1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddexpminusmax/avx512f-p5-scalef.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <immintrin.h>
13
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/raddexpminusmax.h>
16
17
xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x144(size_t elements,const float * input,float * sum,float max)18 void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x144(
19 size_t elements,
20 const float* input,
21 float* sum,
22 float max)
23 {
24 assert(elements % sizeof(float) == 0);
25
26 const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
27 const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
28 const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
29
30 const __m512 vc0 = _mm512_set1_ps(1.0f);
31 const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
32 const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
33 const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
34 const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
35 const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
36
37 const __m512 vi_max = _mm512_set1_ps(max);
38
39 __m512 vacc0 = _mm512_setzero_ps();
40 for (; elements >= 144 * sizeof(float); elements -= 144 * sizeof(float)) {
41 // Load 144 (9x16) inputs at a time.
42 const __m512 vi0 = _mm512_loadu_ps(input);
43 const __m512 vi1 = _mm512_loadu_ps(input + 16);
44 const __m512 vi2 = _mm512_loadu_ps(input + 32);
45 const __m512 vi3 = _mm512_loadu_ps(input + 48);
46 const __m512 vi4 = _mm512_loadu_ps(input + 64);
47 const __m512 vi5 = _mm512_loadu_ps(input + 80);
48 const __m512 vi6 = _mm512_loadu_ps(input + 96);
49 const __m512 vi7 = _mm512_loadu_ps(input + 112);
50 const __m512 vi8 = _mm512_loadu_ps(input + 128);
51 input += 144;
52
53 // Subtract maximum input x := i - i_max.
54 const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
55 const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
56 const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
57 const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
58 const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
59 const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
60 const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
61 const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
62 const __m512 vx8 = _mm512_sub_ps(vi8, vi_max);
63
64 // Compute reduced argument elements := round(x / log(2)).
65 const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
66 const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
67 const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
68 const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
69 const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
70 const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
71 const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
72 const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
73 const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
74
75 // Compute reduced argument t := x - elements * log(2).
76 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
77 __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
78 __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
79 __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
80 __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
81 __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
82 __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
83 __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
84 __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
85 __m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
86
87 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
88 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
89 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
90 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
91 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
92 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
93 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
94 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
95 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
96
97 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
98 __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
99 __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
100 __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
101 __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
102 __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
103 __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
104 __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
105 __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
106 __m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
107
108 vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
109 vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
110 vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
111 vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
112 vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
113 vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
114 vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
115 vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
116 vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
117
118 vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
119 vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
120 vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
121 vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
122 vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
123 vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
124 vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
125 vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
126 vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
127
128 vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
129 vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
130 vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
131 vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
132 vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
133 vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
134 vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
135 vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
136 vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
137
138 vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
139 vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
140 vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
141 vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
142 vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
143 vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
144 vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
145 vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
146 vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
147
148 // Reconstruct the final f value:
149 // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
150 // = 2**elements * p
151 const __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
152 const __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
153 const __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
154 const __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
155 const __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
156 const __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
157 const __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
158 const __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
159 const __m512 vf8 = _mm512_scalef_ps(vp8, vn8);
160
161 // Accumulate computed exponents.
162 vacc0 = _mm512_add_ps(vacc0, vf0);
163 vacc0 = _mm512_add_ps(vacc0, vf1);
164 vacc0 = _mm512_add_ps(vacc0, vf2);
165 vacc0 = _mm512_add_ps(vacc0, vf3);
166 vacc0 = _mm512_add_ps(vacc0, vf4);
167 vacc0 = _mm512_add_ps(vacc0, vf5);
168 vacc0 = _mm512_add_ps(vacc0, vf6);
169 vacc0 = _mm512_add_ps(vacc0, vf7);
170 vacc0 = _mm512_add_ps(vacc0, vf8);
171 }
172
173 __m512 vacc = vacc0;
174 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
175 // Load 16 inputs at a time.
176 const __m512 vi = _mm512_loadu_ps(input);
177 input += 16;
178
179 // Subtract maximum input x := i - i_max.
180 const __m512 vx = _mm512_sub_ps(vi, vi_max);
181
182 // Compute reduced argument elements := round(x / log(2)).
183 const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
184
185 // Compute reduced argument t := x - elements * log(2).
186 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
187 __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
188 vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
189
190 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
191 __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
192 vp = _mm512_fmadd_ps(vp, vt, vc3);
193 vp = _mm512_fmadd_ps(vp, vt, vc2);
194 vp = _mm512_fmadd_ps(vp, vt, vc1);
195 vp = _mm512_fmadd_ps(vp, vt, vc0);
196
197 // Reconstruct the final f value:
198 // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
199 // = 2**elements * p
200 const __m512 vf = _mm512_scalef_ps(vp, vn);
201
202 // Accumulate computed exponents.
203 vacc = _mm512_add_ps(vacc, vf);
204 }
205 if (elements != 0) {
206 // Prepare mask for valid 32-bit elements (depends on elements).
207 elements >>= 2 /* log2(sizeof(float)) */;
208 const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
209
210 // Load up to 15 inputs at a time.
211 const __m512 vi = _mm512_maskz_loadu_ps(vmask, input);
212
213 // Subtract maximum input x := i - i_max.
214 const __m512 vx = _mm512_sub_ps(vi, vi_max);
215
216 // Compute reduced argument elements := round(x / log(2)).
217 const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
218
219 // Compute reduced argument t := x - elements * log(2).
220 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
221 __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
222 vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
223
224 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
225 __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
226 vp = _mm512_fmadd_ps(vp, vt, vc3);
227 vp = _mm512_fmadd_ps(vp, vt, vc2);
228 vp = _mm512_fmadd_ps(vp, vt, vc1);
229 vp = _mm512_fmadd_ps(vp, vt, vc0);
230
231 // Reconstruct the final f value:
232 // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
233 // = 2**elements * p
234 const __m512 vf = _mm512_scalef_ps(vp, vn);
235
236 // Accumulate computed exponents.
237 vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf);
238 }
239 *sum = _mm512_reduce_add_ps(vacc);
240 }
241