xref: /aosp_15_r20/external/skia/src/gpu/tessellate/Tessellation.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2021 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef skgpu_tessellate_Tessellation_DEFINED
9 #define skgpu_tessellate_Tessellation_DEFINED
10 
11 #include "include/core/SkPaint.h"
12 #include "include/core/SkPoint.h"
13 #include "include/core/SkStrokeRec.h"
14 #include "include/private/base/SkAssert.h"
15 #include "include/private/base/SkMacros.h"
16 
17 #include <math.h>
18 #include <algorithm>
19 #include <cstddef>
20 #include <cstdint>
21 
22 class SkMatrix;
23 class SkPath;
24 struct SkRect;
25 
26 namespace skgpu::tess {
27 
28 // Don't allow linearized segments to be off by more than 1/4th of a pixel from the true curve.
29 constexpr static float kPrecision = 4;
30 
31 // This is the maximum number of subdivisions of a Bezier curve that can be represented in the fixed
32 // count vertex and index buffers. If rendering a curve that requires more subdivisions, it must be
33 // chopped.
34 constexpr static int kMaxResolveLevel = 5;
35 
36 // This is the maximum number of parametric segments (linear sections) that a curve can be split
37 // into. This is the same for path filling and stroking, although fixed-count stroking also uses
38 // additional vertices to handle radial segments, joins, and caps. Additionally the fixed-count
39 // path filling algorithms snap their dynamic vertex counts to powers-of-two, whereas the stroking
40 // algorithm does not.
41 constexpr static int kMaxParametricSegments = 1 << kMaxResolveLevel;
42 constexpr static int kMaxParametricSegments_p2 = kMaxParametricSegments * kMaxParametricSegments;
43 constexpr static int kMaxParametricSegments_p4 = kMaxParametricSegments_p2 *
44                                                  kMaxParametricSegments_p2;
45 
46 // Don't tessellate paths that might have an individual curve that requires more than 1024 segments.
47 // (See wangs_formula::worst_case_cubic). If this is the case, call "PreChopPathCurves" first.
48 // Standard chopping, when Wang's formula is between kMaxParametricSegments and
49 // kMaxTessellationSegmentsPerCurve is handled automatically by PatchWriter. It differs from
50 // PreChopPathCurves in that it does no culling of offscreen chopped paths.
51 constexpr static float kMaxSegmentsPerCurve = 1024;
52 constexpr static float kMaxSegmentsPerCurve_p2 = kMaxSegmentsPerCurve * kMaxSegmentsPerCurve;
53 constexpr static float kMaxSegmentsPerCurve_p4 = kMaxSegmentsPerCurve_p2 * kMaxSegmentsPerCurve_p2;
54 
55 // Returns a new path, equivalent to 'path' within the given viewport, whose verbs can all be drawn
56 // with 'maxSegments' tessellation segments or fewer, while staying within '1/tessellationPrecision'
57 // pixels of the true curve. Curves and chops that fall completely outside the viewport are
58 // flattened into lines.
59 SkPath PreChopPathCurves(float tessellationPrecision,
60                          const SkPath&,
61                          const SkMatrix&,
62                          const SkRect& viewport);
63 
64 // How many triangles are in a curve with 2^resolveLevel line segments?
65 // Resolve level defines the tessellation factor for filled paths drawn using curves or wedges.
NumCurveTrianglesAtResolveLevel(int resolveLevel)66 constexpr static int NumCurveTrianglesAtResolveLevel(int resolveLevel) {
67     // resolveLevel=0 -> 0 line segments -> 0 triangles
68     // resolveLevel=1 -> 2 line segments -> 1 triangle
69     // resolveLevel=2 -> 4 line segments -> 3 triangles
70     // resolveLevel=3 -> 8 line segments -> 7 triangles
71     // ...
72     return (1 << resolveLevel) - 1;
73 }
74 
75 // Optional attribs that are included in tessellation patches, following the control points and in
76 // the same order as they appear here.
77 enum class PatchAttribs {
78     // Attribs.
79     kNone = 0,
80     kJoinControlPoint = 1 << 0, // [float2] Used by strokes. This defines tangent direction.
81     kFanPoint = 1 << 1,  // [float2] Used by wedges. This is the center point the wedges fan around.
82     kStrokeParams = 1 << 2,  // [float2] Used when strokes have different widths or join types.
83     kColor = 1 << 3,  // [ubyte4 or float4] Used when patches have different colors.
84     kPaintDepth = 1 << 4, // [float] Used in Graphite to specify depth attachment value for draw.
85     kExplicitCurveType = 1 << 5,  // [float] Used when GPU can't infer curve type based on infinity.
86     kSsboIndex = 1 << 7,  // [int] Used to index into a shared storage buffer for this patch's
87                           //       uniform values.
88 
89     // Extra flags.
90     kWideColorIfEnabled = 1 << 6,  // If kColor is set, specifies it to be float4 wide color.
91 };
92 
93 SK_MAKE_BITFIELD_CLASS_OPS(PatchAttribs)
94 
95 // When PatchAttribs::kExplicitCurveType is set, these are the values that tell the GPU what type of
96 // curve is being drawn.
97 constexpr static float kCubicCurveType [[maybe_unused]] = 0;
98 constexpr static float kConicCurveType [[maybe_unused]] = 1;
99 constexpr static float kTriangularConicCurveType [[maybe_unused]] = 2;  // Conic curve with w=Inf.
100 
101 // Returns the packed size in bytes of the attribs portion of tessellation patches (or instances) in
102 // GPU buffers.
PatchAttribsStride(PatchAttribs attribs)103 constexpr size_t PatchAttribsStride(PatchAttribs attribs) {
104     return (attribs & PatchAttribs::kJoinControlPoint ? sizeof(float) * 2 : 0) +
105            (attribs & PatchAttribs::kFanPoint ? sizeof(float) * 2 : 0) +
106            (attribs & PatchAttribs::kStrokeParams ? sizeof(float) * 2 : 0) +
107            (attribs & PatchAttribs::kColor
108                     ? (attribs & PatchAttribs::kWideColorIfEnabled ? sizeof(float)
109                                                                    : sizeof(uint8_t)) * 4 : 0) +
110            (attribs & PatchAttribs::kPaintDepth ? sizeof(float) : 0) +
111            (attribs & PatchAttribs::kExplicitCurveType ? sizeof(float) : 0) +
112            (attribs & PatchAttribs::kSsboIndex ? (sizeof(uint32_t) * 2) : 0);
113 }
PatchStride(PatchAttribs attribs)114 constexpr size_t PatchStride(PatchAttribs attribs) {
115     return 4*sizeof(SkPoint) + PatchAttribsStride(attribs);
116 }
117 
118 // Finds 0, 1, or 2 T values at which to chop the given curve in order to guarantee the resulting
119 // cubics are convex and rotate no more than 180 degrees.
120 //
121 //   - If the cubic is "serpentine", then the T values are any inflection points in [0 < T < 1].
122 //   - If the cubic is linear, then the T values are any 180-degree cusp points in [0 < T < 1].
123 //   - Otherwise the T value is the point at which rotation reaches 180 degrees, iff in [0 < T < 1].
124 //
125 // 'areCusps' is set to true if the chop point occurred at a cusp (within tolerance), or if the chop
126 // point(s) occurred at 180-degree turnaround points on a degenerate flat line.
127 int FindCubicConvex180Chops(const SkPoint[], float T[2], bool* areCusps);
128 
129 // Returns true if the given conic (or quadratic) has a cusp point. The w value is not necessary in
130 // determining this. If there is a cusp, it can be found at the midtangent.
ConicHasCusp(const SkPoint p[3])131 inline bool ConicHasCusp(const SkPoint p[3]) {
132     SkVector a = p[1] - p[0];
133     SkVector b = p[2] - p[1];
134     // A conic of any class can only have a cusp if it is a degenerate flat line with a 180 degree
135     // turnarund. To detect this, the beginning and ending tangents must be parallel
136     // (a.cross(b) == 0) and pointing in opposite directions (a.dot(b) < 0).
137     return a.cross(b) == 0 && a.dot(b) < 0;
138 }
139 
140 // We encode all of a join's information in a single float value:
141 //
142 //     Negative => Round Join
143 //     Zero     => Bevel Join
144 //     Positive => Miter join, and the value is also the miter limit
145 //
GetJoinType(const SkStrokeRec & stroke)146 inline float GetJoinType(const SkStrokeRec& stroke) {
147     switch (stroke.getJoin()) {
148         case SkPaint::kRound_Join: return -1;
149         case SkPaint::kBevel_Join: return 0;
150         case SkPaint::kMiter_Join: SkASSERT(stroke.getMiter() >= 0); return stroke.getMiter();
151     }
152     SkUNREACHABLE;
153 }
154 
155 // This float2 gets written out with each patch/instance if PatchAttribs::kStrokeParams is enabled.
156 struct StrokeParams {
157     StrokeParams() = default;
StrokeParamsStrokeParams158     StrokeParams(float radius, float joinType) : fRadius(radius), fJoinType(joinType) {}
StrokeParamsStrokeParams159     StrokeParams(const SkStrokeRec& stroke) {
160         this->set(stroke);
161     }
setStrokeParams162     void set(const SkStrokeRec& stroke) {
163         fRadius = stroke.getWidth() * .5f;
164         fJoinType = GetJoinType(stroke);
165     }
166 
167     float fRadius;
168     float fJoinType;  // See GetJoinType().
169 };
170 
StrokesHaveEqualParams(const SkStrokeRec & a,const SkStrokeRec & b)171 inline bool StrokesHaveEqualParams(const SkStrokeRec& a, const SkStrokeRec& b) {
172     return a.getWidth() == b.getWidth() && a.getJoin() == b.getJoin() &&
173             (a.getJoin() != SkPaint::kMiter_Join || a.getMiter() == b.getMiter());
174 }
175 
176 // Returns the fixed number of edges that are always emitted with the given join type. If the
177 // join is round, the caller needs to account for the additional radial edges on their own.
178 // Specifically, each join always emits:
179 //
180 //   * Two colocated edges at the beginning (a full-width edge to seam with the preceding stroke
181 //     and a half-width edge to begin the join).
182 //
183 //   * An extra edge in the middle for miter joins, or else a variable number of radial edges
184 //     for round joins (the caller is responsible for counting radial edges from round joins).
185 //
186 //   * A half-width edge at the end of the join that will be colocated with the first
187 //     (full-width) edge of the stroke.
188 //
NumFixedEdgesInJoin(SkPaint::Join joinType)189 constexpr int NumFixedEdgesInJoin(SkPaint::Join joinType) {
190     switch (joinType) {
191         case SkPaint::kMiter_Join:
192             return 4;
193         case SkPaint::kRound_Join:
194             // The caller is responsible for counting the variable number of middle, radial
195             // segments on round joins.
196             [[fallthrough]];
197         case SkPaint::kBevel_Join:
198             return 3;
199     }
200     SkUNREACHABLE;
201 }
NumFixedEdgesInJoin(const StrokeParams & strokeParams)202 constexpr int NumFixedEdgesInJoin(const StrokeParams& strokeParams) {
203     // The caller is responsible for counting the variable number of segments for round joins.
204     return strokeParams.fJoinType > 0.f ? /* miter */ 4 : /* round or bevel */ 3;
205 }
206 
207 // Decides the number of radial segments the tessellator adds for each curve. (Uniform steps
208 // in tangent angle.) The tessellator will add this number of radial segments for each
209 // radian of rotation in local path space.
CalcNumRadialSegmentsPerRadian(float approxDevStrokeRadius)210 inline float CalcNumRadialSegmentsPerRadian(float approxDevStrokeRadius) {
211     float cosTheta = 1.f - (1.f / kPrecision) / approxDevStrokeRadius;
212     return .5f / acosf(std::max(cosTheta, -1.f));
213 }
214 
215 }  // namespace skgpu::tess
216 
217 #endif  // skgpu_tessellate_Tessellation_DEFINED
218