xref: /aosp_15_r20/external/XNNPACK/src/qs8-vcvt/wasmsimd.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2022 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE >= 8
7$assert BATCH_TILE == 8 or BATCH_TILE % 16 == 0
8$SIMD_TILE = BATCH_TILE // 16
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/vcvt.h>
16
17
18$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
19$WASM_X16X8_LOAD8X8 = {"QS8": "wasm_i16x8_load8x8", "QU8": "wasm_u16x8_load8x8"}[DATATYPE]
20$WASM_I16X8_Q15MULR = "__builtin_wasm_relaxed_q15mulr_s_i16x8" if RELAXED else "wasm_i16x8_q15mulr_sat"
21$WASM_X8X16_NARROW_I16X8 = {"QS8": "wasm_i8x16_narrow_i16x8", "QU8": "wasm_u8x16_narrow_i16x8"}[DATATYPE]
22$ISA = "wasmrelaxedsimd" if RELAXED else "wasmsimd"
23void xnn_${DATATYPE.lower()}_vcvt_ukernel__${ISA}_x${BATCH_TILE}(
24    size_t n,
25    const ${XINT8_T}* x,
26    ${XINT8_T}* y,
27    const union xnn_${DATATYPE.lower()}_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
28{
29  assert(n != 0);
30  assert(n % sizeof(${XINT8_T}) == 0);
31  assert(x != NULL);
32  assert(y != NULL);
33
34  const v128_t vinput_zero_point = wasm_v128_load64_splat(params->wasmsimd.input_zero_point);
35  const v128_t vmultiplier = wasm_v128_load64_splat(params->wasmsimd.multiplier);
36  const v128_t voutput_zero_point = wasm_v128_load64_splat(params->wasmsimd.output_zero_point);
37  $if BATCH_TILE > 8:
38    for (; n >= ${BATCH_TILE} * sizeof(${XINT8_T}); n -= ${BATCH_TILE} * sizeof(${XINT8_T})) {
39      v128_t vacc${ABC[0]} = ${WASM_X16X8_LOAD8X8}(x);
40      $for N in range(1, 2*SIMD_TILE):
41        v128_t vacc${ABC[N]} = ${WASM_X16X8_LOAD8X8}(x + ${N * 8});
42      x += ${BATCH_TILE};
43
44      $for N in range(2*SIMD_TILE):
45        vacc${ABC[N]} = wasm_i16x8_sub(vinput_zero_point, vacc${ABC[N]});
46
47      $for N in range(2*SIMD_TILE):
48        vacc${ABC[N]} = wasm_i16x8_shl(vacc${ABC[N]}, 7);
49
50      $for N in range(2*SIMD_TILE):
51        vacc${ABC[N]} = ${WASM_I16X8_Q15MULR}(vacc${ABC[N]}, vmultiplier);
52
53      $for N in range(2*SIMD_TILE):
54        vacc${ABC[N]} = wasm_i16x8_add_sat(vacc${ABC[N]}, voutput_zero_point);
55
56      $for N in range(SIMD_TILE):
57        const v128_t vy${ABC[N]} = ${WASM_X8X16_NARROW_I16X8}(vacc${ABC[2*N]}, vacc${ABC[2*N+1]});
58
59      wasm_v128_store(y, vy${ABC[0]});
60      $for N in range(1, SIMD_TILE):
61        wasm_v128_store((y + ${N * 16}), vy${ABC[N]});
62      y += ${BATCH_TILE};
63    }
64  for (; n >= 8 * sizeof(${XINT8_T}); n -= 8 * sizeof(${XINT8_T})) {
65    v128_t vacc = ${WASM_X16X8_LOAD8X8}(x);
66    vacc = wasm_i16x8_sub(vinput_zero_point, vacc);
67    vacc = wasm_i16x8_shl(vacc, 7);
68    vacc = ${WASM_I16X8_Q15MULR}(vacc, vmultiplier);
69    vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point);
70    x += 8;
71
72    const v128_t vy = ${WASM_X8X16_NARROW_I16X8}(vacc, vacc);
73    wasm_v128_store64_lane(y, vy, 0);
74    y += 8;
75  }
76  if XNN_UNLIKELY(n != 0) {
77    assert(n >= 1 * sizeof(${XINT8_T}));
78    assert(n <= 7 * sizeof(${XINT8_T}));
79
80    v128_t vacc = ${WASM_X16X8_LOAD8X8}(x);
81    vacc = wasm_i16x8_sub(vinput_zero_point, vacc);
82    vacc = wasm_i16x8_shl(vacc, 7);
83    vacc = ${WASM_I16X8_Q15MULR}(vacc, vmultiplier);
84    vacc = wasm_i16x8_add_sat(vacc, voutput_zero_point);
85
86    v128_t vy = ${WASM_X8X16_NARROW_I16X8}(vacc, vacc);
87    if (n & (4 * sizeof(${XINT8_T}))) {
88      wasm_v128_store32_lane(y, vy, 0);
89      vy = wasm_u64x2_shr(vy, 32);
90      y += 4;
91    }
92    if (n & (2 * sizeof(${XINT8_T}))) {
93      wasm_v128_store16_lane(y, vy, 0);
94      vy = wasm_u32x4_shr(vy, 16);
95      y += 2;
96    }
97    if (n & (1 * sizeof(${XINT8_T}))) {
98      wasm_v128_store8_lane(y, vy, 0);
99    }
100  }
101}
102