xref: /aosp_15_r20/external/tensorflow/tensorflow/compiler/xla/service/gpu/cudnn_vectorize_convolutions.h (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CUDNN_VECTORIZE_CONVOLUTIONS_H_
17 #define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CUDNN_VECTORIZE_CONVOLUTIONS_H_
18 
19 #include <utility>
20 
21 #include "tensorflow/compiler/xla/service/hlo_pass_interface.h"
22 #include "tensorflow/compiler/xla/statusor.h"
23 
24 namespace xla {
25 namespace gpu {
26 
27 // Changes the shape of cudnn convolutions to allow faster "vectorized"
28 // algorithms.
29 //
30 // On sm61+ will convert int8_t convolutions from
31 //
32 //   - [N, C, H, W] to [N, C/4, H, W, 4],
33 //
34 // assuming C is divisible by 4.
35 //
36 // On sm75+ will convert int8_t convolutions from
37 //
38 //   - [N, C, H, W]      to [N, C/32, H, W, 32],
39 //   - [N, C/4, H, W, 4] to [N, C/32, H, W, 32], and
40 //   - [N, C, H, W]      to [N,  C/4, H, W,  4] (same as sm61+),
41 //
42 // assuming C is divisible by 4 or 32.
43 //
44 // This pass will not pad the channel dim to a multiple of 4 or 32, so you
45 // should run CudnnPadForConvolutions before this.
46 class CudnnVectorizeConvolutions : public HloModulePass {
47  public:
CudnnVectorizeConvolutions(se::CudaComputeCapability compute_capability)48   explicit CudnnVectorizeConvolutions(
49       se::CudaComputeCapability compute_capability)
50       : compute_capability_(compute_capability) {}
51 
name()52   absl::string_view name() const override {
53     return "cudnn_vectorize_convolutions";
54   }
55   using HloPassInterface::Run;
56   StatusOr<bool> Run(
57       HloModule* module,
58       const absl::flat_hash_set<absl::string_view>& execution_threads) override;
59 
60  private:
61   se::CudaComputeCapability compute_capability_;
62 };
63 
64 }  // namespace gpu
65 }  // namespace xla
66 
67 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_CUDNN_VECTORIZE_CONVOLUTIONS_H_
68