xref: /aosp_15_r20/external/skia/src/shaders/SkShaderBase.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkShaderBase_DEFINED
9 #define SkShaderBase_DEFINED
10 
11 #include "include/core/SkColor.h"
12 #include "include/core/SkFlattenable.h"
13 #include "include/core/SkMatrix.h"
14 #include "include/core/SkPoint.h"
15 #include "include/core/SkRefCnt.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkShader.h"
18 #include "include/core/SkSurfaceProps.h"
19 #include "include/core/SkTypes.h"
20 #include "include/private/base/SkNoncopyable.h"
21 
22 #include <cstddef>
23 #include <cstdint>
24 #include <optional>
25 #include <tuple>
26 
27 class SkArenaAlloc;
28 class SkColorSpace;
29 class SkImage;
30 class SkRuntimeEffect;
31 class SkWriteBuffer;
32 enum SkColorType : int;
33 enum class SkTileMode;
34 struct SkDeserialProcs;
35 struct SkStageRec;
36 
37 namespace SkShaders {
38 /**
39  * This is used to accumulate matrices, starting with the CTM, when building up
40  * SkRasterPipeline or GrFragmentProcessor by walking the SkShader tree. It avoids
41  * adding a matrix multiply for each individual matrix. It also handles the reverse matrix
42  * concatenation order required by Android Framework, see b/256873449.
43  *
44  * This also tracks the dubious concept of a "total matrix", in the legacy Context/shadeSpan system.
45  * That includes all the matrices encountered during traversal to the current shader, including ones
46  * that have already been applied. The total matrix represents the transformation from the current
47  * shader's coordinate space to device space. It is dubious because it doesn't account for SkShaders
48  * that manipulate the coordinates passed to their children, which may not even be representable by
49  * a matrix.
50  *
51  * The total matrix is used for mipmap level selection and a filter downgrade optimizations in
52  * SkImageShader and sizing of the SkImage created by SkPictureShader. If we can remove usages
53  * of the "total matrix" and if Android Framework could be updated to not use backwards local
54  * matrix concatenation this could just be replaced by a simple SkMatrix or SkM44 passed down
55  * during traversal.
56  */
57 class MatrixRec {
58 public:
59     MatrixRec() = default;
60 
61     explicit MatrixRec(const SkMatrix& ctm);
62 
63     /**
64      * Returns a new MatrixRec that represents the existing total and pending matrix
65      * pre-concat'ed with m.
66      */
67     [[nodiscard]] MatrixRec concat(const SkMatrix& m) const;
68 
69     /**
70      * Appends a mul by the inverse of the pending local matrix to the pipeline. 'postInv' is an
71      * additional matrix to post-apply to the inverted pending matrix. If the pending matrix is
72      * not invertible the std::optional result won't have a value and the pipeline will be
73      * unmodified.
74      */
75     [[nodiscard]] std::optional<MatrixRec> apply(const SkStageRec& rec,
76                                                  const SkMatrix& postInv = {}) const;
77 
78     /**
79      * FP matrices work differently than SkRasterPipeline. The starting coordinates provided to the
80      * root SkShader's FP are already in local space. So we never apply the inverse CTM. This
81      * returns the inverted pending local matrix with the provided postInv matrix applied after it.
82      * If the pending local matrix cannot be inverted, the boolean is false.
83      */
84     std::tuple<SkMatrix, bool> applyForFragmentProcessor(const SkMatrix& postInv) const;
85 
86     /**
87      * A parent FP may need to create a FP for its child by calling
88      * SkShaderBase::asFragmentProcessor() and then pass the result to the apply() above.
89      * This comes up when the parent needs to ensure pending matrices are applied before the
90      * child because the parent is going to manipulate the coordinates *after* any pending
91      * matrix and pass the resulting coords to the child. This function gets a MatrixRec that
92      * reflects the state after this MatrixRec has bee applied but it does not apply it!
93      * Example:
94      * auto childFP = fChild->asFragmentProcessor(args, mrec.applied());
95      * childFP = MakeAWrappingFPThatModifiesChildsCoords(std::move(childFP));
96      * auto [success, parentFP] = mrec.apply(std::move(childFP));
97      */
98     MatrixRec applied() const;
99 
100     /** Call to indicate that the mapping from shader to device space is not known. */
markTotalMatrixInvalid()101     void markTotalMatrixInvalid() { fTotalMatrixIsValid = false; }
102 
103     /** Marks the CTM as already applied; can avoid re-seeding the shader unnecessarily. */
markCTMApplied()104     void markCTMApplied() { fCTMApplied = true; }
105 
106     /**
107      * Indicates whether the total matrix of a MatrixRec passed to a SkShader actually
108      * represents the full transform between that shader's coordinate space and device space.
109      */
totalMatrixIsValid()110     bool totalMatrixIsValid() const { return fTotalMatrixIsValid; }
111 
112     /**
113      * Gets the total transform from the current shader's space to device space. This may or
114      * may not be valid. Shaders should avoid making decisions based on this matrix if
115      * totalMatrixIsValid() is false.
116      */
totalMatrix()117     SkMatrix totalMatrix() const { return SkMatrix::Concat(fCTM, fTotalLocalMatrix); }
118 
119     /** Gets the inverse of totalMatrix(), if invertible. */
totalInverse(SkMatrix * out)120     [[nodiscard]] bool totalInverse(SkMatrix* out) const {
121         return this->totalMatrix().invert(out);
122     }
123 
124     /** Is there a transform that has not yet been applied by a parent shader? */
hasPendingMatrix()125     bool hasPendingMatrix() const {
126         return (!fCTMApplied && !fCTM.isIdentity()) || !fPendingLocalMatrix.isIdentity();
127     }
128 
129     /** When generating raster pipeline, have the device coordinates been seeded? */
rasterPipelineCoordsAreSeeded()130     bool rasterPipelineCoordsAreSeeded() const { return fCTMApplied; }
131 
132 private:
MatrixRec(const SkMatrix & ctm,const SkMatrix & totalLocalMatrix,const SkMatrix & pendingLocalMatrix,bool totalIsValid,bool ctmApplied)133     MatrixRec(const SkMatrix& ctm,
134               const SkMatrix& totalLocalMatrix,
135               const SkMatrix& pendingLocalMatrix,
136               bool totalIsValid,
137               bool ctmApplied)
138             : fCTM(ctm)
139             , fTotalLocalMatrix(totalLocalMatrix)
140             , fPendingLocalMatrix(pendingLocalMatrix)
141             , fTotalMatrixIsValid(totalIsValid)
142             , fCTMApplied(ctmApplied) {}
143 
144     const SkMatrix fCTM;
145 
146     // Concatenation of all local matrices, including those already applied.
147     const SkMatrix fTotalLocalMatrix;
148 
149     // The accumulated local matrices from walking down the shader hierarchy that have NOT yet
150     // been incorporated into the SkRasterPipeline.
151     const SkMatrix fPendingLocalMatrix;
152 
153     bool fTotalMatrixIsValid = true;
154 
155     // Tracks whether the CTM has already been applied (and in raster pipeline whether the
156     // device coords have been seeded.)
157     bool fCTMApplied = false;
158 };
159 
160 }  // namespace SkShaders
161 
162 #define SK_ALL_SHADERS(M) \
163     M(Blend)              \
164     M(CTM)                \
165     M(Color)              \
166     M(Color4)             \
167     M(ColorFilter)        \
168     M(CoordClamp)         \
169     M(Empty)              \
170     M(GradientBase)       \
171     M(Image)              \
172     M(LocalMatrix)        \
173     M(PerlinNoise)        \
174     M(Picture)            \
175     M(Runtime)            \
176     M(Transform)          \
177     M(TriColor)           \
178     M(WorkingColorSpace)
179 
180 #define SK_ALL_GRADIENTS(M) \
181     M(Conical)              \
182     M(Linear)               \
183     M(Radial)               \
184     M(Sweep)
185 
186 class SkShaderBase : public SkShader {
187 public:
188     ~SkShaderBase() override;
189 
190     sk_sp<SkShader> makeInvertAlpha() const;
191     sk_sp<SkShader> makeWithCTM(const SkMatrix&) const;  // owns its own ctm
192 
193     /**
194      *  Returns true if the shader is guaranteed to produce only a single color.
195      *  Subclasses can override this to allow loop-hoisting optimization.
196      */
isConstant()197     virtual bool isConstant() const { return false; }
198 
199     enum class ShaderType {
200 #define M(type) k##type,
201         SK_ALL_SHADERS(M)
202 #undef M
203     };
204 
205     virtual ShaderType type() const = 0;
206 
207     enum class GradientType {
208         kNone,
209 #define M(type) k##type,
210         SK_ALL_GRADIENTS(M)
211 #undef M
212     };
213 
214     /**
215      *  If the shader subclass can be represented as a gradient, asGradient
216      *  returns the matching GradientType enum (or GradientType::kNone if it
217      *  cannot). Also, if info is not null, asGradient populates info with
218      *  the relevant (see below) parameters for the gradient.  fColorCount
219      *  is both an input and output parameter.  On input, it indicates how
220      *  many entries in fColors and fColorOffsets can be used, if they are
221      *  non-NULL.  After asGradient has run, fColorCount indicates how
222      *  many color-offset pairs there are in the gradient.  If there is
223      *  insufficient space to store all of the color-offset pairs, fColors
224      *  and fColorOffsets will not be altered.  fColorOffsets specifies
225      *  where on the range of 0 to 1 to transition to the given color.
226      *  The meaning of fPoint and fRadius is dependent on the type of gradient.
227      *
228      *  None:
229      *      info is ignored.
230      *  Color:
231      *      fColorOffsets[0] is meaningless.
232      *  Linear:
233      *      fPoint[0] and fPoint[1] are the end-points of the gradient
234      *  Radial:
235      *      fPoint[0] and fRadius[0] are the center and radius
236      *  Conical:
237      *      fPoint[0] and fRadius[0] are the center and radius of the 1st circle
238      *      fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
239      *  Sweep:
240      *      fPoint[0] is the center of the sweep.
241      *      fPoint[1] x is the scale, y is the bias
242      */
243     struct GradientInfo {
244         int         fColorCount    = 0;        //!< In-out parameter, specifies passed size
245                                                //   of fColors/fColorOffsets on input, and
246                                                //   actual number of colors/offsets on
247                                                //   output.
248         SkColor*    fColors        = nullptr;  //!< The colors in the gradient.
249         SkScalar*   fColorOffsets  = nullptr;  //!< The unit offset for color transitions.
250         SkPoint     fPoint[2];                 //!< Type specific, see above.
251         SkScalar    fRadius[2];                //!< Type specific, see above.
252         SkTileMode  fTileMode;
253         uint32_t    fGradientFlags = 0;        //!< see SkGradientShader::Flags
254     };
255 
256     virtual GradientType asGradient(GradientInfo* info    = nullptr,
257                                     SkMatrix* localMatrix = nullptr) const {
258         return GradientType::kNone;
259     }
260 
261     enum Flags {
262         //!< set if all of the colors will be opaque
263         kOpaqueAlpha_Flag = 1 << 0,
264     };
265 
266     /**
267      *  ContextRec acts as a parameter bundle for creating Contexts.
268      */
269     struct ContextRec {
ContextRecContextRec270         ContextRec(SkAlpha paintAlpha,
271                    const SkShaders::MatrixRec& matrixRec,
272                    SkColorType dstColorType,
273                    SkColorSpace* dstColorSpace,
274                    const SkSurfaceProps& props)
275                 : fMatrixRec(matrixRec)
276                 , fDstColorType(dstColorType)
277                 , fDstColorSpace(dstColorSpace)
278                 , fProps(props)
279                 , fPaintAlpha(paintAlpha) {}
280 
ConcatContextRec281         static ContextRec Concat(const ContextRec& parentRec, const SkMatrix& localM) {
282             return {parentRec.fPaintAlpha,
283                     parentRec.fMatrixRec.concat(localM),
284                     parentRec.fDstColorType,
285                     parentRec.fDstColorSpace,
286                     parentRec.fProps};
287         }
288 
289         const SkShaders::MatrixRec fMatrixRec;
290         SkColorType                fDstColorType;   // the color type of the dest surface
291         SkColorSpace*              fDstColorSpace;  // the color space of the dest surface (if any)
292         SkSurfaceProps             fProps;          // props of the dest surface
293         SkAlpha                    fPaintAlpha;
294 
295         bool isLegacyCompatible(SkColorSpace* shadersColorSpace) const;
296     };
297 
298     class Context : public ::SkNoncopyable {
299     public:
300         Context(const SkShaderBase& shader, const ContextRec&);
301 
302         virtual ~Context();
303 
304         /**
305          *  Called sometimes before drawing with this shader. Return the type of
306          *  alpha your shader will return. The default implementation returns 0.
307          *  Your subclass should override if it can (even sometimes) report a
308          *  non-zero value, since that will enable various blitters to perform
309          *  faster.
310          */
getFlags()311         virtual uint32_t getFlags() const { return 0; }
312 
313         /**
314          *  Called for each span of the object being drawn. Your subclass should
315          *  set the appropriate colors (with premultiplied alpha) that correspond
316          *  to the specified device coordinates.
317          */
318         virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
319 
320     protected:
321         // Reference to shader, so we don't have to dupe information.
322         const SkShaderBase& fShader;
323 
getPaintAlpha()324         uint8_t         getPaintAlpha() const { return fPaintAlpha; }
getTotalInverse()325         const SkMatrix& getTotalInverse() const { return fTotalInverse; }
326 
327     private:
328         SkMatrix    fTotalInverse;
329         uint8_t     fPaintAlpha;
330     };
331 
332     /**
333      * Make a context using the memory provided by the arena.
334      *
335      * @return pointer to context or nullptr if can't be created
336      */
337     Context* makeContext(const ContextRec&, SkArenaAlloc*) const;
338 
339     /**
340      *  If the shader can represent its "average" luminance in a single color, return true and
341      *  if color is not NULL, return that color. If it cannot, return false and ignore the color
342      *  parameter.
343      *
344      *  Note: if this returns true, the returned color will always be opaque, as only the RGB
345      *  components are used to compute luminance.
346      */
347     bool asLuminanceColor(SkColor4f*) const;
348 
349     /**
350      * If this returns false, then we draw nothing (do not fall back to shader context). This should
351      * only be called on a root-level effect. It assumes that the initial device coordinates have
352      * not yet been seeded.
353      */
354     [[nodiscard]] bool appendRootStages(const SkStageRec& rec, const SkMatrix& ctm) const;
355 
356     /**
357      * Adds stages to implement this shader. To ensure that the correct input coords are present
358      * in r,g MatrixRec::apply() must be called (unless the shader doesn't require it's input
359      * coords). The default impl creates shadercontext and calls that (not very efficient).
360      */
361     virtual bool appendStages(const SkStageRec&, const SkShaders::MatrixRec&) const = 0;
362 
onIsAImage(SkMatrix *,SkTileMode[2])363     virtual SkImage* onIsAImage(SkMatrix*, SkTileMode[2]) const {
364         return nullptr;
365     }
366 
asRuntimeEffect()367     virtual SkRuntimeEffect* asRuntimeEffect() const { return nullptr; }
368 
GetFlattenableType()369     static Type GetFlattenableType() { return kSkShader_Type; }
getFlattenableType()370     Type getFlattenableType() const override { return GetFlattenableType(); }
371 
372     static sk_sp<SkShaderBase> Deserialize(const void* data, size_t size,
373                                              const SkDeserialProcs* procs = nullptr) {
374         return sk_sp<SkShaderBase>(static_cast<SkShaderBase*>(
375                 SkFlattenable::Deserialize(GetFlattenableType(), data, size, procs).release()));
376     }
377     static void RegisterFlattenables();
378 
379     /** DEPRECATED. skbug.com/8941
380      *  If this shader can be represented by another shader + a localMatrix, return that shader and
381      *  the localMatrix. If not, return nullptr and ignore the localMatrix parameter.
382      */
383     virtual sk_sp<SkShader> makeAsALocalMatrixShader(SkMatrix* localMatrix) const;
384 
ConcatLocalMatrices(const SkMatrix & parentLM,const SkMatrix & childLM)385     static SkMatrix ConcatLocalMatrices(const SkMatrix& parentLM, const SkMatrix& childLM) {
386 #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)  // b/256873449
387         return SkMatrix::Concat(childLM, parentLM);
388 #endif
389         return SkMatrix::Concat(parentLM, childLM);
390     }
391 
392 protected:
393     SkShaderBase();
394 
395     void flatten(SkWriteBuffer&) const override;
396 
397 #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
398     /**
399      * Specialize creating a SkShader context using the supplied allocator.
400      * @return pointer to context owned by the arena allocator.
401      */
onMakeContext(const ContextRec &,SkArenaAlloc *)402     virtual Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const {
403         return nullptr;
404     }
405 #endif
406 
onAsLuminanceColor(SkColor4f *)407     virtual bool onAsLuminanceColor(SkColor4f*) const {
408         return false;
409     }
410 
411     friend class SkShaders::MatrixRec;
412 };
as_SB(SkShader * shader)413 inline SkShaderBase* as_SB(SkShader* shader) {
414     return static_cast<SkShaderBase*>(shader);
415 }
416 
as_SB(const SkShader * shader)417 inline const SkShaderBase* as_SB(const SkShader* shader) {
418     return static_cast<const SkShaderBase*>(shader);
419 }
420 
as_SB(const sk_sp<SkShader> & shader)421 inline const SkShaderBase* as_SB(const sk_sp<SkShader>& shader) {
422     return static_cast<SkShaderBase*>(shader.get());
423 }
424 
425 void SkRegisterBlendShaderFlattenable();
426 void SkRegisterColor4ShaderFlattenable();
427 void SkRegisterColorShaderFlattenable();
428 void SkRegisterCoordClampShaderFlattenable();
429 void SkRegisterEmptyShaderFlattenable();
430 void SkRegisterPerlinNoiseShaderFlattenable();
431 void SkRegisterWorkingColorSpaceShaderFlattenable();
432 
433 #endif // SkShaderBase_DEFINED
434