1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the lossless encoder.
11 //
12 // Author: Vikas Arora ([email protected])
13 //
14
15 #include <assert.h>
16 #include <stdlib.h>
17
18 #include "src/dsp/lossless.h"
19 #include "src/dsp/lossless_common.h"
20 #include "src/enc/backward_references_enc.h"
21 #include "src/enc/histogram_enc.h"
22 #include "src/enc/vp8i_enc.h"
23 #include "src/enc/vp8li_enc.h"
24 #include "src/utils/bit_writer_utils.h"
25 #include "src/utils/huffman_encode_utils.h"
26 #include "src/utils/palette.h"
27 #include "src/utils/utils.h"
28 #include "src/webp/encode.h"
29 #include "src/webp/format_constants.h"
30
31 // Maximum number of histogram images (sub-blocks).
32 #define MAX_HUFF_IMAGE_SIZE 2600
33
34 // -----------------------------------------------------------------------------
35 // Palette
36
37 // These five modes are evaluated and their respective entropy is computed.
38 typedef enum {
39 kDirect = 0,
40 kSpatial = 1,
41 kSubGreen = 2,
42 kSpatialSubGreen = 3,
43 kPalette = 4,
44 kPaletteAndSpatial = 5,
45 kNumEntropyIx = 6
46 } EntropyIx;
47
48 typedef enum {
49 kHistoAlpha = 0,
50 kHistoAlphaPred,
51 kHistoGreen,
52 kHistoGreenPred,
53 kHistoRed,
54 kHistoRedPred,
55 kHistoBlue,
56 kHistoBluePred,
57 kHistoRedSubGreen,
58 kHistoRedPredSubGreen,
59 kHistoBlueSubGreen,
60 kHistoBluePredSubGreen,
61 kHistoPalette,
62 kHistoTotal // Must be last.
63 } HistoIx;
64
AddSingleSubGreen(uint32_t p,uint32_t * const r,uint32_t * const b)65 static void AddSingleSubGreen(uint32_t p,
66 uint32_t* const r, uint32_t* const b) {
67 const int green = (int)p >> 8; // The upper bits are masked away later.
68 ++r[(((int)p >> 16) - green) & 0xff];
69 ++b[(((int)p >> 0) - green) & 0xff];
70 }
71
AddSingle(uint32_t p,uint32_t * const a,uint32_t * const r,uint32_t * const g,uint32_t * const b)72 static void AddSingle(uint32_t p,
73 uint32_t* const a, uint32_t* const r,
74 uint32_t* const g, uint32_t* const b) {
75 ++a[(p >> 24) & 0xff];
76 ++r[(p >> 16) & 0xff];
77 ++g[(p >> 8) & 0xff];
78 ++b[(p >> 0) & 0xff];
79 }
80
HashPix(uint32_t pix)81 static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
82 // Note that masking with 0xffffffffu is for preventing an
83 // 'unsigned int overflow' warning. Doesn't impact the compiled code.
84 return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
85 }
86
AnalyzeEntropy(const uint32_t * argb,int width,int height,int argb_stride,int use_palette,int palette_size,int transform_bits,EntropyIx * const min_entropy_ix,int * const red_and_blue_always_zero)87 static int AnalyzeEntropy(const uint32_t* argb,
88 int width, int height, int argb_stride,
89 int use_palette,
90 int palette_size, int transform_bits,
91 EntropyIx* const min_entropy_ix,
92 int* const red_and_blue_always_zero) {
93 // Allocate histogram set with cache_bits = 0.
94 uint32_t* histo;
95
96 if (use_palette && palette_size <= 16) {
97 // In the case of small palettes, we pack 2, 4 or 8 pixels together. In
98 // practice, small palettes are better than any other transform.
99 *min_entropy_ix = kPalette;
100 *red_and_blue_always_zero = 1;
101 return 1;
102 }
103 histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
104 if (histo != NULL) {
105 int i, x, y;
106 const uint32_t* prev_row = NULL;
107 const uint32_t* curr_row = argb;
108 uint32_t pix_prev = argb[0]; // Skip the first pixel.
109 for (y = 0; y < height; ++y) {
110 for (x = 0; x < width; ++x) {
111 const uint32_t pix = curr_row[x];
112 const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
113 pix_prev = pix;
114 if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
115 continue;
116 }
117 AddSingle(pix,
118 &histo[kHistoAlpha * 256],
119 &histo[kHistoRed * 256],
120 &histo[kHistoGreen * 256],
121 &histo[kHistoBlue * 256]);
122 AddSingle(pix_diff,
123 &histo[kHistoAlphaPred * 256],
124 &histo[kHistoRedPred * 256],
125 &histo[kHistoGreenPred * 256],
126 &histo[kHistoBluePred * 256]);
127 AddSingleSubGreen(pix,
128 &histo[kHistoRedSubGreen * 256],
129 &histo[kHistoBlueSubGreen * 256]);
130 AddSingleSubGreen(pix_diff,
131 &histo[kHistoRedPredSubGreen * 256],
132 &histo[kHistoBluePredSubGreen * 256]);
133 {
134 // Approximate the palette by the entropy of the multiplicative hash.
135 const uint32_t hash = HashPix(pix);
136 ++histo[kHistoPalette * 256 + hash];
137 }
138 }
139 prev_row = curr_row;
140 curr_row += argb_stride;
141 }
142 {
143 float entropy_comp[kHistoTotal];
144 float entropy[kNumEntropyIx];
145 int k;
146 int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
147 int j;
148 // Let's add one zero to the predicted histograms. The zeros are removed
149 // too efficiently by the pix_diff == 0 comparison, at least one of the
150 // zeros is likely to exist.
151 ++histo[kHistoRedPredSubGreen * 256];
152 ++histo[kHistoBluePredSubGreen * 256];
153 ++histo[kHistoRedPred * 256];
154 ++histo[kHistoGreenPred * 256];
155 ++histo[kHistoBluePred * 256];
156 ++histo[kHistoAlphaPred * 256];
157
158 for (j = 0; j < kHistoTotal; ++j) {
159 entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
160 }
161 entropy[kDirect] = entropy_comp[kHistoAlpha] +
162 entropy_comp[kHistoRed] +
163 entropy_comp[kHistoGreen] +
164 entropy_comp[kHistoBlue];
165 entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
166 entropy_comp[kHistoRedPred] +
167 entropy_comp[kHistoGreenPred] +
168 entropy_comp[kHistoBluePred];
169 entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
170 entropy_comp[kHistoRedSubGreen] +
171 entropy_comp[kHistoGreen] +
172 entropy_comp[kHistoBlueSubGreen];
173 entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
174 entropy_comp[kHistoRedPredSubGreen] +
175 entropy_comp[kHistoGreenPred] +
176 entropy_comp[kHistoBluePredSubGreen];
177 entropy[kPalette] = entropy_comp[kHistoPalette];
178
179 // When including transforms, there is an overhead in bits from
180 // storing them. This overhead is small but matters for small images.
181 // For spatial, there are 14 transformations.
182 entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) *
183 VP8LSubSampleSize(height, transform_bits) *
184 VP8LFastLog2(14);
185 // For color transforms: 24 as only 3 channels are considered in a
186 // ColorTransformElement.
187 entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) *
188 VP8LSubSampleSize(height, transform_bits) *
189 VP8LFastLog2(24);
190 // For palettes, add the cost of storing the palette.
191 // We empirically estimate the cost of a compressed entry as 8 bits.
192 // The palette is differential-coded when compressed hence a much
193 // lower cost than sizeof(uint32_t)*8.
194 entropy[kPalette] += palette_size * 8;
195
196 *min_entropy_ix = kDirect;
197 for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
198 if (entropy[*min_entropy_ix] > entropy[k]) {
199 *min_entropy_ix = (EntropyIx)k;
200 }
201 }
202 assert((int)*min_entropy_ix <= last_mode_to_analyze);
203 *red_and_blue_always_zero = 1;
204 // Let's check if the histogram of the chosen entropy mode has
205 // non-zero red and blue values. If all are zero, we can later skip
206 // the cross color optimization.
207 {
208 static const uint8_t kHistoPairs[5][2] = {
209 { kHistoRed, kHistoBlue },
210 { kHistoRedPred, kHistoBluePred },
211 { kHistoRedSubGreen, kHistoBlueSubGreen },
212 { kHistoRedPredSubGreen, kHistoBluePredSubGreen },
213 { kHistoRed, kHistoBlue }
214 };
215 const uint32_t* const red_histo =
216 &histo[256 * kHistoPairs[*min_entropy_ix][0]];
217 const uint32_t* const blue_histo =
218 &histo[256 * kHistoPairs[*min_entropy_ix][1]];
219 for (i = 1; i < 256; ++i) {
220 if ((red_histo[i] | blue_histo[i]) != 0) {
221 *red_and_blue_always_zero = 0;
222 break;
223 }
224 }
225 }
226 }
227 WebPSafeFree(histo);
228 return 1;
229 } else {
230 return 0;
231 }
232 }
233
GetHistoBits(int method,int use_palette,int width,int height)234 static int GetHistoBits(int method, int use_palette, int width, int height) {
235 // Make tile size a function of encoding method (Range: 0 to 6).
236 int histo_bits = (use_palette ? 9 : 7) - method;
237 while (1) {
238 const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
239 VP8LSubSampleSize(height, histo_bits);
240 if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
241 ++histo_bits;
242 }
243 return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
244 (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
245 }
246
GetTransformBits(int method,int histo_bits)247 static int GetTransformBits(int method, int histo_bits) {
248 const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
249 const int res =
250 (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
251 assert(res <= MAX_TRANSFORM_BITS);
252 return res;
253 }
254
255 // Set of parameters to be used in each iteration of the cruncher.
256 #define CRUNCH_SUBCONFIGS_MAX 2
257 typedef struct {
258 int lz77_;
259 int do_no_cache_;
260 } CrunchSubConfig;
261 typedef struct {
262 int entropy_idx_;
263 PaletteSorting palette_sorting_type_;
264 CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
265 int sub_configs_size_;
266 } CrunchConfig;
267
268 // +2 because we add a palette sorting configuration for kPalette and
269 // kPaletteAndSpatial.
270 #define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2 * kPaletteSortingNum)
271
EncoderAnalyze(VP8LEncoder * const enc,CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],int * const crunch_configs_size,int * const red_and_blue_always_zero)272 static int EncoderAnalyze(VP8LEncoder* const enc,
273 CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
274 int* const crunch_configs_size,
275 int* const red_and_blue_always_zero) {
276 const WebPPicture* const pic = enc->pic_;
277 const int width = pic->width;
278 const int height = pic->height;
279 const WebPConfig* const config = enc->config_;
280 const int method = config->method;
281 const int low_effort = (config->method == 0);
282 int i;
283 int use_palette;
284 int n_lz77s;
285 // If set to 0, analyze the cache with the computed cache value. If 1, also
286 // analyze with no-cache.
287 int do_no_cache = 0;
288 assert(pic != NULL && pic->argb != NULL);
289
290 // Check whether a palette is possible.
291 enc->palette_size_ = GetColorPalette(pic, enc->palette_sorted_);
292 use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
293 if (!use_palette) {
294 enc->palette_size_ = 0;
295 }
296
297 // Empirical bit sizes.
298 enc->histo_bits_ = GetHistoBits(method, use_palette,
299 pic->width, pic->height);
300 enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
301
302 if (low_effort) {
303 // AnalyzeEntropy is somewhat slow.
304 crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
305 crunch_configs[0].palette_sorting_type_ =
306 use_palette ? kSortedDefault : kUnusedPalette;
307 n_lz77s = 1;
308 *crunch_configs_size = 1;
309 } else {
310 EntropyIx min_entropy_ix;
311 // Try out multiple LZ77 on images with few colors.
312 n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
313 if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
314 enc->palette_size_, enc->transform_bits_,
315 &min_entropy_ix, red_and_blue_always_zero)) {
316 return 0;
317 }
318 if (method == 6 && config->quality == 100) {
319 do_no_cache = 1;
320 // Go brute force on all transforms.
321 *crunch_configs_size = 0;
322 for (i = 0; i < kNumEntropyIx; ++i) {
323 // We can only apply kPalette or kPaletteAndSpatial if we can indeed use
324 // a palette.
325 if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
326 assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
327 if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
328 int sorting_method;
329 for (sorting_method = 0; sorting_method < kPaletteSortingNum;
330 ++sorting_method) {
331 const PaletteSorting typed_sorting_method =
332 (PaletteSorting)sorting_method;
333 // TODO(vrabaud) kSortedDefault should be tested. It is omitted
334 // for now for backward compatibility.
335 if (typed_sorting_method == kUnusedPalette ||
336 typed_sorting_method == kSortedDefault) {
337 continue;
338 }
339 crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
340 crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
341 typed_sorting_method;
342 ++*crunch_configs_size;
343 }
344 } else {
345 crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
346 crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
347 kUnusedPalette;
348 ++*crunch_configs_size;
349 }
350 }
351 }
352 } else {
353 // Only choose the guessed best transform.
354 *crunch_configs_size = 1;
355 crunch_configs[0].entropy_idx_ = min_entropy_ix;
356 crunch_configs[0].palette_sorting_type_ =
357 use_palette ? kMinimizeDelta : kUnusedPalette;
358 if (config->quality >= 75 && method == 5) {
359 // Test with and without color cache.
360 do_no_cache = 1;
361 // If we have a palette, also check in combination with spatial.
362 if (min_entropy_ix == kPalette) {
363 *crunch_configs_size = 2;
364 crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
365 crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
366 }
367 }
368 }
369 }
370 // Fill in the different LZ77s.
371 assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
372 for (i = 0; i < *crunch_configs_size; ++i) {
373 int j;
374 for (j = 0; j < n_lz77s; ++j) {
375 assert(j < CRUNCH_SUBCONFIGS_MAX);
376 crunch_configs[i].sub_configs_[j].lz77_ =
377 (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
378 crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
379 }
380 crunch_configs[i].sub_configs_size_ = n_lz77s;
381 }
382 return 1;
383 }
384
EncoderInit(VP8LEncoder * const enc)385 static int EncoderInit(VP8LEncoder* const enc) {
386 const WebPPicture* const pic = enc->pic_;
387 const int width = pic->width;
388 const int height = pic->height;
389 const int pix_cnt = width * height;
390 // we round the block size up, so we're guaranteed to have
391 // at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
392 const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
393 int i;
394 if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
395
396 for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
397
398 return 1;
399 }
400
401 // Returns false in case of memory error.
GetHuffBitLengthsAndCodes(const VP8LHistogramSet * const histogram_image,HuffmanTreeCode * const huffman_codes)402 static int GetHuffBitLengthsAndCodes(
403 const VP8LHistogramSet* const histogram_image,
404 HuffmanTreeCode* const huffman_codes) {
405 int i, k;
406 int ok = 0;
407 uint64_t total_length_size = 0;
408 uint8_t* mem_buf = NULL;
409 const int histogram_image_size = histogram_image->size;
410 int max_num_symbols = 0;
411 uint8_t* buf_rle = NULL;
412 HuffmanTree* huff_tree = NULL;
413
414 // Iterate over all histograms and get the aggregate number of codes used.
415 for (i = 0; i < histogram_image_size; ++i) {
416 const VP8LHistogram* const histo = histogram_image->histograms[i];
417 HuffmanTreeCode* const codes = &huffman_codes[5 * i];
418 assert(histo != NULL);
419 for (k = 0; k < 5; ++k) {
420 const int num_symbols =
421 (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
422 (k == 4) ? NUM_DISTANCE_CODES : 256;
423 codes[k].num_symbols = num_symbols;
424 total_length_size += num_symbols;
425 }
426 }
427
428 // Allocate and Set Huffman codes.
429 {
430 uint16_t* codes;
431 uint8_t* lengths;
432 mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
433 sizeof(*lengths) + sizeof(*codes));
434 if (mem_buf == NULL) goto End;
435
436 codes = (uint16_t*)mem_buf;
437 lengths = (uint8_t*)&codes[total_length_size];
438 for (i = 0; i < 5 * histogram_image_size; ++i) {
439 const int bit_length = huffman_codes[i].num_symbols;
440 huffman_codes[i].codes = codes;
441 huffman_codes[i].code_lengths = lengths;
442 codes += bit_length;
443 lengths += bit_length;
444 if (max_num_symbols < bit_length) {
445 max_num_symbols = bit_length;
446 }
447 }
448 }
449
450 buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
451 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
452 sizeof(*huff_tree));
453 if (buf_rle == NULL || huff_tree == NULL) goto End;
454
455 // Create Huffman trees.
456 for (i = 0; i < histogram_image_size; ++i) {
457 HuffmanTreeCode* const codes = &huffman_codes[5 * i];
458 VP8LHistogram* const histo = histogram_image->histograms[i];
459 VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
460 VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
461 VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
462 VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
463 VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
464 }
465 ok = 1;
466 End:
467 WebPSafeFree(huff_tree);
468 WebPSafeFree(buf_rle);
469 if (!ok) {
470 WebPSafeFree(mem_buf);
471 memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
472 }
473 return ok;
474 }
475
StoreHuffmanTreeOfHuffmanTreeToBitMask(VP8LBitWriter * const bw,const uint8_t * code_length_bitdepth)476 static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
477 VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
478 // RFC 1951 will calm you down if you are worried about this funny sequence.
479 // This sequence is tuned from that, but more weighted for lower symbol count,
480 // and more spiking histograms.
481 static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
482 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
483 };
484 int i;
485 // Throw away trailing zeros:
486 int codes_to_store = CODE_LENGTH_CODES;
487 for (; codes_to_store > 4; --codes_to_store) {
488 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
489 break;
490 }
491 }
492 VP8LPutBits(bw, codes_to_store - 4, 4);
493 for (i = 0; i < codes_to_store; ++i) {
494 VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
495 }
496 }
497
ClearHuffmanTreeIfOnlyOneSymbol(HuffmanTreeCode * const huffman_code)498 static void ClearHuffmanTreeIfOnlyOneSymbol(
499 HuffmanTreeCode* const huffman_code) {
500 int k;
501 int count = 0;
502 for (k = 0; k < huffman_code->num_symbols; ++k) {
503 if (huffman_code->code_lengths[k] != 0) {
504 ++count;
505 if (count > 1) return;
506 }
507 }
508 for (k = 0; k < huffman_code->num_symbols; ++k) {
509 huffman_code->code_lengths[k] = 0;
510 huffman_code->codes[k] = 0;
511 }
512 }
513
StoreHuffmanTreeToBitMask(VP8LBitWriter * const bw,const HuffmanTreeToken * const tokens,const int num_tokens,const HuffmanTreeCode * const huffman_code)514 static void StoreHuffmanTreeToBitMask(
515 VP8LBitWriter* const bw,
516 const HuffmanTreeToken* const tokens, const int num_tokens,
517 const HuffmanTreeCode* const huffman_code) {
518 int i;
519 for (i = 0; i < num_tokens; ++i) {
520 const int ix = tokens[i].code;
521 const int extra_bits = tokens[i].extra_bits;
522 VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
523 switch (ix) {
524 case 16:
525 VP8LPutBits(bw, extra_bits, 2);
526 break;
527 case 17:
528 VP8LPutBits(bw, extra_bits, 3);
529 break;
530 case 18:
531 VP8LPutBits(bw, extra_bits, 7);
532 break;
533 }
534 }
535 }
536
537 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreFullHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const tree)538 static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
539 HuffmanTree* const huff_tree,
540 HuffmanTreeToken* const tokens,
541 const HuffmanTreeCode* const tree) {
542 uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
543 uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
544 const int max_tokens = tree->num_symbols;
545 int num_tokens;
546 HuffmanTreeCode huffman_code;
547 huffman_code.num_symbols = CODE_LENGTH_CODES;
548 huffman_code.code_lengths = code_length_bitdepth;
549 huffman_code.codes = code_length_bitdepth_symbols;
550
551 VP8LPutBits(bw, 0, 1);
552 num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
553 {
554 uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
555 uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
556 int i;
557 for (i = 0; i < num_tokens; ++i) {
558 ++histogram[tokens[i].code];
559 }
560
561 VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
562 }
563
564 StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
565 ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
566 {
567 int trailing_zero_bits = 0;
568 int trimmed_length = num_tokens;
569 int write_trimmed_length;
570 int length;
571 int i = num_tokens;
572 while (i-- > 0) {
573 const int ix = tokens[i].code;
574 if (ix == 0 || ix == 17 || ix == 18) {
575 --trimmed_length; // discount trailing zeros
576 trailing_zero_bits += code_length_bitdepth[ix];
577 if (ix == 17) {
578 trailing_zero_bits += 3;
579 } else if (ix == 18) {
580 trailing_zero_bits += 7;
581 }
582 } else {
583 break;
584 }
585 }
586 write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
587 length = write_trimmed_length ? trimmed_length : num_tokens;
588 VP8LPutBits(bw, write_trimmed_length, 1);
589 if (write_trimmed_length) {
590 if (trimmed_length == 2) {
591 VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2
592 } else {
593 const int nbits = BitsLog2Floor(trimmed_length - 2);
594 const int nbitpairs = nbits / 2 + 1;
595 assert(trimmed_length > 2);
596 assert(nbitpairs - 1 < 8);
597 VP8LPutBits(bw, nbitpairs - 1, 3);
598 VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
599 }
600 }
601 StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
602 }
603 }
604
605 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const huffman_code)606 static void StoreHuffmanCode(VP8LBitWriter* const bw,
607 HuffmanTree* const huff_tree,
608 HuffmanTreeToken* const tokens,
609 const HuffmanTreeCode* const huffman_code) {
610 int i;
611 int count = 0;
612 int symbols[2] = { 0, 0 };
613 const int kMaxBits = 8;
614 const int kMaxSymbol = 1 << kMaxBits;
615
616 // Check whether it's a small tree.
617 for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
618 if (huffman_code->code_lengths[i] != 0) {
619 if (count < 2) symbols[count] = i;
620 ++count;
621 }
622 }
623
624 if (count == 0) { // emit minimal tree for empty cases
625 // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
626 VP8LPutBits(bw, 0x01, 4);
627 } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
628 VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols.
629 VP8LPutBits(bw, count - 1, 1);
630 if (symbols[0] <= 1) {
631 VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value.
632 VP8LPutBits(bw, symbols[0], 1);
633 } else {
634 VP8LPutBits(bw, 1, 1);
635 VP8LPutBits(bw, symbols[0], 8);
636 }
637 if (count == 2) {
638 VP8LPutBits(bw, symbols[1], 8);
639 }
640 } else {
641 StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
642 }
643 }
644
WriteHuffmanCode(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index)645 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
646 const HuffmanTreeCode* const code,
647 int code_index) {
648 const int depth = code->code_lengths[code_index];
649 const int symbol = code->codes[code_index];
650 VP8LPutBits(bw, symbol, depth);
651 }
652
WriteHuffmanCodeWithExtraBits(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index,int bits,int n_bits)653 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
654 VP8LBitWriter* const bw,
655 const HuffmanTreeCode* const code,
656 int code_index,
657 int bits,
658 int n_bits) {
659 const int depth = code->code_lengths[code_index];
660 const int symbol = code->codes[code_index];
661 VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
662 }
663
StoreImageToBitMask(VP8LBitWriter * const bw,int width,int histo_bits,const VP8LBackwardRefs * const refs,const uint16_t * histogram_symbols,const HuffmanTreeCode * const huffman_codes,const WebPPicture * const pic)664 static int StoreImageToBitMask(
665 VP8LBitWriter* const bw, int width, int histo_bits,
666 const VP8LBackwardRefs* const refs,
667 const uint16_t* histogram_symbols,
668 const HuffmanTreeCode* const huffman_codes, const WebPPicture* const pic) {
669 const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
670 const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
671 // x and y trace the position in the image.
672 int x = 0;
673 int y = 0;
674 int tile_x = x & tile_mask;
675 int tile_y = y & tile_mask;
676 int histogram_ix = histogram_symbols[0];
677 const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
678 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
679 while (VP8LRefsCursorOk(&c)) {
680 const PixOrCopy* const v = c.cur_pos;
681 if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
682 tile_x = x & tile_mask;
683 tile_y = y & tile_mask;
684 histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
685 (x >> histo_bits)];
686 codes = huffman_codes + 5 * histogram_ix;
687 }
688 if (PixOrCopyIsLiteral(v)) {
689 static const uint8_t order[] = { 1, 2, 0, 3 };
690 int k;
691 for (k = 0; k < 4; ++k) {
692 const int code = PixOrCopyLiteral(v, order[k]);
693 WriteHuffmanCode(bw, codes + k, code);
694 }
695 } else if (PixOrCopyIsCacheIdx(v)) {
696 const int code = PixOrCopyCacheIdx(v);
697 const int literal_ix = 256 + NUM_LENGTH_CODES + code;
698 WriteHuffmanCode(bw, codes, literal_ix);
699 } else {
700 int bits, n_bits;
701 int code;
702
703 const int distance = PixOrCopyDistance(v);
704 VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
705 WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
706
707 // Don't write the distance with the extra bits code since
708 // the distance can be up to 18 bits of extra bits, and the prefix
709 // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
710 VP8LPrefixEncode(distance, &code, &n_bits, &bits);
711 WriteHuffmanCode(bw, codes + 4, code);
712 VP8LPutBits(bw, bits, n_bits);
713 }
714 x += PixOrCopyLength(v);
715 while (x >= width) {
716 x -= width;
717 ++y;
718 }
719 VP8LRefsCursorNext(&c);
720 }
721 if (bw->error_) {
722 return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
723 }
724 return 1;
725 }
726
727 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31.
728 // pic and percent are for progress.
EncodeImageNoHuffman(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_array,int width,int height,int quality,int low_effort,const WebPPicture * const pic,int percent_range,int * const percent)729 static int EncodeImageNoHuffman(VP8LBitWriter* const bw,
730 const uint32_t* const argb,
731 VP8LHashChain* const hash_chain,
732 VP8LBackwardRefs* const refs_array, int width,
733 int height, int quality, int low_effort,
734 const WebPPicture* const pic, int percent_range,
735 int* const percent) {
736 int i;
737 int max_tokens = 0;
738 VP8LBackwardRefs* refs;
739 HuffmanTreeToken* tokens = NULL;
740 HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}};
741 const uint16_t histogram_symbols[1] = {0}; // only one tree, one symbol
742 int cache_bits = 0;
743 VP8LHistogramSet* histogram_image = NULL;
744 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
745 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
746 if (huff_tree == NULL) {
747 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
748 goto Error;
749 }
750
751 // Calculate backward references from ARGB image.
752 if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort,
753 pic, percent_range / 2, percent)) {
754 goto Error;
755 }
756 if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0,
757 kLZ77Standard | kLZ77RLE, cache_bits,
758 /*do_no_cache=*/0, hash_chain, refs_array,
759 &cache_bits, pic,
760 percent_range - percent_range / 2, percent)) {
761 goto Error;
762 }
763 refs = &refs_array[0];
764 histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
765 if (histogram_image == NULL) {
766 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
767 goto Error;
768 }
769 VP8LHistogramSetClear(histogram_image);
770
771 // Build histogram image and symbols from backward references.
772 VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
773
774 // Create Huffman bit lengths and codes for each histogram image.
775 assert(histogram_image->size == 1);
776 if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
777 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
778 goto Error;
779 }
780
781 // No color cache, no Huffman image.
782 VP8LPutBits(bw, 0, 1);
783
784 // Find maximum number of symbols for the huffman tree-set.
785 for (i = 0; i < 5; ++i) {
786 HuffmanTreeCode* const codes = &huffman_codes[i];
787 if (max_tokens < codes->num_symbols) {
788 max_tokens = codes->num_symbols;
789 }
790 }
791
792 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
793 if (tokens == NULL) {
794 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
795 goto Error;
796 }
797
798 // Store Huffman codes.
799 for (i = 0; i < 5; ++i) {
800 HuffmanTreeCode* const codes = &huffman_codes[i];
801 StoreHuffmanCode(bw, huff_tree, tokens, codes);
802 ClearHuffmanTreeIfOnlyOneSymbol(codes);
803 }
804
805 // Store actual literals.
806 if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes,
807 pic)) {
808 goto Error;
809 }
810
811 Error:
812 WebPSafeFree(tokens);
813 WebPSafeFree(huff_tree);
814 VP8LFreeHistogramSet(histogram_image);
815 WebPSafeFree(huffman_codes[0].codes);
816 return (pic->error_code == VP8_ENC_OK);
817 }
818
819 // pic and percent are for progress.
EncodeImageInternal(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[4],int width,int height,int quality,int low_effort,const CrunchConfig * const config,int * cache_bits,int histogram_bits,size_t init_byte_position,int * const hdr_size,int * const data_size,const WebPPicture * const pic,int percent_range,int * const percent)820 static int EncodeImageInternal(
821 VP8LBitWriter* const bw, const uint32_t* const argb,
822 VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
823 int height, int quality, int low_effort, const CrunchConfig* const config,
824 int* cache_bits, int histogram_bits, size_t init_byte_position,
825 int* const hdr_size, int* const data_size, const WebPPicture* const pic,
826 int percent_range, int* const percent) {
827 const uint32_t histogram_image_xysize =
828 VP8LSubSampleSize(width, histogram_bits) *
829 VP8LSubSampleSize(height, histogram_bits);
830 int remaining_percent = percent_range;
831 int percent_start = *percent;
832 VP8LHistogramSet* histogram_image = NULL;
833 VP8LHistogram* tmp_histo = NULL;
834 int histogram_image_size = 0;
835 size_t bit_array_size = 0;
836 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
837 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
838 HuffmanTreeToken* tokens = NULL;
839 HuffmanTreeCode* huffman_codes = NULL;
840 uint16_t* const histogram_symbols = (uint16_t*)WebPSafeMalloc(
841 histogram_image_xysize, sizeof(*histogram_symbols));
842 int sub_configs_idx;
843 int cache_bits_init, write_histogram_image;
844 VP8LBitWriter bw_init = *bw, bw_best;
845 int hdr_size_tmp;
846 VP8LHashChain hash_chain_histogram; // histogram image hash chain
847 size_t bw_size_best = ~(size_t)0;
848 assert(histogram_bits >= MIN_HUFFMAN_BITS);
849 assert(histogram_bits <= MAX_HUFFMAN_BITS);
850 assert(hdr_size != NULL);
851 assert(data_size != NULL);
852
853 memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
854 if (!VP8LBitWriterInit(&bw_best, 0)) {
855 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
856 goto Error;
857 }
858
859 // Make sure we can allocate the different objects.
860 if (huff_tree == NULL || histogram_symbols == NULL ||
861 !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) {
862 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
863 goto Error;
864 }
865
866 percent_range = remaining_percent / 5;
867 if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
868 low_effort, pic, percent_range, percent)) {
869 goto Error;
870 }
871 percent_start += percent_range;
872 remaining_percent -= percent_range;
873
874 // If the value is different from zero, it has been set during the palette
875 // analysis.
876 cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
877 // If several iterations will happen, clone into bw_best.
878 if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) &&
879 !VP8LBitWriterClone(bw, &bw_best)) {
880 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
881 goto Error;
882 }
883
884 for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
885 ++sub_configs_idx) {
886 const CrunchSubConfig* const sub_config =
887 &config->sub_configs_[sub_configs_idx];
888 int cache_bits_best, i_cache;
889 int i_remaining_percent = remaining_percent / config->sub_configs_size_;
890 int i_percent_range = i_remaining_percent / 4;
891 i_remaining_percent -= i_percent_range;
892
893 if (!VP8LGetBackwardReferences(
894 width, height, argb, quality, low_effort, sub_config->lz77_,
895 cache_bits_init, sub_config->do_no_cache_, hash_chain,
896 &refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) {
897 goto Error;
898 }
899
900 for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
901 const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
902 // Speed-up: no need to study the no-cache case if it was already studied
903 // in i_cache == 0.
904 if (i_cache == 1 && cache_bits_best == 0) break;
905
906 // Reset the bit writer for this iteration.
907 VP8LBitWriterReset(&bw_init, bw);
908
909 // Build histogram image and symbols from backward references.
910 histogram_image =
911 VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
912 tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
913 if (histogram_image == NULL || tmp_histo == NULL) {
914 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
915 goto Error;
916 }
917
918 i_percent_range = i_remaining_percent / 3;
919 i_remaining_percent -= i_percent_range;
920 if (!VP8LGetHistoImageSymbols(
921 width, height, &refs_array[i_cache], quality, low_effort,
922 histogram_bits, cache_bits_tmp, histogram_image, tmp_histo,
923 histogram_symbols, pic, i_percent_range, percent)) {
924 goto Error;
925 }
926 // Create Huffman bit lengths and codes for each histogram image.
927 histogram_image_size = histogram_image->size;
928 bit_array_size = 5 * histogram_image_size;
929 huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
930 sizeof(*huffman_codes));
931 // Note: some histogram_image entries may point to tmp_histos[], so the
932 // latter need to outlive the following call to
933 // GetHuffBitLengthsAndCodes().
934 if (huffman_codes == NULL ||
935 !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
936 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
937 goto Error;
938 }
939 // Free combined histograms.
940 VP8LFreeHistogramSet(histogram_image);
941 histogram_image = NULL;
942
943 // Free scratch histograms.
944 VP8LFreeHistogram(tmp_histo);
945 tmp_histo = NULL;
946
947 // Color Cache parameters.
948 if (cache_bits_tmp > 0) {
949 VP8LPutBits(bw, 1, 1);
950 VP8LPutBits(bw, cache_bits_tmp, 4);
951 } else {
952 VP8LPutBits(bw, 0, 1);
953 }
954
955 // Huffman image + meta huffman.
956 write_histogram_image = (histogram_image_size > 1);
957 VP8LPutBits(bw, write_histogram_image, 1);
958 if (write_histogram_image) {
959 uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc(
960 histogram_image_xysize, sizeof(*histogram_argb));
961 int max_index = 0;
962 uint32_t i;
963 if (histogram_argb == NULL) {
964 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
965 goto Error;
966 }
967 for (i = 0; i < histogram_image_xysize; ++i) {
968 const int symbol_index = histogram_symbols[i] & 0xffff;
969 histogram_argb[i] = (symbol_index << 8);
970 if (symbol_index >= max_index) {
971 max_index = symbol_index + 1;
972 }
973 }
974 histogram_image_size = max_index;
975
976 VP8LPutBits(bw, histogram_bits - 2, 3);
977 i_percent_range = i_remaining_percent / 2;
978 i_remaining_percent -= i_percent_range;
979 if (!EncodeImageNoHuffman(
980 bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
981 VP8LSubSampleSize(width, histogram_bits),
982 VP8LSubSampleSize(height, histogram_bits), quality, low_effort,
983 pic, i_percent_range, percent)) {
984 WebPSafeFree(histogram_argb);
985 goto Error;
986 }
987 WebPSafeFree(histogram_argb);
988 }
989
990 // Store Huffman codes.
991 {
992 int i;
993 int max_tokens = 0;
994 // Find maximum number of symbols for the huffman tree-set.
995 for (i = 0; i < 5 * histogram_image_size; ++i) {
996 HuffmanTreeCode* const codes = &huffman_codes[i];
997 if (max_tokens < codes->num_symbols) {
998 max_tokens = codes->num_symbols;
999 }
1000 }
1001 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1002 if (tokens == NULL) {
1003 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1004 goto Error;
1005 }
1006 for (i = 0; i < 5 * histogram_image_size; ++i) {
1007 HuffmanTreeCode* const codes = &huffman_codes[i];
1008 StoreHuffmanCode(bw, huff_tree, tokens, codes);
1009 ClearHuffmanTreeIfOnlyOneSymbol(codes);
1010 }
1011 }
1012 // Store actual literals.
1013 hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
1014 if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
1015 histogram_symbols, huffman_codes, pic)) {
1016 goto Error;
1017 }
1018 // Keep track of the smallest image so far.
1019 if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
1020 bw_size_best = VP8LBitWriterNumBytes(bw);
1021 *cache_bits = cache_bits_tmp;
1022 *hdr_size = hdr_size_tmp;
1023 *data_size =
1024 (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
1025 VP8LBitWriterSwap(bw, &bw_best);
1026 }
1027 WebPSafeFree(tokens);
1028 tokens = NULL;
1029 if (huffman_codes != NULL) {
1030 WebPSafeFree(huffman_codes->codes);
1031 WebPSafeFree(huffman_codes);
1032 huffman_codes = NULL;
1033 }
1034 }
1035 }
1036 VP8LBitWriterSwap(bw, &bw_best);
1037
1038 if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) {
1039 goto Error;
1040 }
1041
1042 Error:
1043 WebPSafeFree(tokens);
1044 WebPSafeFree(huff_tree);
1045 VP8LFreeHistogramSet(histogram_image);
1046 VP8LFreeHistogram(tmp_histo);
1047 VP8LHashChainClear(&hash_chain_histogram);
1048 if (huffman_codes != NULL) {
1049 WebPSafeFree(huffman_codes->codes);
1050 WebPSafeFree(huffman_codes);
1051 }
1052 WebPSafeFree(histogram_symbols);
1053 VP8LBitWriterWipeOut(&bw_best);
1054 return (pic->error_code == VP8_ENC_OK);
1055 }
1056
1057 // -----------------------------------------------------------------------------
1058 // Transforms
1059
ApplySubtractGreen(VP8LEncoder * const enc,int width,int height,VP8LBitWriter * const bw)1060 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
1061 VP8LBitWriter* const bw) {
1062 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1063 VP8LPutBits(bw, SUBTRACT_GREEN_TRANSFORM, 2);
1064 VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
1065 }
1066
ApplyPredictFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,int used_subtract_green,VP8LBitWriter * const bw,int percent_range,int * const percent)1067 static int ApplyPredictFilter(const VP8LEncoder* const enc, int width,
1068 int height, int quality, int low_effort,
1069 int used_subtract_green, VP8LBitWriter* const bw,
1070 int percent_range, int* const percent) {
1071 const int pred_bits = enc->transform_bits_;
1072 const int transform_width = VP8LSubSampleSize(width, pred_bits);
1073 const int transform_height = VP8LSubSampleSize(height, pred_bits);
1074 // we disable near-lossless quantization if palette is used.
1075 const int near_lossless_strength =
1076 enc->use_palette_ ? 100 : enc->config_->near_lossless;
1077
1078 if (!VP8LResidualImage(
1079 width, height, pred_bits, low_effort, enc->argb_, enc->argb_scratch_,
1080 enc->transform_data_, near_lossless_strength, enc->config_->exact,
1081 used_subtract_green, enc->pic_, percent_range / 2, percent)) {
1082 return 0;
1083 }
1084 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1085 VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
1086 assert(pred_bits >= 2);
1087 VP8LPutBits(bw, pred_bits - 2, 3);
1088 return EncodeImageNoHuffman(
1089 bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1090 (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1091 quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1092 percent);
1093 }
1094
ApplyCrossColorFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,VP8LBitWriter * const bw,int percent_range,int * const percent)1095 static int ApplyCrossColorFilter(const VP8LEncoder* const enc, int width,
1096 int height, int quality, int low_effort,
1097 VP8LBitWriter* const bw, int percent_range,
1098 int* const percent) {
1099 const int ccolor_transform_bits = enc->transform_bits_;
1100 const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
1101 const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
1102
1103 if (!VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
1104 enc->argb_, enc->transform_data_, enc->pic_,
1105 percent_range / 2, percent)) {
1106 return 0;
1107 }
1108 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1109 VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
1110 assert(ccolor_transform_bits >= 2);
1111 VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
1112 return EncodeImageNoHuffman(
1113 bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1114 (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1115 quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1116 percent);
1117 }
1118
1119 // -----------------------------------------------------------------------------
1120
WriteRiffHeader(const WebPPicture * const pic,size_t riff_size,size_t vp8l_size)1121 static int WriteRiffHeader(const WebPPicture* const pic, size_t riff_size,
1122 size_t vp8l_size) {
1123 uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
1124 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
1125 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
1126 };
1127 PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
1128 PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
1129 return pic->writer(riff, sizeof(riff), pic);
1130 }
1131
WriteImageSize(const WebPPicture * const pic,VP8LBitWriter * const bw)1132 static int WriteImageSize(const WebPPicture* const pic,
1133 VP8LBitWriter* const bw) {
1134 const int width = pic->width - 1;
1135 const int height = pic->height - 1;
1136 assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
1137
1138 VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
1139 VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
1140 return !bw->error_;
1141 }
1142
WriteRealAlphaAndVersion(VP8LBitWriter * const bw,int has_alpha)1143 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
1144 VP8LPutBits(bw, has_alpha, 1);
1145 VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
1146 return !bw->error_;
1147 }
1148
WriteImage(const WebPPicture * const pic,VP8LBitWriter * const bw,size_t * const coded_size)1149 static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw,
1150 size_t* const coded_size) {
1151 const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
1152 const size_t webpll_size = VP8LBitWriterNumBytes(bw);
1153 const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
1154 const size_t pad = vp8l_size & 1;
1155 const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
1156 *coded_size = 0;
1157
1158 if (bw->error_) {
1159 return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1160 }
1161
1162 if (!WriteRiffHeader(pic, riff_size, vp8l_size) ||
1163 !pic->writer(webpll_data, webpll_size, pic)) {
1164 return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1165 }
1166
1167 if (pad) {
1168 const uint8_t pad_byte[1] = { 0 };
1169 if (!pic->writer(pad_byte, 1, pic)) {
1170 return WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1171 }
1172 }
1173 *coded_size = CHUNK_HEADER_SIZE + riff_size;
1174 return 1;
1175 }
1176
1177 // -----------------------------------------------------------------------------
1178
ClearTransformBuffer(VP8LEncoder * const enc)1179 static void ClearTransformBuffer(VP8LEncoder* const enc) {
1180 WebPSafeFree(enc->transform_mem_);
1181 enc->transform_mem_ = NULL;
1182 enc->transform_mem_size_ = 0;
1183 }
1184
1185 // Allocates the memory for argb (W x H) buffer, 2 rows of context for
1186 // prediction and transform data.
1187 // Flags influencing the memory allocated:
1188 // enc->transform_bits_
1189 // enc->use_predict_, enc->use_cross_color_
AllocateTransformBuffer(VP8LEncoder * const enc,int width,int height)1190 static int AllocateTransformBuffer(VP8LEncoder* const enc, int width,
1191 int height) {
1192 const uint64_t image_size = (uint64_t)width * height;
1193 // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
1194 // pixel in each, plus 2 regular scanlines of bytes.
1195 // TODO(skal): Clean up by using arithmetic in bytes instead of words.
1196 const uint64_t argb_scratch_size =
1197 enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) /
1198 sizeof(uint32_t)
1199 : 0;
1200 const uint64_t transform_data_size =
1201 (enc->use_predict_ || enc->use_cross_color_)
1202 ? (uint64_t)VP8LSubSampleSize(width, enc->transform_bits_) *
1203 VP8LSubSampleSize(height, enc->transform_bits_)
1204 : 0;
1205 const uint64_t max_alignment_in_words =
1206 (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
1207 const uint64_t mem_size = image_size + max_alignment_in_words +
1208 argb_scratch_size + max_alignment_in_words +
1209 transform_data_size;
1210 uint32_t* mem = enc->transform_mem_;
1211 if (mem == NULL || mem_size > enc->transform_mem_size_) {
1212 ClearTransformBuffer(enc);
1213 mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
1214 if (mem == NULL) {
1215 return WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
1216 }
1217 enc->transform_mem_ = mem;
1218 enc->transform_mem_size_ = (size_t)mem_size;
1219 enc->argb_content_ = kEncoderNone;
1220 }
1221 enc->argb_ = mem;
1222 mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
1223 enc->argb_scratch_ = mem;
1224 mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
1225 enc->transform_data_ = mem;
1226
1227 enc->current_width_ = width;
1228 return 1;
1229 }
1230
MakeInputImageCopy(VP8LEncoder * const enc)1231 static int MakeInputImageCopy(VP8LEncoder* const enc) {
1232 const WebPPicture* const picture = enc->pic_;
1233 const int width = picture->width;
1234 const int height = picture->height;
1235
1236 if (!AllocateTransformBuffer(enc, width, height)) return 0;
1237 if (enc->argb_content_ == kEncoderARGB) return 1;
1238
1239 {
1240 uint32_t* dst = enc->argb_;
1241 const uint32_t* src = picture->argb;
1242 int y;
1243 for (y = 0; y < height; ++y) {
1244 memcpy(dst, src, width * sizeof(*dst));
1245 dst += width;
1246 src += picture->argb_stride;
1247 }
1248 }
1249 enc->argb_content_ = kEncoderARGB;
1250 assert(enc->current_width_ == width);
1251 return 1;
1252 }
1253
1254 // -----------------------------------------------------------------------------
1255
1256 #define APPLY_PALETTE_GREEDY_MAX 4
1257
SearchColorGreedy(const uint32_t palette[],int palette_size,uint32_t color)1258 static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
1259 int palette_size,
1260 uint32_t color) {
1261 (void)palette_size;
1262 assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
1263 assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
1264 if (color == palette[0]) return 0;
1265 if (color == palette[1]) return 1;
1266 if (color == palette[2]) return 2;
1267 return 3;
1268 }
1269
ApplyPaletteHash0(uint32_t color)1270 static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
1271 // Focus on the green color.
1272 return (color >> 8) & 0xff;
1273 }
1274
1275 #define PALETTE_INV_SIZE_BITS 11
1276 #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
1277
ApplyPaletteHash1(uint32_t color)1278 static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
1279 // Forget about alpha.
1280 return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
1281 (32 - PALETTE_INV_SIZE_BITS);
1282 }
1283
ApplyPaletteHash2(uint32_t color)1284 static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
1285 // Forget about alpha.
1286 return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
1287 (32 - PALETTE_INV_SIZE_BITS);
1288 }
1289
1290 // Use 1 pixel cache for ARGB pixels.
1291 #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
1292 uint32_t prev_pix = palette[0]; \
1293 uint32_t prev_idx = 0; \
1294 for (y = 0; y < height; ++y) { \
1295 for (x = 0; x < width; ++x) { \
1296 const uint32_t pix = src[x]; \
1297 if (pix != prev_pix) { \
1298 prev_idx = COLOR_INDEX; \
1299 prev_pix = pix; \
1300 } \
1301 tmp_row[x] = prev_idx; \
1302 } \
1303 VP8LBundleColorMap(tmp_row, width, xbits, dst); \
1304 src += src_stride; \
1305 dst += dst_stride; \
1306 } \
1307 } while (0)
1308
1309 // Remap argb values in src[] to packed palettes entries in dst[]
1310 // using 'row' as a temporary buffer of size 'width'.
1311 // We assume that all src[] values have a corresponding entry in the palette.
1312 // Note: src[] can be the same as dst[]
ApplyPalette(const uint32_t * src,uint32_t src_stride,uint32_t * dst,uint32_t dst_stride,const uint32_t * palette,int palette_size,int width,int height,int xbits,const WebPPicture * const pic)1313 static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst,
1314 uint32_t dst_stride, const uint32_t* palette,
1315 int palette_size, int width, int height, int xbits,
1316 const WebPPicture* const pic) {
1317 // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
1318 // made to work in-place.
1319 uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
1320 int x, y;
1321
1322 if (tmp_row == NULL) {
1323 return WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1324 }
1325
1326 if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
1327 APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
1328 } else {
1329 int i, j;
1330 uint16_t buffer[PALETTE_INV_SIZE];
1331 uint32_t (*const hash_functions[])(uint32_t) = {
1332 ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
1333 };
1334
1335 // Try to find a perfect hash function able to go from a color to an index
1336 // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
1337 // from color to index in palette.
1338 for (i = 0; i < 3; ++i) {
1339 int use_LUT = 1;
1340 // Set each element in buffer to max uint16_t.
1341 memset(buffer, 0xff, sizeof(buffer));
1342 for (j = 0; j < palette_size; ++j) {
1343 const uint32_t ind = hash_functions[i](palette[j]);
1344 if (buffer[ind] != 0xffffu) {
1345 use_LUT = 0;
1346 break;
1347 } else {
1348 buffer[ind] = j;
1349 }
1350 }
1351 if (use_LUT) break;
1352 }
1353
1354 if (i == 0) {
1355 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
1356 } else if (i == 1) {
1357 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
1358 } else if (i == 2) {
1359 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
1360 } else {
1361 uint32_t idx_map[MAX_PALETTE_SIZE];
1362 uint32_t palette_sorted[MAX_PALETTE_SIZE];
1363 PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
1364 APPLY_PALETTE_FOR(
1365 idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
1366 }
1367 }
1368 WebPSafeFree(tmp_row);
1369 return 1;
1370 }
1371 #undef APPLY_PALETTE_FOR
1372 #undef PALETTE_INV_SIZE_BITS
1373 #undef PALETTE_INV_SIZE
1374 #undef APPLY_PALETTE_GREEDY_MAX
1375
1376 // Note: Expects "enc->palette_" to be set properly.
MapImageFromPalette(VP8LEncoder * const enc,int in_place)1377 static int MapImageFromPalette(VP8LEncoder* const enc, int in_place) {
1378 const WebPPicture* const pic = enc->pic_;
1379 const int width = pic->width;
1380 const int height = pic->height;
1381 const uint32_t* const palette = enc->palette_;
1382 const uint32_t* src = in_place ? enc->argb_ : pic->argb;
1383 const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
1384 const int palette_size = enc->palette_size_;
1385 int xbits;
1386
1387 // Replace each input pixel by corresponding palette index.
1388 // This is done line by line.
1389 if (palette_size <= 4) {
1390 xbits = (palette_size <= 2) ? 3 : 2;
1391 } else {
1392 xbits = (palette_size <= 16) ? 1 : 0;
1393 }
1394
1395 if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) {
1396 return 0;
1397 }
1398 if (!ApplyPalette(src, src_stride,
1399 enc->argb_, enc->current_width_,
1400 palette, palette_size, width, height, xbits, pic)) {
1401 return 0;
1402 }
1403 enc->argb_content_ = kEncoderPalette;
1404 return 1;
1405 }
1406
1407 // Save palette_[] to bitstream.
EncodePalette(VP8LBitWriter * const bw,int low_effort,VP8LEncoder * const enc,int percent_range,int * const percent)1408 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
1409 VP8LEncoder* const enc,
1410 int percent_range, int* const percent) {
1411 int i;
1412 uint32_t tmp_palette[MAX_PALETTE_SIZE];
1413 const int palette_size = enc->palette_size_;
1414 const uint32_t* const palette = enc->palette_;
1415 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1416 VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
1417 assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
1418 VP8LPutBits(bw, palette_size - 1, 8);
1419 for (i = palette_size - 1; i >= 1; --i) {
1420 tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
1421 }
1422 tmp_palette[0] = palette[0];
1423 return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
1424 &enc->refs_[0], palette_size, 1, /*quality=*/20,
1425 low_effort, enc->pic_, percent_range, percent);
1426 }
1427
1428 // -----------------------------------------------------------------------------
1429 // VP8LEncoder
1430
VP8LEncoderNew(const WebPConfig * const config,const WebPPicture * const picture)1431 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
1432 const WebPPicture* const picture) {
1433 VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
1434 if (enc == NULL) {
1435 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1436 return NULL;
1437 }
1438 enc->config_ = config;
1439 enc->pic_ = picture;
1440 enc->argb_content_ = kEncoderNone;
1441
1442 VP8LEncDspInit();
1443
1444 return enc;
1445 }
1446
VP8LEncoderDelete(VP8LEncoder * enc)1447 static void VP8LEncoderDelete(VP8LEncoder* enc) {
1448 if (enc != NULL) {
1449 int i;
1450 VP8LHashChainClear(&enc->hash_chain_);
1451 for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
1452 ClearTransformBuffer(enc);
1453 WebPSafeFree(enc);
1454 }
1455 }
1456
1457 // -----------------------------------------------------------------------------
1458 // Main call
1459
1460 typedef struct {
1461 const WebPConfig* config_;
1462 const WebPPicture* picture_;
1463 VP8LBitWriter* bw_;
1464 VP8LEncoder* enc_;
1465 CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
1466 int num_crunch_configs_;
1467 int red_and_blue_always_zero_;
1468 WebPAuxStats* stats_;
1469 } StreamEncodeContext;
1470
EncodeStreamHook(void * input,void * data2)1471 static int EncodeStreamHook(void* input, void* data2) {
1472 StreamEncodeContext* const params = (StreamEncodeContext*)input;
1473 const WebPConfig* const config = params->config_;
1474 const WebPPicture* const picture = params->picture_;
1475 VP8LBitWriter* const bw = params->bw_;
1476 VP8LEncoder* const enc = params->enc_;
1477 const CrunchConfig* const crunch_configs = params->crunch_configs_;
1478 const int num_crunch_configs = params->num_crunch_configs_;
1479 const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
1480 #if !defined(WEBP_DISABLE_STATS)
1481 WebPAuxStats* const stats = params->stats_;
1482 #endif
1483 const int quality = (int)config->quality;
1484 const int low_effort = (config->method == 0);
1485 #if (WEBP_NEAR_LOSSLESS == 1)
1486 const int width = picture->width;
1487 #endif
1488 const int height = picture->height;
1489 const size_t byte_position = VP8LBitWriterNumBytes(bw);
1490 int percent = 2; // for WebPProgressHook
1491 #if (WEBP_NEAR_LOSSLESS == 1)
1492 int use_near_lossless = 0;
1493 #endif
1494 int hdr_size = 0;
1495 int data_size = 0;
1496 int use_delta_palette = 0;
1497 int idx;
1498 size_t best_size = ~(size_t)0;
1499 VP8LBitWriter bw_init = *bw, bw_best;
1500 (void)data2;
1501
1502 if (!VP8LBitWriterInit(&bw_best, 0) ||
1503 (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
1504 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1505 goto Error;
1506 }
1507
1508 for (idx = 0; idx < num_crunch_configs; ++idx) {
1509 const int entropy_idx = crunch_configs[idx].entropy_idx_;
1510 int remaining_percent = 97 / num_crunch_configs, percent_range;
1511 enc->use_palette_ =
1512 (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
1513 enc->use_subtract_green_ =
1514 (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
1515 enc->use_predict_ = (entropy_idx == kSpatial) ||
1516 (entropy_idx == kSpatialSubGreen) ||
1517 (entropy_idx == kPaletteAndSpatial);
1518 // When using a palette, R/B==0, hence no need to test for cross-color.
1519 if (low_effort || enc->use_palette_) {
1520 enc->use_cross_color_ = 0;
1521 } else {
1522 enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
1523 }
1524 // Reset any parameter in the encoder that is set in the previous iteration.
1525 enc->cache_bits_ = 0;
1526 VP8LBackwardRefsClear(&enc->refs_[0]);
1527 VP8LBackwardRefsClear(&enc->refs_[1]);
1528
1529 #if (WEBP_NEAR_LOSSLESS == 1)
1530 // Apply near-lossless preprocessing.
1531 use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
1532 !enc->use_predict_;
1533 if (use_near_lossless) {
1534 if (!AllocateTransformBuffer(enc, width, height)) goto Error;
1535 if ((enc->argb_content_ != kEncoderNearLossless) &&
1536 !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
1537 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1538 goto Error;
1539 }
1540 enc->argb_content_ = kEncoderNearLossless;
1541 } else {
1542 enc->argb_content_ = kEncoderNone;
1543 }
1544 #else
1545 enc->argb_content_ = kEncoderNone;
1546 #endif
1547
1548 // Encode palette
1549 if (enc->use_palette_) {
1550 if (!PaletteSort(crunch_configs[idx].palette_sorting_type_, enc->pic_,
1551 enc->palette_sorted_, enc->palette_size_,
1552 enc->palette_)) {
1553 WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
1554 goto Error;
1555 }
1556 percent_range = remaining_percent / 4;
1557 if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) {
1558 goto Error;
1559 }
1560 remaining_percent -= percent_range;
1561 if (!MapImageFromPalette(enc, use_delta_palette)) goto Error;
1562 // If using a color cache, do not have it bigger than the number of
1563 // colors.
1564 if (enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
1565 enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
1566 }
1567 }
1568 if (!use_delta_palette) {
1569 // In case image is not packed.
1570 if (enc->argb_content_ != kEncoderNearLossless &&
1571 enc->argb_content_ != kEncoderPalette) {
1572 if (!MakeInputImageCopy(enc)) goto Error;
1573 }
1574
1575 // -----------------------------------------------------------------------
1576 // Apply transforms and write transform data.
1577
1578 if (enc->use_subtract_green_) {
1579 ApplySubtractGreen(enc, enc->current_width_, height, bw);
1580 }
1581
1582 if (enc->use_predict_) {
1583 percent_range = remaining_percent / 3;
1584 if (!ApplyPredictFilter(enc, enc->current_width_, height, quality,
1585 low_effort, enc->use_subtract_green_, bw,
1586 percent_range, &percent)) {
1587 goto Error;
1588 }
1589 remaining_percent -= percent_range;
1590 }
1591
1592 if (enc->use_cross_color_) {
1593 percent_range = remaining_percent / 2;
1594 if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
1595 low_effort, bw, percent_range, &percent)) {
1596 goto Error;
1597 }
1598 remaining_percent -= percent_range;
1599 }
1600 }
1601
1602 VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms.
1603
1604 // -------------------------------------------------------------------------
1605 // Encode and write the transformed image.
1606 if (!EncodeImageInternal(
1607 bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_,
1608 height, quality, low_effort, &crunch_configs[idx],
1609 &enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size,
1610 &data_size, picture, remaining_percent, &percent)) {
1611 goto Error;
1612 }
1613
1614 // If we are better than what we already have.
1615 if (VP8LBitWriterNumBytes(bw) < best_size) {
1616 best_size = VP8LBitWriterNumBytes(bw);
1617 // Store the BitWriter.
1618 VP8LBitWriterSwap(bw, &bw_best);
1619 #if !defined(WEBP_DISABLE_STATS)
1620 // Update the stats.
1621 if (stats != NULL) {
1622 stats->lossless_features = 0;
1623 if (enc->use_predict_) stats->lossless_features |= 1;
1624 if (enc->use_cross_color_) stats->lossless_features |= 2;
1625 if (enc->use_subtract_green_) stats->lossless_features |= 4;
1626 if (enc->use_palette_) stats->lossless_features |= 8;
1627 stats->histogram_bits = enc->histo_bits_;
1628 stats->transform_bits = enc->transform_bits_;
1629 stats->cache_bits = enc->cache_bits_;
1630 stats->palette_size = enc->palette_size_;
1631 stats->lossless_size = (int)(best_size - byte_position);
1632 stats->lossless_hdr_size = hdr_size;
1633 stats->lossless_data_size = data_size;
1634 }
1635 #endif
1636 }
1637 // Reset the bit writer for the following iteration if any.
1638 if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
1639 }
1640 VP8LBitWriterSwap(&bw_best, bw);
1641
1642 Error:
1643 VP8LBitWriterWipeOut(&bw_best);
1644 // The hook should return false in case of error.
1645 return (params->picture_->error_code == VP8_ENC_OK);
1646 }
1647
VP8LEncodeStream(const WebPConfig * const config,const WebPPicture * const picture,VP8LBitWriter * const bw_main)1648 int VP8LEncodeStream(const WebPConfig* const config,
1649 const WebPPicture* const picture,
1650 VP8LBitWriter* const bw_main) {
1651 VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
1652 VP8LEncoder* enc_side = NULL;
1653 CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
1654 int num_crunch_configs_main, num_crunch_configs_side = 0;
1655 int idx;
1656 int red_and_blue_always_zero = 0;
1657 WebPWorker worker_main, worker_side;
1658 StreamEncodeContext params_main, params_side;
1659 // The main thread uses picture->stats, the side thread uses stats_side.
1660 WebPAuxStats stats_side;
1661 VP8LBitWriter bw_side;
1662 WebPPicture picture_side;
1663 const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
1664 int ok_main;
1665
1666 if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) {
1667 VP8LEncoderDelete(enc_main);
1668 return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1669 }
1670
1671 // Avoid "garbage value" error from Clang's static analysis tool.
1672 if (!WebPPictureInit(&picture_side)) {
1673 goto Error;
1674 }
1675
1676 // Analyze image (entropy, num_palettes etc)
1677 if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
1678 &red_and_blue_always_zero) ||
1679 !EncoderInit(enc_main)) {
1680 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1681 goto Error;
1682 }
1683
1684 // Split the configs between the main and side threads (if any).
1685 if (config->thread_level > 0) {
1686 num_crunch_configs_side = num_crunch_configs_main / 2;
1687 for (idx = 0; idx < num_crunch_configs_side; ++idx) {
1688 params_side.crunch_configs_[idx] =
1689 crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
1690 idx];
1691 }
1692 params_side.num_crunch_configs_ = num_crunch_configs_side;
1693 }
1694 num_crunch_configs_main -= num_crunch_configs_side;
1695 for (idx = 0; idx < num_crunch_configs_main; ++idx) {
1696 params_main.crunch_configs_[idx] = crunch_configs[idx];
1697 }
1698 params_main.num_crunch_configs_ = num_crunch_configs_main;
1699
1700 // Fill in the parameters for the thread workers.
1701 {
1702 const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
1703 for (idx = 0; idx < params_size; ++idx) {
1704 // Create the parameters for each worker.
1705 WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
1706 StreamEncodeContext* const param =
1707 (idx == 0) ? ¶ms_main : ¶ms_side;
1708 param->config_ = config;
1709 param->red_and_blue_always_zero_ = red_and_blue_always_zero;
1710 if (idx == 0) {
1711 param->picture_ = picture;
1712 param->stats_ = picture->stats;
1713 param->bw_ = bw_main;
1714 param->enc_ = enc_main;
1715 } else {
1716 // Create a side picture (error_code is not thread-safe).
1717 if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width,
1718 picture->height, &picture_side)) {
1719 assert(0);
1720 }
1721 picture_side.progress_hook = NULL; // Progress hook is not thread-safe.
1722 param->picture_ = &picture_side; // No need to free a view afterwards.
1723 param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
1724 // Create a side bit writer.
1725 if (!VP8LBitWriterClone(bw_main, &bw_side)) {
1726 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1727 goto Error;
1728 }
1729 param->bw_ = &bw_side;
1730 // Create a side encoder.
1731 enc_side = VP8LEncoderNew(config, &picture_side);
1732 if (enc_side == NULL || !EncoderInit(enc_side)) {
1733 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1734 goto Error;
1735 }
1736 // Copy the values that were computed for the main encoder.
1737 enc_side->histo_bits_ = enc_main->histo_bits_;
1738 enc_side->transform_bits_ = enc_main->transform_bits_;
1739 enc_side->palette_size_ = enc_main->palette_size_;
1740 memcpy(enc_side->palette_, enc_main->palette_,
1741 sizeof(enc_main->palette_));
1742 memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
1743 sizeof(enc_main->palette_sorted_));
1744 param->enc_ = enc_side;
1745 }
1746 // Create the workers.
1747 worker_interface->Init(worker);
1748 worker->data1 = param;
1749 worker->data2 = NULL;
1750 worker->hook = EncodeStreamHook;
1751 }
1752 }
1753
1754 // Start the second thread if needed.
1755 if (num_crunch_configs_side != 0) {
1756 if (!worker_interface->Reset(&worker_side)) {
1757 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1758 goto Error;
1759 }
1760 #if !defined(WEBP_DISABLE_STATS)
1761 // This line is here and not in the param initialization above to remove a
1762 // Clang static analyzer warning.
1763 if (picture->stats != NULL) {
1764 memcpy(&stats_side, picture->stats, sizeof(stats_side));
1765 }
1766 #endif
1767 worker_interface->Launch(&worker_side);
1768 }
1769 // Execute the main thread.
1770 worker_interface->Execute(&worker_main);
1771 ok_main = worker_interface->Sync(&worker_main);
1772 worker_interface->End(&worker_main);
1773 if (num_crunch_configs_side != 0) {
1774 // Wait for the second thread.
1775 const int ok_side = worker_interface->Sync(&worker_side);
1776 worker_interface->End(&worker_side);
1777 if (!ok_main || !ok_side) {
1778 if (picture->error_code == VP8_ENC_OK) {
1779 assert(picture_side.error_code != VP8_ENC_OK);
1780 WebPEncodingSetError(picture, picture_side.error_code);
1781 }
1782 goto Error;
1783 }
1784 if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
1785 VP8LBitWriterSwap(bw_main, &bw_side);
1786 #if !defined(WEBP_DISABLE_STATS)
1787 if (picture->stats != NULL) {
1788 memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
1789 }
1790 #endif
1791 }
1792 }
1793
1794 Error:
1795 VP8LBitWriterWipeOut(&bw_side);
1796 VP8LEncoderDelete(enc_main);
1797 VP8LEncoderDelete(enc_side);
1798 return (picture->error_code == VP8_ENC_OK);
1799 }
1800
1801 #undef CRUNCH_CONFIGS_MAX
1802 #undef CRUNCH_SUBCONFIGS_MAX
1803
VP8LEncodeImage(const WebPConfig * const config,const WebPPicture * const picture)1804 int VP8LEncodeImage(const WebPConfig* const config,
1805 const WebPPicture* const picture) {
1806 int width, height;
1807 int has_alpha;
1808 size_t coded_size;
1809 int percent = 0;
1810 int initial_size;
1811 VP8LBitWriter bw;
1812
1813 if (picture == NULL) return 0;
1814
1815 if (config == NULL || picture->argb == NULL) {
1816 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
1817 }
1818
1819 width = picture->width;
1820 height = picture->height;
1821 // Initialize BitWriter with size corresponding to 16 bpp to photo images and
1822 // 8 bpp for graphical images.
1823 initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
1824 width * height : width * height * 2;
1825 if (!VP8LBitWriterInit(&bw, initial_size)) {
1826 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1827 goto Error;
1828 }
1829
1830 if (!WebPReportProgress(picture, 1, &percent)) {
1831 UserAbort:
1832 WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT);
1833 goto Error;
1834 }
1835 // Reset stats (for pure lossless coding)
1836 if (picture->stats != NULL) {
1837 WebPAuxStats* const stats = picture->stats;
1838 memset(stats, 0, sizeof(*stats));
1839 stats->PSNR[0] = 99.f;
1840 stats->PSNR[1] = 99.f;
1841 stats->PSNR[2] = 99.f;
1842 stats->PSNR[3] = 99.f;
1843 stats->PSNR[4] = 99.f;
1844 }
1845
1846 // Write image size.
1847 if (!WriteImageSize(picture, &bw)) {
1848 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1849 goto Error;
1850 }
1851
1852 has_alpha = WebPPictureHasTransparency(picture);
1853 // Write the non-trivial Alpha flag and lossless version.
1854 if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
1855 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1856 goto Error;
1857 }
1858
1859 if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort;
1860
1861 // Encode main image stream.
1862 if (!VP8LEncodeStream(config, picture, &bw)) goto Error;
1863
1864 if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort;
1865
1866 // Finish the RIFF chunk.
1867 if (!WriteImage(picture, &bw, &coded_size)) goto Error;
1868
1869 if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
1870
1871 #if !defined(WEBP_DISABLE_STATS)
1872 // Save size.
1873 if (picture->stats != NULL) {
1874 picture->stats->coded_size += (int)coded_size;
1875 picture->stats->lossless_size = (int)coded_size;
1876 }
1877 #endif
1878
1879 if (picture->extra_info != NULL) {
1880 const int mb_w = (width + 15) >> 4;
1881 const int mb_h = (height + 15) >> 4;
1882 memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
1883 }
1884
1885 Error:
1886 if (bw.error_) {
1887 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1888 }
1889 VP8LBitWriterWipeOut(&bw);
1890 return (picture->error_code == VP8_ENC_OK);
1891 }
1892
1893 //------------------------------------------------------------------------------
1894