xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLReduceMean.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLReduceMean.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "src/core/CL/CLValidate.h"
31 #include "src/core/CL/kernels/CLFillBorderKernel.h"
32 #include "src/core/CL/kernels/CLReductionOperationKernel.h"
33 #include "src/core/helpers/AutoConfiguration.h"
34 
35 #include "src/common/utils/Log.h"
36 
37 namespace arm_compute
38 {
39 namespace
40 {
validate_config(const ITensorInfo * input,const Coordinates & reduction_axis,bool keep_dims,const ITensorInfo * output)41 Status validate_config(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
42 {
43     ARM_COMPUTE_UNUSED(keep_dims);
44     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
45     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
46     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
47     ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() < 1);
48     ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() > input->num_dimensions());
49 
50     const unsigned int reduction_ops = reduction_axis.num_dimensions();
51     const int          input_dims    = input->num_dimensions();
52     Coordinates        axis_local    = reduction_axis;
53 
54     for(unsigned int i = 0; i < axis_local.num_dimensions(); ++i)
55     {
56         //axis: The dimensions to reduce. Must be in the range [-rank(input_tensor), rank(input_tensor)).
57         ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] < (-static_cast<int>(input->num_dimensions())));
58         ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] >= static_cast<int>(input->num_dimensions()));
59     }
60 
61     if(output->tensor_shape().total_size() != 0)
62     {
63         // Only validate if not using auto_init for the output tensor
64         TensorShape out_shape = input->tensor_shape();
65         // Validate output_shape only if not using auto_init
66         convert_negative_axis(axis_local, input_dims);
67         std::sort(axis_local.begin(), axis_local.begin() + reduction_ops);
68         for(unsigned int i = 0; i < reduction_ops; ++i)
69         {
70             ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] > 3);
71             ARM_COMPUTE_RETURN_ERROR_ON(static_cast<unsigned int>(axis_local[i]) > input->num_dimensions() - 1);
72             if(output->total_size() > 0 && keep_dims)
73             {
74                 ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(axis_local[i]) != 1);
75             }
76             if(keep_dims)
77             {
78                 out_shape.set(axis_local[i], 1);
79             }
80             else
81             {
82                 ARM_COMPUTE_RETURN_ERROR_ON(i > static_cast<unsigned int>(axis_local[i]));
83                 const unsigned int remove_index = axis_local[i] - i;
84                 ARM_COMPUTE_RETURN_ERROR_ON(remove_index >= out_shape.num_dimensions());
85                 out_shape.remove_dimension(remove_index);
86             }
87         }
88         const TensorInfo out_info = input->clone()->set_tensor_shape(out_shape);
89         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &out_info);
90         const bool requant = is_data_type_quantized(input->data_type()) && input->quantization_info() != output->quantization_info();
91         if(requant)
92         {
93             TensorInfo input_no_quant(input->clone()->set_data_type(DataType::F32));
94             CLDequantizationLayer::validate(input, &input_no_quant);
95             TensorInfo output_no_quant(output->clone()->set_data_type(DataType::F32));
96             CLQuantizationLayer::validate(&output_no_quant, output);
97         }
98     }
99     return Status{};
100 }
101 }
102 
CLReduceMean(std::shared_ptr<IMemoryManager> memory_manager)103 CLReduceMean::CLReduceMean(std::shared_ptr<IMemoryManager> memory_manager)
104     : _memory_group(std::move(memory_manager)), _reduction_kernels(), _reduced_outs(), _reshape(), _dequant(), _requant(), _reduction_ops(), _keep_dims(), _do_requant(), _input_no_quant(),
105       _output_no_quant()
106 {
107 }
108 
configure(ICLTensor * input,const Coordinates & reduction_axis,bool keep_dims,ICLTensor * output)109 void CLReduceMean::configure(ICLTensor *input, const Coordinates &reduction_axis, bool keep_dims, ICLTensor *output)
110 {
111     configure(CLKernelLibrary::get().get_compile_context(), input, reduction_axis, keep_dims, output);
112 }
113 
configure(const CLCompileContext & compile_context,ICLTensor * input,const Coordinates & reduction_axis,bool keep_dims,ICLTensor * output)114 void CLReduceMean::configure(const CLCompileContext &compile_context, ICLTensor *input, const Coordinates &reduction_axis, bool keep_dims, ICLTensor *output)
115 {
116     // Perform validate step
117     ARM_COMPUTE_ERROR_THROW_ON(CLReduceMean::validate(input->info(), reduction_axis, keep_dims, output->info()));
118     ARM_COMPUTE_LOG_PARAMS(input, reduction_axis, keep_dims, output);
119 
120     // Output auto inizialitation if not yet initialized
121     const TensorShape output_shape = arm_compute::misc::shape_calculator::calculate_reduce_mean_shape(input->info(), reduction_axis, keep_dims);
122     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
123 
124     _do_requant    = is_data_type_quantized(input->info()->data_type()) && input->info()->quantization_info() != output->info()->quantization_info();
125     _reduction_ops = reduction_axis.num_dimensions();
126     _reduction_kernels.resize(_reduction_ops);
127     _reduced_outs.resize(_reduction_ops - (keep_dims ? 1 : 0));
128     _keep_dims = keep_dims;
129 
130     ICLTensor *tmp_input  = input;
131     ICLTensor *tmp_output = output;
132     if(_do_requant)
133     {
134         _memory_group.manage(&_input_no_quant);
135         _memory_group.manage(&_output_no_quant);
136         TensorInfo output_no_quant_info = input->info()->clone()->set_tensor_shape(output_shape);
137         output_no_quant_info.set_data_type(DataType::F32);
138         auto_init_if_empty(*_output_no_quant.info(), output_no_quant_info);
139         auto_init_if_empty(*_input_no_quant.info(), input->info()->clone()->set_data_type(DataType::F32));
140         _dequant.configure(compile_context, input, &_input_no_quant);
141         tmp_input  = &_input_no_quant;
142         tmp_output = &_output_no_quant;
143     }
144 
145     Coordinates axis_local = reduction_axis;
146     const int   input_dims = tmp_input->info()->num_dimensions();
147 
148     convert_negative_axis(axis_local, input_dims);
149 
150     // Perform reduction for every axis
151     for(int i = 0; i < _reduction_ops; ++i)
152     {
153         TensorShape out_shape = i == 0 ? tmp_input->info()->tensor_shape() : (&_reduced_outs[i - 1])->info()->tensor_shape();
154         out_shape.set(axis_local[i], 1);
155         auto in = (i == 0) ? tmp_input : (&_reduced_outs[i - 1]);
156 
157         if(i == _reduction_ops - 1 && keep_dims)
158         {
159             _reduction_kernels[i].configure(compile_context, in, tmp_output, axis_local[i], ReductionOperation::MEAN_SUM);
160         }
161         else
162         {
163             _reduced_outs[i].allocator()->init(TensorInfo(out_shape, tmp_input->info()->num_channels(), tmp_input->info()->data_type(), tmp_input->info()->quantization_info()));
164             _memory_group.manage(&_reduced_outs[i]);
165             _reduction_kernels[i].configure(compile_context, in, &_reduced_outs[i], axis_local[i], ReductionOperation::MEAN_SUM);
166         }
167     }
168 
169     // Allocate intermediate tensors
170     for(int i = 0; i < _reduction_ops - (keep_dims ? 1 : 0); ++i)
171     {
172         _reduced_outs[i].allocator()->allocate();
173     }
174 
175     // Configure reshape layer if we want to drop the dimensions
176     if(!_keep_dims)
177     {
178         TensorShape out_shape = tmp_input->info()->tensor_shape();
179 
180         // We have to sort the reduction axis vectors in order for remove_dimension
181         // to work properly
182         std::sort(axis_local.begin(), axis_local.begin() + _reduction_ops);
183         for(int i = 0; i < _reduction_ops; ++i)
184         {
185             out_shape.remove_dimension(axis_local[i] - i);
186         }
187         auto_init_if_empty(*tmp_output->info(), tmp_input->info()->clone()->set_tensor_shape(out_shape));
188         _reshape.configure(compile_context, &_reduced_outs[_reduction_ops - 1], tmp_output);
189     }
190     if(_do_requant)
191     {
192         _requant.configure(compile_context, &_output_no_quant, output);
193         _input_no_quant.allocator()->allocate();
194         _output_no_quant.allocator()->allocate();
195     }
196 }
197 
validate(const ITensorInfo * input,const Coordinates & reduction_axis,bool keep_dims,const ITensorInfo * output)198 Status CLReduceMean::validate(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
199 {
200     return validate_config(input, reduction_axis, keep_dims, output);
201 }
202 
run()203 void CLReduceMean::run()
204 {
205     MemoryGroupResourceScope scope_mg(_memory_group);
206 
207     if(_do_requant)
208     {
209         _dequant.run();
210     }
211     for(auto &kernel : _reduction_kernels)
212     {
213         kernel.run();
214     }
215     if(!_keep_dims)
216     {
217         _reshape.run();
218     }
219     if(_do_requant)
220     {
221         _requant.run();
222     }
223 }
224 } // namespace arm_compute
225