xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClPool2dKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClPool2dKernel.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
29 #include "src/core/CL/CLValidate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/Cast.h"
33 
34 namespace arm_compute
35 {
36 namespace opencl
37 {
38 namespace kernels
39 {
40 using namespace arm_compute::misc::shape_calculator;
41 
42 namespace
43 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * dst,const PoolingLayerInfo & pool_info,const ITensorInfo * indices)44 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
45 {
46     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
47     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
48     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
49     ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(src->data_type()) && pool_info.pool_type == PoolingType::L2),
50                                     "Unsupported combination of parameters!");
51 
52     const auto   data_layout       = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
53     const int    idx_width         = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
54     const int    idx_height        = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
55     const bool   is_global_pooling = pool_info.is_global_pooling;
56     unsigned int pool_size_x       = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
57     unsigned int pool_size_y       = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
58     int          output_width      = 0;
59     int          output_height     = 0;
60 
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_pool_region_entirely_outside_input(pool_info), "Pooling region that is entirely outside input tensor is unsupported");
62 
63     std::tie(output_width, output_height) = scaled_dimensions_signed(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height],
64                                                                      pool_size_x, pool_size_y, pool_info.pad_stride_info);
65     ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_width < 1 || output_height < 1), "Calculated output dimension size is invalid");
66 
67     // Check indices
68     if(indices)
69     {
70         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
71         ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
72         ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
73 
74         if(indices->total_size() != 0)
75         {
76             TensorInfo idx_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, DataType::U32));
77             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &idx_info);
78         }
79     }
80 
81     // Checks performed when dst is configured
82     if(dst->total_size() != 0)
83     {
84         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
85         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
86         TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type()));
87         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info);
88     }
89 
90     return Status{};
91 }
92 } // namespace
93 
ClPool2dKernel()94 ClPool2dKernel::ClPool2dKernel()
95 {
96     _type = CLKernelType::POOL;
97 }
98 
configure(const ClCompileContext & compile_context,ITensorInfo * src,ITensorInfo * dst,const PoolingLayerInfo & pool_info,ITensorInfo * indices)99 void ClPool2dKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
100 {
101     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
102     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices));
103 
104     auto padding_info = get_padding_info({ src, dst, indices });
105 
106     // Auto init if empty
107     TensorShape out_shape = compute_pool_shape(*src, pool_info);
108     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
109     if(indices)
110     {
111         auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
112     }
113 
114     // Set instance variables
115     _pool_info                         = pool_info;
116     _data_layout                       = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
117     _num_elems_processed_per_iteration = (_data_layout == DataLayout::NCHW) ? 1 : ((dst->data_type() == DataType::F32) ? 2 : 4);
118     _num_elems_processed_per_iteration = adjust_vec_size(_num_elems_processed_per_iteration, dst->dimension(0));
119 
120     int                 pool_stride_x   = 0;
121     int                 pool_stride_y   = 0;
122     const PoolingType   pool_type       = pool_info.pool_type;
123     const int           idx_width       = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
124     const int           idx_height      = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
125     const int           idx_channel     = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
126     const int           idx_batch_size  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES);
127     const int           pool_size_x     = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
128     const int           pool_size_y     = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
129     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
130     const bool          exclude_padding = pool_info.exclude_padding;
131     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
132     const int      pool_pad_top  = pad_stride_info.pad_top();
133     const int      pool_pad_left = pad_stride_info.pad_left();
134     const DataType data_type     = src->data_type();
135 
136     // Set build options
137     CLBuildOptions build_opts;
138     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
139     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
140     build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
141     build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
142     build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
143     build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left));
144     build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
145     build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
146     build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
147     build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
148     build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
149     build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
150     build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
151 
152     // Tensor paddings are used to calculate the indicies for MAX pooling
153     if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
154     {
155         build_opts.add_option("-DSRC_BATCH=" + support::cpp11::to_string(src->tensor_shape().total_size_lower(3)));
156     }
157 
158     if(is_data_type_quantized_asymmetric(data_type))
159     {
160         build_opts.add_option("-DQUANTIZED");
161 
162         if(src->quantization_info() != dst->quantization_info())
163         {
164             const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
165             const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
166 
167             build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
168             build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
169             build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
170             build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
171         }
172     }
173 
174     // Set the initial value for the pooling operation accordingly with the data type
175     if(pool_type == PoolingType::MAX)
176     {
177         if(is_data_type_quantized(data_type))
178         {
179             PixelValue type_min{};
180             std::tie(type_min, std::ignore) = get_min_max(data_type);
181             build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get<int32_t>()));
182         }
183         else
184         {
185             build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits<float>::lowest()));
186         }
187     }
188     else
189     {
190         // Pool AVG and Pool L2 initial value
191         build_opts.add_option("-DINITIAL_VALUE=0");
192     }
193 
194     // Create kernel
195     switch(_data_layout)
196     {
197         case DataLayout::NCHW:
198         {
199             const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision;
200             const auto use_wider_accumulator  = use_fp_mixed_precision && (pool_type != PoolingType::MAX);
201             const auto acc_data_type          = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : (is_data_type_quantized(data_type) ? DataType::S32 : data_type));
202             build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type);
203             build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION");
204 
205             if(pool_type != PoolingType::MAX)
206             {
207                 build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
208             }
209 
210             if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
211             {
212                 // For max pooling with pool2x2, store indicies which will be used in max unpooling
213                 std::string kernel_name = "pooling_layer_2_nchw_indices";
214                 _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
215             }
216             else // Run general case
217             {
218                 std::string kernel_name = "pooling_layer_MxN_nchw";
219                 _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
220             }
221             break;
222         }
223         case DataLayout::NHWC:
224         {
225             // Floating point mixed precision is support on F16 only
226             const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX;
227 
228             // Wider accumulation is required to avoid accuracy loss
229             // Case 1: Floating point mixed precision (fp16 src data and fp32 accumulation)
230             // Cast 2: Quantized (int8/uint8 src data and int32 accumulation )
231             DataType acc_data_type = data_type;
232 
233             if(use_fp_mixed_precision)
234             {
235                 acc_data_type = DataType::F32;
236             }
237             else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX)
238             {
239                 acc_data_type = DataType::S32;
240             }
241 
242             build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type));
243             build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION");
244             build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
245             build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
246             build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
247             build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height)));
248             build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(idx_channel)));
249             build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(dst->dimension(idx_batch_size)));
250             build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % _num_elems_processed_per_iteration));
251             if(pool_info.pool_size == Size2D(2, 2) && is_data_type_float(data_type))
252             {
253                 build_opts.add_option_if(indices != nullptr && pool_type == PoolingType::MAX, "-DEXTRACT_MAX_INDEX");
254 
255                 std::string kernel_name = "pooling_layer_2x2_nhwc";
256                 _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
257             }
258             else
259             {
260                 std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nhwc" : "pooling_layer_MxN_nhwc";
261                 _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
262             }
263             break;
264         }
265         default:
266             ARM_COMPUTE_ERROR("Not implemented");
267     }
268 
269     // Configure kernel window
270     Window win = calculate_max_window(*dst, Steps(_num_elems_processed_per_iteration));
271     ICLKernel::configure_internal(win);
272 
273     // Set config_id for enabling LWS tuning
274     _config_id = "pooling_layer_";
275     _config_id += lower_string(string_from_data_type(data_type));
276     _config_id += "_";
277     _config_id += lower_string(string_from_data_layout(_data_layout));
278     _config_id += "_";
279     _config_id += support::cpp11::to_string(dst->dimension(idx_width));
280     _config_id += "_";
281     _config_id += support::cpp11::to_string(dst->dimension(idx_height));
282     _config_id += "_";
283     _config_id += support::cpp11::to_string(dst->dimension(idx_channel));
284     _config_id += "_";
285     _config_id += lower_string(string_from_data_layout(src->data_layout()));
286 
287     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
288 }
289 
validate(const ITensorInfo * src,const ITensorInfo * dst,const PoolingLayerInfo & pool_info,const ITensorInfo * indices)290 Status ClPool2dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
291 {
292     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices));
293     return Status{};
294 }
295 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)296 void ClPool2dKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
297 {
298     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
299     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
300 
301     unsigned int pool_stride_x = 0;
302     unsigned int pool_stride_y = 0;
303     std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
304 
305     const auto src     = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
306     auto       dst     = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_0));
307     auto       indices = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_1));
308 
309     // Collapse window
310     Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
311 
312     switch(_data_layout)
313     {
314         case DataLayout::NCHW:
315         {
316             Window slice = window_collapsed.first_slice_window_3D();
317             do
318             {
319                 // Set srcs
320                 unsigned int idx = 0;
321                 add_3D_tensor_argument(idx, src, slice);
322                 add_3D_tensor_argument(idx, dst, slice);
323                 if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2)))
324                 {
325                     add_3D_tensor_argument(idx, indices, slice);
326                 }
327                 enqueue(queue, *this, slice, lws_hint());
328             }
329             while(window_collapsed.slide_window_slice_3D(slice));
330             break;
331         }
332         case DataLayout::NHWC:
333         {
334             const size_t batch_size = dst->info()->tensor_shape().total_size_upper(3);
335 
336             Window slice    = window_collapsed.first_slice_window_4D();
337             Window in_slice = window_collapsed.first_slice_window_4D();
338             in_slice.set(Window::DimX, Window::Dimension(0, src->info()->dimension(0), _num_elems_processed_per_iteration));
339             in_slice.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x));
340             in_slice.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y));
341             in_slice.set(3, Window::Dimension(0, batch_size, 1));
342             do
343             {
344                 // Set srcs
345                 unsigned int idx = 0;
346                 add_4D_tensor_argument(idx, src, in_slice);
347                 add_4D_tensor_argument(idx, dst, slice);
348                 if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_type == PoolingType::MAX) && (_pool_info.pool_size == Size2D(2, 2)))
349                 {
350                     add_4D_tensor_argument(idx, indices, slice);
351                 }
352                 enqueue(queue, *this, slice, lws_hint());
353             }
354             while(window.slide_window_slice_4D(slice) && window.slide_window_slice_4D(in_slice));
355             break;
356         }
357         default:
358             ARM_COMPUTE_ERROR("Not implemented");
359     }
360 }
361 } // namespace kernels
362 } // namespace opencl
363 } // namespace arm_compute
364