xref: /aosp_15_r20/external/XNNPACK/src/math/sigmoid-f16-avx2-rr1-p2-div.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f16_sigmoid__avx2_rr1_p2_div(size_t n,const void * input,void * output)14 void xnn_math_f16_sigmoid__avx2_rr1_p2_div(
15     size_t n,
16     const void* input,
17     void* output)
18 {
19   assert(n % (8 * sizeof(uint16_t)) == 0);
20 
21   // Floating-point mask with only the sign bit set
22   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
23   // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
24   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
25   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
26   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
27   // Coefficient of polynomial approximation of
28   // exp(t) ~ 1 + t * (c1 + t * c2) on [-log(2)/2, log(2)/2]
29   const __m256 vc2 = _mm256_set1_ps(0x1.FF3A32p-2f);
30   const __m256 vc1 = _mm256_set1_ps(0x1.039E10p+0f);
31   const __m256 vone = _mm256_set1_ps(1.0f);
32   // The smallest x for which sigmoidh(x) is normalized.
33   // This number is also the smallest x for which exph(x) is normalized.
34   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.368000p+3f);
35 
36   const uint16_t* i = (const uint16_t*) input;
37   uint16_t* o = (uint16_t*) output;
38   for (; n != 0; n -= 8 * sizeof(uint16_t)) {
39     const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
40     i += 8;
41 
42     // General structure of the algorithm:
43     //
44     //           / exp(x) / (1 + exp(x)) if x <= 0
45     //   f[x] :=
46     //           \ 1 - f[-x] if x >= 0
47     //
48     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
49     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
50 
51     // Compute reduced argument n := round(z / log(2)).
52     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the
53     // result to an integer, then subtracing the large number back. The first addition is combined with multiplication
54     // by log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds
55     // (|x / log(2)| <= 2**9, i.e. |z| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs x outside
56     // of [-9.703125, 8.3125] (i.e. z outside [9.703125, 0]) underflow or saturate sigmoidh(x). We fixup the result for
57     // such inputs at the very end of the algorithm.
58     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
59 
60     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
61     // -9.703125 <= z <= 0.0, and -14 <= n <= 0 accordingly.
62     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
63 
64     // Subtract the large number back to get the final n := round(z / log(2)) as a floating-point number.
65     vn = _mm256_sub_ps(vn, vmagic_bias);
66 
67     // Compute reduced argument t := z - n * log(2).
68     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
69     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
70 
71     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
72     //   P(t) = 1 + t * (c1 + t * c2) = 1 + t * p
73     const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
74 
75     // Reconstruct the exp(z) value:
76     //   e = s * (1 + t * (c1 + t * c2))
77     //     = s + (t * s) * (c1 + t * c2)
78     //     = s + (t * s) * p
79     vt = _mm256_mul_ps(vt, vs);
80     const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
81 
82     // Denominator of the sigmoid fraction: 1.0 + exp(z)
83     const __m256 vd = _mm256_add_ps(ve, vone);
84 
85     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
86     __m256 vf = _mm256_div_ps(ve, vd);
87 
88     // For inputs below denormal cutoff, replace output with +0.0f.
89     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
90     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
91 
92     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
93     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
94 
95     _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC));
96     o += 8;
97   }
98 }
99