GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES,
421                          a->is_used_[4], b->is_used_[4], 0);
422   *cost += (float)VP8LExtraCostCombined(a->distance_, b->distance_,
423                                         NUM_DISTANCE_CODES);
424   if (*cost > cost_threshold) return 0;
425 
426   return 1;
427 }
428 
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)429 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
430                                      const VP8LHistogram* const b,
431                                      VP8LHistogram* const out) {
432   VP8LHistogramAdd(a, b, out);
433   out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
434                        ? a->trivial_symbol_
435                        : VP8L_NON_TRIVIAL_SYM;
436 }
437 
438 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
439 // to the threshold value 'cost_threshold'. The score returned is
440 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
441 // Since the previous score passed is 'cost_threshold', we only need to compare
442 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
443 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,float cost_threshold)444 static float HistogramAddEval(const VP8LHistogram* const a,
445                               const VP8LHistogram* const b,
446                               VP8LHistogram* const out, float cost_threshold) {
447   float cost = 0;
448   const float sum_cost = a->bit_cost_ + b->bit_cost_;
449   cost_threshold += sum_cost;
450 
451   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
452     HistogramAdd(a, b, out);
453     out->bit_cost_ = cost;
454     out->palette_code_bits_ = a->palette_code_bits_;
455   }
456 
457   return cost - sum_cost;
458 }
459 
460 // Same as HistogramAddEval(), except that the resulting histogram
461 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
462 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,float cost_threshold)463 static float HistogramAddThresh(const VP8LHistogram* const a,
464                                 const VP8LHistogram* const b,
465                                 float cost_threshold) {
466   float cost;
467   assert(a != NULL && b != NULL);
468   cost = -a->bit_cost_;
469   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
470   return cost;
471 }
472 
473 // -----------------------------------------------------------------------------
474 
475 // The structure to keep track of cost range for the three dominant entropy
476 // symbols.
477 typedef struct {
478   float literal_max_;
479   float literal_min_;
480   float red_max_;
481   float red_min_;
482   float blue_max_;
483   float blue_min_;
484 } DominantCostRange;
485 
DominantCostRangeInit(DominantCostRange * const c)486 static void DominantCostRangeInit(DominantCostRange* const c) {
487   c->literal_max_ = 0.;
488   c->literal_min_ = MAX_BIT_COST;
489   c->red_max_ = 0.;
490   c->red_min_ = MAX_BIT_COST;
491   c->blue_max_ = 0.;
492   c->blue_min_ = MAX_BIT_COST;
493 }
494 
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)495 static void UpdateDominantCostRange(
496     const VP8LHistogram* const h, DominantCostRange* const c) {
497   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
498   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
499   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
500   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
501   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
502   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
503 }
504 
UpdateHistogramCost(VP8LHistogram * const h)505 static void UpdateHistogramCost(VP8LHistogram* const h) {
506   uint32_t alpha_sym, red_sym, blue_sym;
507   const float alpha_cost =
508       PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym, &h->is_used_[3]);
509   const float distance_cost =
510       PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL, &h->is_used_[4]) +
511       (float)VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
512   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
513   h->literal_cost_ =
514       PopulationCost(h->literal_, num_codes, NULL, &h->is_used_[0]) +
515       (float)VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES);
516   h->red_cost_ =
517       PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym, &h->is_used_[1]);
518   h->blue_cost_ =
519       PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym, &h->is_used_[2]);
520   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
521                  alpha_cost + distance_cost;
522   if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
523     h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
524   } else {
525     h->trivial_symbol_ =
526         ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
527   }
528 }
529 
GetBinIdForEntropy(float min,float max,float val)530 static int GetBinIdForEntropy(float min, float max, float val) {
531   const float range = max - min;
532   if (range > 0.) {
533     const float delta = val - min;
534     return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
535   } else {
536     return 0;
537   }
538 }
539 
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c,int low_effort)540 static int GetHistoBinIndex(const VP8LHistogram* const h,
541                             const DominantCostRange* const c, int low_effort) {
542   int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
543                                   h->literal_cost_);
544   assert(bin_id < NUM_PARTITIONS);
545   if (!low_effort) {
546     bin_id = bin_id * NUM_PARTITIONS
547            + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
548     bin_id = bin_id * NUM_PARTITIONS
549            + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
550     assert(bin_id < BIN_SIZE);
551   }
552   return bin_id;
553 }
554 
555 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)556 static void HistogramBuild(
557     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
558     VP8LHistogramSet* const image_histo) {
559   int x = 0, y = 0;
560   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
561   VP8LHistogram** const histograms = image_histo->histograms;
562   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
563   assert(histo_bits > 0);
564   VP8LHistogramSetClear(image_histo);
565   while (VP8LRefsCursorOk(&c)) {
566     const PixOrCopy* const v = c.cur_pos;
567     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
568     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
569     x += PixOrCopyLength(v);
570     while (x >= xsize) {
571       x -= xsize;
572       ++y;
573     }
574     VP8LRefsCursorNext(&c);
575   }
576 }
577 
578 // Copies the histograms and computes its bit_cost.
579 static const uint16_t kInvalidHistogramSymbol = (uint16_t)(-1);
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo,int * const num_used,uint16_t * const histogram_symbols)580 static void HistogramCopyAndAnalyze(VP8LHistogramSet* const orig_histo,
581                                     VP8LHistogramSet* const image_histo,
582                                     int* const num_used,
583                                     uint16_t* const histogram_symbols) {
584   int i, cluster_id;
585   int num_used_orig = *num_used;
586   VP8LHistogram** const orig_histograms = orig_histo->histograms;
587   VP8LHistogram** const histograms = image_histo->histograms;
588   assert(image_histo->max_size == orig_histo->max_size);
589   for (cluster_id = 0, i = 0; i < orig_histo->max_size; ++i) {
590     VP8LHistogram* const histo = orig_histograms[i];
591     UpdateHistogramCost(histo);
592 
593     // Skip the histogram if it is completely empty, which can happen for tiles
594     // with no information (when they are skipped because of LZ77).
595     if (!histo->is_used_[0] && !histo->is_used_[1] && !histo->is_used_[2]
596         && !histo->is_used_[3] && !histo->is_used_[4]) {
597       // The first histogram is always used. If an histogram is empty, we set
598       // its id to be the same as the previous one: this will improve
599       // compressibility for later LZ77.
600       assert(i > 0);
601       HistogramSetRemoveHistogram(image_histo, i, num_used);
602       HistogramSetRemoveHistogram(orig_histo, i, &num_used_orig);
603       histogram_symbols[i] = kInvalidHistogramSymbol;
604     } else {
605       // Copy histograms from orig_histo[] to image_histo[].
606       HistogramCopy(histo, histograms[i]);
607       histogram_symbols[i] = cluster_id++;
608       assert(cluster_id <= image_histo->max_size);
609     }
610   }
611 }
612 
613 // Partition histograms to different entropy bins for three dominant (literal,
614 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,uint16_t * const bin_map,int low_effort)615 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
616                                        uint16_t* const bin_map,
617                                        int low_effort) {
618   int i;
619   VP8LHistogram** const histograms = image_histo->histograms;
620   const int histo_size = image_histo->size;
621   DominantCostRange cost_range;
622   DominantCostRangeInit(&cost_range);
623 
624   // Analyze the dominant (literal, red and blue) entropy costs.
625   for (i = 0; i < histo_size; ++i) {
626     if (histograms[i] == NULL) continue;
627     UpdateDominantCostRange(histograms[i], &cost_range);
628   }
629 
630   // bin-hash histograms on three of the dominant (literal, red and blue)
631   // symbol costs and store the resulting bin_id for each histogram.
632   for (i = 0; i < histo_size; ++i) {
633     // bin_map[i] is not set to a special value as its use will later be guarded
634     // by another (histograms[i] == NULL).
635     if (histograms[i] == NULL) continue;
636     bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
637   }
638 }
639 
640 // Merges some histograms with same bin_id together if it's advantageous.
641 // Sets the remaining histograms to NULL.
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,int * num_used,const uint16_t * const clusters,uint16_t * const cluster_mappings,VP8LHistogram * cur_combo,const uint16_t * const bin_map,int num_bins,float combine_cost_factor,int low_effort)642 static void HistogramCombineEntropyBin(
643     VP8LHistogramSet* const image_histo, int* num_used,
644     const uint16_t* const clusters, uint16_t* const cluster_mappings,
645     VP8LHistogram* cur_combo, const uint16_t* const bin_map, int num_bins,
646     float combine_cost_factor, int low_effort) {
647   VP8LHistogram** const histograms = image_histo->histograms;
648   int idx;
649   struct {
650     int16_t first;    // position of the histogram that accumulates all
651                       // histograms with the same bin_id
652     uint16_t num_combine_failures;   // number of combine failures per bin_id
653   } bin_info[BIN_SIZE];
654 
655   assert(num_bins <= BIN_SIZE);
656   for (idx = 0; idx < num_bins; ++idx) {
657     bin_info[idx].first = -1;
658     bin_info[idx].num_combine_failures = 0;
659   }
660 
661   // By default, a cluster matches itself.
662   for (idx = 0; idx < *num_used; ++idx) cluster_mappings[idx] = idx;
663   for (idx = 0; idx < image_histo->size; ++idx) {
664     int bin_id, first;
665     if (histograms[idx] == NULL) continue;
666     bin_id = bin_map[idx];
667     first = bin_info[bin_id].first;
668     if (first == -1) {
669       bin_info[bin_id].first = idx;
670     } else if (low_effort) {
671       HistogramAdd(histograms[idx], histograms[first], histograms[first]);
672       HistogramSetRemoveHistogram(image_histo, idx, num_used);
673       cluster_mappings[clusters[idx]] = clusters[first];
674     } else {
675       // try to merge #idx into #first (both share the same bin_id)
676       const float bit_cost = histograms[idx]->bit_cost_;
677       const float bit_cost_thresh = -bit_cost * combine_cost_factor;
678       const float curr_cost_diff = HistogramAddEval(
679           histograms[first], histograms[idx], cur_combo, bit_cost_thresh);
680       if (curr_cost_diff < bit_cost_thresh) {
681         // Try to merge two histograms only if the combo is a trivial one or
682         // the two candidate histograms are already non-trivial.
683         // For some images, 'try_combine' turns out to be false for a lot of
684         // histogram pairs. In that case, we fallback to combining
685         // histograms as usual to avoid increasing the header size.
686         const int try_combine =
687             (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
688             ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
689              (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
690         const int max_combine_failures = 32;
691         if (try_combine ||
692             bin_info[bin_id].num_combine_failures >= max_combine_failures) {
693           // move the (better) merged histogram to its final slot
694           HistogramSwap(&cur_combo, &histograms[first]);
695           HistogramSetRemoveHistogram(image_histo, idx, num_used);
696           cluster_mappings[clusters[idx]] = clusters[first];
697         } else {
698           ++bin_info[bin_id].num_combine_failures;
699         }
700       }
701     }
702   }
703   if (low_effort) {
704     // for low_effort case, update the final cost when everything is merged
705     for (idx = 0; idx < image_histo->size; ++idx) {
706       if (histograms[idx] == NULL) continue;
707       UpdateHistogramCost(histograms[idx]);
708     }
709   }
710 }
711 
712 // Implement a Lehmer random number generator with a multiplicative constant of
713 // 48271 and a modulo constant of 2^31 - 1.
MyRand(uint32_t * const seed)714 static uint32_t MyRand(uint32_t* const seed) {
715   *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
716   assert(*seed > 0);
717   return *seed;
718 }
719 
720 // -----------------------------------------------------------------------------
721 // Histogram pairs priority queue
722 
723 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
724 typedef struct {
725   int idx1;
726   int idx2;
727   float cost_diff;
728   float cost_combo;
729 } HistogramPair;
730 
731 typedef struct {
732   HistogramPair* queue;
733   int size;
734   int max_size;
735 } HistoQueue;
736 
HistoQueueInit(HistoQueue * const histo_queue,const int max_size)737 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_size) {
738   histo_queue->size = 0;
739   histo_queue->max_size = max_size;
740   // We allocate max_size + 1 because the last element at index "size" is
741   // used as temporary data (and it could be up to max_size).
742   histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
743       histo_queue->max_size + 1, sizeof(*histo_queue->queue));
744   return histo_queue->queue != NULL;
745 }
746 
HistoQueueClear(HistoQueue * const histo_queue)747 static void HistoQueueClear(HistoQueue* const histo_queue) {
748   assert(histo_queue != NULL);
749   WebPSafeFree(histo_queue->queue);
750   histo_queue->size = 0;
751   histo_queue->max_size = 0;
752 }
753 
754 // Pop a specific pair in the queue by replacing it with the last one
755 // and shrinking the queue.
HistoQueuePopPair(HistoQueue * const histo_queue,HistogramPair * const pair)756 static void HistoQueuePopPair(HistoQueue* const histo_queue,
757                               HistogramPair* const pair) {
758   assert(pair >= histo_queue->queue &&
759          pair < (histo_queue->queue + histo_queue->size));
760   assert(histo_queue->size > 0);
761   *pair = histo_queue->queue[histo_queue->size - 1];
762   --histo_queue->size;
763 }
764 
765 // Check whether a pair in the queue should be updated as head or not.
HistoQueueUpdateHead(HistoQueue * const histo_queue,HistogramPair * const pair)766 static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
767                                  HistogramPair* const pair) {
768   assert(pair->cost_diff < 0.);
769   assert(pair >= histo_queue->queue &&
770          pair < (histo_queue->queue + histo_queue->size));
771   assert(histo_queue->size > 0);
772   if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
773     // Replace the best pair.
774     const HistogramPair tmp = histo_queue->queue[0];
775     histo_queue->queue[0] = *pair;
776     *pair = tmp;
777   }
778 }
779 
780 // Update the cost diff and combo of a pair of histograms. This needs to be
781 // called when the the histograms have been merged with a third one.
HistoQueueUpdatePair(const VP8LHistogram * const h1,const VP8LHistogram * const h2,float threshold,HistogramPair * const pair)782 static void HistoQueueUpdatePair(const VP8LHistogram* const h1,
783                                  const VP8LHistogram* const h2, float threshold,
784                                  HistogramPair* const pair) {
785   const float sum_cost = h1->bit_cost_ + h2->bit_cost_;
786   pair->cost_combo = 0.;
787   GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair->cost_combo);
788   pair->cost_diff = pair->cost_combo - sum_cost;
789 }
790 
791 // Create a pair from indices "idx1" and "idx2" provided its cost
792 // is inferior to "threshold", a negative entropy.
793 // It returns the cost of the pair, or 0. if it superior to threshold.
HistoQueuePush(HistoQueue * const histo_queue,VP8LHistogram ** const histograms,int idx1,int idx2,float threshold)794 static float HistoQueuePush(HistoQueue* const histo_queue,
795                             VP8LHistogram** const histograms, int idx1,
796                             int idx2, float threshold) {
797   const VP8LHistogram* h1;
798   const VP8LHistogram* h2;
799   HistogramPair pair;
800 
801   // Stop here if the queue is full.
802   if (histo_queue->size == histo_queue->max_size) return 0.;
803   assert(threshold <= 0.);
804   if (idx1 > idx2) {
805     const int tmp = idx2;
806     idx2 = idx1;
807     idx1 = tmp;
808   }
809   pair.idx1 = idx1;
810   pair.idx2 = idx2;
811   h1 = histograms[idx1];
812   h2 = histograms[idx2];
813 
814   HistoQueueUpdatePair(h1, h2, threshold, &pair);
815 
816   // Do not even consider the pair if it does not improve the entropy.
817   if (pair.cost_diff >= threshold) return 0.;
818 
819   histo_queue->queue[histo_queue->size++] = pair;
820   HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);
821 
822   return pair.cost_diff;
823 }
824 
825 // -----------------------------------------------------------------------------
826 
827 // Combines histograms by continuously choosing the one with the highest cost
828 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo,int * const num_used)829 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
830                                   int* const num_used) {
831   int ok = 0;
832   const int image_histo_size = image_histo->size;
833   int i, j;
834   VP8LHistogram** const histograms = image_histo->histograms;
835   // Priority queue of histogram pairs.
836   HistoQueue histo_queue;
837 
838   // image_histo_size^2 for the queue size is safe. If you look at
839   // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
840   // data to the queue, you insert at most:
841   // - image_histo_size*(image_histo_size-1)/2 (the first two for loops)
842   // - image_histo_size - 1 in the last for loop at the first iteration of
843   //   the while loop, image_histo_size - 2 at the second iteration ...
844   //   therefore image_histo_size*(image_histo_size-1)/2 overall too
845   if (!HistoQueueInit(&histo_queue, image_histo_size * image_histo_size)) {
846     goto End;
847   }
848 
849   for (i = 0; i < image_histo_size; ++i) {
850     if (image_histo->histograms[i] == NULL) continue;
851     for (j = i + 1; j < image_histo_size; ++j) {
852       // Initialize queue.
853       if (image_histo->histograms[j] == NULL) continue;
854       HistoQueuePush(&histo_queue, histograms, i, j, 0.);
855     }
856   }
857 
858   while (histo_queue.size > 0) {
859     const int idx1 = histo_queue.queue[0].idx1;
860     const int idx2 = histo_queue.queue[0].idx2;
861     HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
862     histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
863 
864     // Remove merged histogram.
865     HistogramSetRemoveHistogram(image_histo, idx2, num_used);
866 
867     // Remove pairs intersecting the just combined best pair.
868     for (i = 0; i < histo_queue.size;) {
869       HistogramPair* const p = histo_queue.queue + i;
870       if (p->idx1 == idx1 || p->idx2 == idx1 ||
871           p->idx1 == idx2 || p->idx2 == idx2) {
872         HistoQueuePopPair(&histo_queue, p);
873       } else {
874         HistoQueueUpdateHead(&histo_queue, p);
875         ++i;
876       }
877     }
878 
879     // Push new pairs formed with combined histogram to the queue.
880     for (i = 0; i < image_histo->size; ++i) {
881       if (i == idx1 || image_histo->histograms[i] == NULL) continue;
882       HistoQueuePush(&histo_queue, image_histo->histograms, idx1, i, 0.);
883     }
884   }
885 
886   ok = 1;
887 
888  End:
889   HistoQueueClear(&histo_queue);
890   return ok;
891 }
892 
893 // Perform histogram aggregation using a stochastic approach.
894 // 'do_greedy' is set to 1 if a greedy approach needs to be performed
895 // afterwards, 0 otherwise.
PairComparison(const void * idx1,const void * idx2)896 static int PairComparison(const void* idx1, const void* idx2) {
897   // To be used with bsearch: <0 when *idx1<*idx2, >0 if >, 0 when ==.
898   return (*(int*) idx1 - *(int*) idx2);
899 }
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,int * const num_used,int min_cluster_size,int * const do_greedy)900 static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
901                                       int* const num_used, int min_cluster_size,
902                                       int* const do_greedy) {
903   int j, iter;
904   uint32_t seed = 1;
905   int tries_with_no_success = 0;
906   const int outer_iters = *num_used;
907   const int num_tries_no_success = outer_iters / 2;
908   VP8LHistogram** const histograms = image_histo->histograms;
909   // Priority queue of histogram pairs. Its size of 'kHistoQueueSize'
910   // impacts the quality of the compression and the speed: the smaller the
911   // faster but the worse for the compression.
912   HistoQueue histo_queue;
913   const int kHistoQueueSize = 9;
914   int ok = 0;
915   // mapping from an index in image_histo with no NULL histogram to the full
916   // blown image_histo.
917   int* mappings;
918 
919   if (*num_used < min_cluster_size) {
920     *do_greedy = 1;
921     return 1;
922   }
923 
924   mappings = (int*) WebPSafeMalloc(*num_used, sizeof(*mappings));
925   if (mappings == NULL) return 0;
926   if (!HistoQueueInit(&histo_queue, kHistoQueueSize)) goto End;
927   // Fill the initial mapping.
928   for (j = 0, iter = 0; iter < image_histo->size; ++iter) {
929     if (histograms[iter] == NULL) continue;
930     mappings[j++] = iter;
931   }
932   assert(j == *num_used);
933 
934   // Collapse similar histograms in 'image_histo'.
935   for (iter = 0;
936        iter < outer_iters && *num_used >= min_cluster_size &&
937            ++tries_with_no_success < num_tries_no_success;
938        ++iter) {
939     int* mapping_index;
940     float best_cost =
941         (histo_queue.size == 0) ? 0.f : histo_queue.queue[0].cost_diff;
942     int best_idx1 = -1, best_idx2 = 1;
943     const uint32_t rand_range = (*num_used - 1) * (*num_used);
944     // (*num_used) / 2 was chosen empirically. Less means faster but worse
945     // compression.
946     const int num_tries = (*num_used) / 2;
947 
948     // Pick random samples.
949     for (j = 0; *num_used >= 2 && j < num_tries; ++j) {
950       float curr_cost;
951       // Choose two different histograms at random and try to combine them.
952       const uint32_t tmp = MyRand(&seed) % rand_range;
953       uint32_t idx1 = tmp / (*num_used - 1);
954       uint32_t idx2 = tmp % (*num_used - 1);
955       if (idx2 >= idx1) ++idx2;
956       idx1 = mappings[idx1];
957       idx2 = mappings[idx2];
958 
959       // Calculate cost reduction on combination.
960       curr_cost =
961           HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
962       if (curr_cost < 0) {  // found a better pair?
963         best_cost = curr_cost;
964         // Empty the queue if we reached full capacity.
965         if (histo_queue.size == histo_queue.max_size) break;
966       }
967     }
968     if (histo_queue.size == 0) continue;
969 
970     // Get the best histograms.
971     best_idx1 = histo_queue.queue[0].idx1;
972     best_idx2 = histo_queue.queue[0].idx2;
973     assert(best_idx1 < best_idx2);
974     // Pop best_idx2 from mappings.
975     mapping_index = (int*) bsearch(&best_idx2, mappings, *num_used,
976                                    sizeof(best_idx2), &PairComparison);
977     assert(mapping_index != NULL);
978     memmove(mapping_index, mapping_index + 1, sizeof(*mapping_index) *
979         ((*num_used) - (mapping_index - mappings) - 1));
980     // Merge the histograms and remove best_idx2 from the queue.
981     HistogramAdd(histograms[best_idx2], histograms[best_idx1],
982                  histograms[best_idx1]);
983     histograms[best_idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
984     HistogramSetRemoveHistogram(image_histo, best_idx2, num_used);
985     // Parse the queue and update each pair that deals with best_idx1,
986     // best_idx2 or image_histo_size.
987     for (j = 0; j < histo_queue.size;) {
988       HistogramPair* const p = histo_queue.queue + j;
989       const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
990       const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
991       int do_eval = 0;
992       // The front pair could have been duplicated by a random pick so
993       // check for it all the time nevertheless.
994       if (is_idx1_best && is_idx2_best) {
995         HistoQueuePopPair(&histo_queue, p);
996         continue;
997       }
998       // Any pair containing one of the two best indices should only refer to
999       // best_idx1. Its cost should also be updated.
1000       if (is_idx1_best) {
1001         p->idx1 = best_idx1;
1002         do_eval = 1;
1003       } else if (is_idx2_best) {
1004         p->idx2 = best_idx1;
1005         do_eval = 1;
1006       }
1007       // Make sure the index order is respected.
1008       if (p->idx1 > p->idx2) {
1009         const int tmp = p->idx2;
1010         p->idx2 = p->idx1;
1011         p->idx1 = tmp;
1012       }
1013       if (do_eval) {
1014         // Re-evaluate the cost of an updated pair.
1015         HistoQueueUpdatePair(histograms[p->idx1], histograms[p->idx2], 0., p);
1016         if (p->cost_diff >= 0.) {
1017           HistoQueuePopPair(&histo_queue, p);
1018           continue;
1019         }
1020       }
1021       HistoQueueUpdateHead(&histo_queue, p);
1022       ++j;
1023     }
1024     tries_with_no_success = 0;
1025   }
1026   *do_greedy = (*num_used <= min_cluster_size);
1027   ok = 1;
1028 
1029  End:
1030   HistoQueueClear(&histo_queue);
1031   WebPSafeFree(mappings);
1032   return ok;
1033 }
1034 
1035 // -----------------------------------------------------------------------------
1036 // Histogram refinement
1037 
1038 // Find the best 'out' histogram for each of the 'in' histograms.
1039 // At call-time, 'out' contains the histograms of the clusters.
1040 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,VP8LHistogramSet * const out,uint16_t * const symbols)1041 static void HistogramRemap(const VP8LHistogramSet* const in,
1042                            VP8LHistogramSet* const out,
1043                            uint16_t* const symbols) {
1044   int i;
1045   VP8LHistogram** const in_histo = in->histograms;
1046   VP8LHistogram** const out_histo = out->histograms;
1047   const int in_size = out->max_size;
1048   const int out_size = out->size;
1049   if (out_size > 1) {
1050     for (i = 0; i < in_size; ++i) {
1051       int best_out = 0;
1052       float best_bits = MAX_BIT_COST;
1053       int k;
1054       if (in_histo[i] == NULL) {
1055         // Arbitrarily set to the previous value if unused to help future LZ77.
1056         symbols[i] = symbols[i - 1];
1057         continue;
1058       }
1059       for (k = 0; k < out_size; ++k) {
1060         float cur_bits;
1061         cur_bits = HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
1062         if (k == 0 || cur_bits < best_bits) {
1063           best_bits = cur_bits;
1064           best_out = k;
1065         }
1066       }
1067       symbols[i] = best_out;
1068     }
1069   } else {
1070     assert(out_size == 1);
1071     for (i = 0; i < in_size; ++i) {
1072       symbols[i] = 0;
1073     }
1074   }
1075 
1076   // Recompute each out based on raw and symbols.
1077   VP8LHistogramSetClear(out);
1078   out->size = out_size;
1079 
1080   for (i = 0; i < in_size; ++i) {
1081     int idx;
1082     if (in_histo[i] == NULL) continue;
1083     idx = symbols[i];
1084     HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
1085   }
1086 }
1087 
GetCombineCostFactor(int histo_size,int quality)1088 static float GetCombineCostFactor(int histo_size, int quality) {
1089   float combine_cost_factor = 0.16f;
1090   if (quality < 90) {
1091     if (histo_size > 256) combine_cost_factor /= 2.f;
1092     if (histo_size > 512) combine_cost_factor /= 2.f;
1093     if (histo_size > 1024) combine_cost_factor /= 2.f;
1094     if (quality <= 50) combine_cost_factor /= 2.f;
1095   }
1096   return combine_cost_factor;
1097 }
1098 
1099 // Given a HistogramSet 'set', the mapping of clusters 'cluster_mapping' and the
1100 // current assignment of the cells in 'symbols', merge the clusters and
1101 // assign the smallest possible clusters values.
OptimizeHistogramSymbols(const VP8LHistogramSet * const set,uint16_t * const cluster_mappings,int num_clusters,uint16_t * const cluster_mappings_tmp,uint16_t * const symbols)1102 static void OptimizeHistogramSymbols(const VP8LHistogramSet* const set,
1103                                      uint16_t* const cluster_mappings,
1104                                      int num_clusters,
1105                                      uint16_t* const cluster_mappings_tmp,
1106                                      uint16_t* const symbols) {
1107   int i, cluster_max;
1108   int do_continue = 1;
1109   // First, assign the lowest cluster to each pixel.
1110   while (do_continue) {
1111     do_continue = 0;
1112     for (i = 0; i < num_clusters; ++i) {
1113       int k;
1114       k = cluster_mappings[i];
1115       while (k != cluster_mappings[k]) {
1116         cluster_mappings[k] = cluster_mappings[cluster_mappings[k]];
1117         k = cluster_mappings[k];
1118       }
1119       if (k != cluster_mappings[i]) {
1120         do_continue = 1;
1121         cluster_mappings[i] = k;
1122       }
1123     }
1124   }
1125   // Create a mapping from a cluster id to its minimal version.
1126   cluster_max = 0;
1127   memset(cluster_mappings_tmp, 0,
1128          set->max_size * sizeof(*cluster_mappings_tmp));
1129   assert(cluster_mappings[0] == 0);
1130   // Re-map the ids.
1131   for (i = 0; i < set->max_size; ++i) {
1132     int cluster;
1133     if (symbols[i] == kInvalidHistogramSymbol) continue;
1134     cluster = cluster_mappings[symbols[i]];
1135     assert(symbols[i] < num_clusters);
1136     if (cluster > 0 && cluster_mappings_tmp[cluster] == 0) {
1137       ++cluster_max;
1138       cluster_mappings_tmp[cluster] = cluster_max;
1139     }
1140     symbols[i] = cluster_mappings_tmp[cluster];
1141   }
1142 
1143   // Make sure all cluster values are used.
1144   cluster_max = 0;
1145   for (i = 0; i < set->max_size; ++i) {
1146     if (symbols[i] == kInvalidHistogramSymbol) continue;
1147     if (symbols[i] <= cluster_max) continue;
1148     ++cluster_max;
1149     assert(symbols[i] == cluster_max);
1150   }
1151 }
1152 
RemoveEmptyHistograms(VP8LHistogramSet * const image_histo)1153 static void RemoveEmptyHistograms(VP8LHistogramSet* const image_histo) {
1154   uint32_t size;
1155   int i;
1156   for (i = 0, size = 0; i < image_histo->size; ++i) {
1157     if (image_histo->histograms[i] == NULL) continue;
1158     image_histo->histograms[size++] = image_histo->histograms[i];
1159   }
1160   image_histo->size = size;
1161 }
1162 
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histogram_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogram * const tmp_histo,uint16_t * const histogram_symbols,const WebPPicture * const pic,int percent_range,int * const percent)1163 int VP8LGetHistoImageSymbols(int xsize, int ysize,
1164                              const VP8LBackwardRefs* const refs, int quality,
1165                              int low_effort, int histogram_bits, int cache_bits,
1166                              VP8LHistogramSet* const image_histo,
1167                              VP8LHistogram* const tmp_histo,
1168                              uint16_t* const histogram_symbols,
1169                              const WebPPicture* const pic, int percent_range,
1170                              int* const percent) {
1171   const int histo_xsize =
1172       histogram_bits ? VP8LSubSampleSize(xsize, histogram_bits) : 1;
1173   const int histo_ysize =
1174       histogram_bits ? VP8LSubSampleSize(ysize, histogram_bits) : 1;
1175   const int image_histo_raw_size = histo_xsize * histo_ysize;
1176   VP8LHistogramSet* const orig_histo =
1177       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
1178   // Don't attempt linear bin-partition heuristic for
1179   // histograms of small sizes (as bin_map will be very sparse) and
1180   // maximum quality q==100 (to preserve the compression gains at that level).
1181   const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
1182   int entropy_combine;
1183   uint16_t* const map_tmp =
1184       WebPSafeMalloc(2 * image_histo_raw_size, sizeof(*map_tmp));
1185   uint16_t* const cluster_mappings = map_tmp + image_histo_raw_size;
1186   int num_used = image_histo_raw_size;
1187   if (orig_histo == NULL || map_tmp == NULL) {
1188     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1189     goto Error;
1190   }
1191 
1192   // Construct the histograms from backward references.
1193   HistogramBuild(xsize, histogram_bits, refs, orig_histo);
1194   // Copies the histograms and computes its bit_cost.
1195   // histogram_symbols is optimized
1196   HistogramCopyAndAnalyze(orig_histo, image_histo, &num_used,
1197                           histogram_symbols);
1198 
1199   entropy_combine =
1200       (num_used > entropy_combine_num_bins * 2) && (quality < 100);
1201 
1202   if (entropy_combine) {
1203     uint16_t* const bin_map = map_tmp;
1204     const float combine_cost_factor =
1205         GetCombineCostFactor(image_histo_raw_size, quality);
1206     const uint32_t num_clusters = num_used;
1207 
1208     HistogramAnalyzeEntropyBin(image_histo, bin_map, low_effort);
1209     // Collapse histograms with similar entropy.
1210     HistogramCombineEntropyBin(
1211         image_histo, &num_used, histogram_symbols, cluster_mappings, tmp_histo,
1212         bin_map, entropy_combine_num_bins, combine_cost_factor, low_effort);
1213     OptimizeHistogramSymbols(image_histo, cluster_mappings, num_clusters,
1214                              map_tmp, histogram_symbols);
1215   }
1216 
1217   // Don't combine the histograms using stochastic and greedy heuristics for
1218   // low-effort compression mode.
1219   if (!low_effort || !entropy_combine) {
1220     const float x = quality / 100.f;
1221     // cubic ramp between 1 and MAX_HISTO_GREEDY:
1222     const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
1223     int do_greedy;
1224     if (!HistogramCombineStochastic(image_histo, &num_used, threshold_size,
1225                                     &do_greedy)) {
1226       WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1227       goto Error;
1228     }
1229     if (do_greedy) {
1230       RemoveEmptyHistograms(image_histo);
1231       if (!HistogramCombineGreedy(image_histo, &num_used)) {
1232         WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1233         goto Error;
1234       }
1235     }
1236   }
1237 
1238   // Find the optimal map from original histograms to the final ones.
1239   RemoveEmptyHistograms(image_histo);
1240   HistogramRemap(orig_histo, image_histo, histogram_symbols);
1241 
1242   if (!WebPReportProgress(pic, *percent + percent_range, percent)) {
1243     goto Error;
1244   }
1245 
1246  Error:
1247   VP8LFreeHistogramSet(orig_histo);
1248   WebPSafeFree(map_tmp);
1249   return (pic->error_code == VP8_ENC_OK);
1250 }
1251