xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLFFT1D.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLFFT1D.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/runtime/CL/CLScheduler.h"
29 #include "src/core/CL/kernels/CLFFTDigitReverseKernel.h"
30 #include "src/core/CL/kernels/CLFFTRadixStageKernel.h"
31 #include "src/core/CL/kernels/CLFFTScaleKernel.h"
32 #include "src/core/utils/helpers/fft.h"
33 
34 #include "src/common/utils/Log.h"
35 
36 namespace arm_compute
37 {
CLFFT1D(std::shared_ptr<IMemoryManager> memory_manager)38 CLFFT1D::CLFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
39     : _memory_group(std::move(memory_manager)),
40       _digit_reverse_kernel(std::make_unique<CLFFTDigitReverseKernel>()),
41       _fft_kernels(),
42       _scale_kernel(std::make_unique<CLFFTScaleKernel>()),
43       _digit_reversed_input(),
44       _digit_reverse_indices(),
45       _num_ffts(0),
46       _run_scale(false)
47 {
48 }
49 
50 CLFFT1D::~CLFFT1D() = default;
51 
configure(const ICLTensor * input,ICLTensor * output,const FFT1DInfo & config)52 void CLFFT1D::configure(const ICLTensor *input, ICLTensor *output, const FFT1DInfo &config)
53 {
54     configure(CLKernelLibrary::get().get_compile_context(), input, output, config);
55 }
56 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * output,const FFT1DInfo & config)57 void CLFFT1D::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const FFT1DInfo &config)
58 {
59     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
60     ARM_COMPUTE_ERROR_THROW_ON(CLFFT1D::validate(input->info(), output->info(), config));
61     ARM_COMPUTE_LOG_PARAMS(input, output, config);
62 
63     // Decompose size to radix factors
64     const auto         supported_radix   = CLFFTRadixStageKernel::supported_radix();
65     const unsigned int N                 = input->info()->tensor_shape()[config.axis];
66     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
67     ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
68 
69     // Flags
70     _run_scale        = config.direction == FFTDirection::Inverse;
71     const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
72 
73     // Configure digit reverse
74     FFTDigitReverseKernelInfo digit_reverse_config;
75     digit_reverse_config.axis      = config.axis;
76     digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
77     TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
78     _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
79     _memory_group.manage(&_digit_reversed_input);
80     _digit_reverse_kernel->configure(compile_context, input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
81 
82     // Create and configure FFT kernels
83     unsigned int Nx = 1;
84     _num_ffts       = decomposed_vector.size();
85     _fft_kernels.reserve(_num_ffts);
86     for(unsigned int i = 0; i < _num_ffts; ++i)
87     {
88         const unsigned int radix_for_stage = decomposed_vector.at(i);
89 
90         FFTRadixStageKernelInfo fft_kernel_info;
91         fft_kernel_info.axis           = config.axis;
92         fft_kernel_info.radix          = radix_for_stage;
93         fft_kernel_info.Nx             = Nx;
94         fft_kernel_info.is_first_stage = (i == 0);
95         _fft_kernels.emplace_back(std::make_unique<CLFFTRadixStageKernel>());
96         _fft_kernels.back()->configure(compile_context, &_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
97 
98         Nx *= radix_for_stage;
99     }
100 
101     // Configure scale kernel
102     if(_run_scale)
103     {
104         FFTScaleKernelInfo scale_config;
105         scale_config.scale     = static_cast<float>(N);
106         scale_config.conjugate = config.direction == FFTDirection::Inverse;
107         is_c2r ? _scale_kernel->configure(compile_context, &_digit_reversed_input, output, scale_config) : _scale_kernel->configure(output, nullptr, scale_config);
108     }
109 
110     // Allocate tensors
111     _digit_reversed_input.allocator()->allocate();
112     _digit_reverse_indices.allocator()->allocate();
113 
114     // Init digit reverse indices
115     const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
116     _digit_reverse_indices.map(CLScheduler::get().queue(), true);
117     std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
118     _digit_reverse_indices.unmap(CLScheduler::get().queue());
119 }
120 
validate(const ITensorInfo * input,const ITensorInfo * output,const FFT1DInfo & config)121 Status CLFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
122 {
123     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
124     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
125     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() != 1 && input->num_channels() != 2);
126     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
127 
128     // Check if FFT is decomposable
129     const auto         supported_radix   = CLFFTRadixStageKernel::supported_radix();
130     const unsigned int N                 = input->tensor_shape()[config.axis];
131     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
132     ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
133 
134     // Checks performed when output is configured
135     if((output != nullptr) && (output->total_size() != 0))
136     {
137         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
138         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 1 && output->num_channels() != 2);
139         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
140         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
141     }
142 
143     return Status{};
144 }
145 
run()146 void CLFFT1D::run()
147 {
148     MemoryGroupResourceScope scope_mg(_memory_group);
149 
150     // Run digit reverse
151     CLScheduler::get().enqueue(*_digit_reverse_kernel, false);
152 
153     // Run radix kernels
154     for(unsigned int i = 0; i < _num_ffts; ++i)
155     {
156         CLScheduler::get().enqueue(*_fft_kernels[i], i == (_num_ffts - 1) && !_run_scale);
157     }
158 
159     // Run output scaling
160     if(_run_scale)
161     {
162         CLScheduler::get().enqueue(*_scale_kernel, true);
163     }
164 }
165 } // namespace arm_compute
166