1 /* Copyright (c) 2017, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/aead.h>
16
17 #include <assert.h>
18
19 #include <openssl/cipher.h>
20 #include <openssl/crypto.h>
21 #include <openssl/err.h>
22
23 #include "../fipsmodule/cipher/internal.h"
24 #include "../internal.h"
25
26
27 #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12
28 #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16
29
30 // TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save
31 // and restore xmm6 through xmm15.
32 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
33 !defined(OPENSSL_WINDOWS)
34 #define AES_GCM_SIV_ASM
35
36 // Optimised AES-GCM-SIV
37
38 struct aead_aes_gcm_siv_asm_ctx {
39 alignas(16) uint8_t key[16*15];
40 int is_128_bit;
41 };
42
43 // The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and
44 // aligns to 16 bytes itself.
45 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >=
46 sizeof(struct aead_aes_gcm_siv_asm_ctx),
47 "AEAD state is too small");
48 static_assert(alignof(union evp_aead_ctx_st_state) >= 8,
49 "AEAD state has insufficient alignment");
50
51 // asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|.
asm_ctx_from_ctx(const EVP_AEAD_CTX * ctx)52 static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx(
53 const EVP_AEAD_CTX *ctx) {
54 // ctx->state must already be 8-byte aligned. Thus, at most, we may need to
55 // add eight to align it to 16 bytes.
56 const uintptr_t offset = ((uintptr_t)&ctx->state) & 8;
57 return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]);
58 }
59
60 // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
61 // |out_expanded_key|.
62 extern void aes128gcmsiv_aes_ks(
63 const uint8_t key[16], uint8_t out_expanded_key[16*15]);
64
65 // aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to
66 // |out_expanded_key|.
67 extern void aes256gcmsiv_aes_ks(
68 const uint8_t key[32], uint8_t out_expanded_key[16*15]);
69
aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len)70 static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
71 size_t key_len, size_t tag_len) {
72 const size_t key_bits = key_len * 8;
73
74 if (key_bits != 128 && key_bits != 256) {
75 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
76 return 0; // EVP_AEAD_CTX_init should catch this.
77 }
78
79 if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
80 tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
81 }
82
83 if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
84 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
85 return 0;
86 }
87
88 struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
89 assert((((uintptr_t)gcm_siv_ctx) & 15) == 0);
90
91 if (key_bits == 128) {
92 aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
93 gcm_siv_ctx->is_128_bit = 1;
94 } else {
95 aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
96 gcm_siv_ctx->is_128_bit = 0;
97 }
98
99 ctx->tag_len = tag_len;
100
101 return 1;
102 }
103
aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX * ctx)104 static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {}
105
106 // aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to
107 // include a number (|in_blocks|) of 16-byte blocks of data from |in|, given
108 // the POLYVAL key in |key|.
109 extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16],
110 const uint8_t key[16], const uint8_t *in,
111 size_t in_blocks);
112
113 // aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|.
114 extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8],
115 const uint8_t auth_key[16]);
116
117 // aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|.
118 extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6],
119 const uint8_t auth_key[16]);
120
121 // aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to
122 // include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple
123 // of 16.) It uses the precomputed powers of the key given in |htable|.
124 extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8],
125 const uint8_t *in, size_t in_len,
126 uint8_t in_out_poly[16]);
127
128 // aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to
129 // |in|. |in| and |out| may be equal, but must not otherwise alias.
130 //
131 // |in_out_calculated_tag_and_scratch|, on entry, must contain:
132 // 1. The current value of the calculated tag, which will be updated during
133 // decryption and written back to the beginning of this buffer on exit.
134 // 2. The claimed tag, which is needed to derive counter values.
135 //
136 // While decrypting, the whole of |in_out_calculated_tag_and_scratch| may be
137 // used for other purposes. In order to decrypt and update the POLYVAL value, it
138 // uses the expanded key from |key| and the table of powers in |htable|.
139 extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out,
140 uint8_t in_out_calculated_tag_and_scratch[16 * 8],
141 const uint8_t htable[16 * 6],
142 const struct aead_aes_gcm_siv_asm_ctx *key,
143 size_t in_len);
144
145 // aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256.
146 extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out,
147 uint8_t in_out_calculated_tag_and_scratch[16 * 8],
148 const uint8_t htable[16 * 6],
149 const struct aead_aes_gcm_siv_asm_ctx *key,
150 size_t in_len);
151
152 // aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from
153 // |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of
154 // the nonce are used, 16 bytes are read and so the value must be
155 // right-padded.
156 extern void aes128gcmsiv_kdf(const uint8_t nonce[16],
157 uint64_t out_key_material[8],
158 const uint8_t *key_schedule);
159
160 // aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256.
161 extern void aes256gcmsiv_kdf(const uint8_t nonce[16],
162 uint64_t out_key_material[12],
163 const uint8_t *key_schedule);
164
165 // aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in
166 // |key|, writes the expanded key to |out_expanded_key| and encrypts a single
167 // block from |in| to |out|.
168 extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
169 uint8_t out_expanded_key[16 * 15],
170 const uint64_t key[2]);
171
172 // aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for
173 // AES-256.
174 extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
175 uint8_t out_expanded_key[16 * 15],
176 const uint64_t key[4]);
177
178 // aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using
179 // the expanded key in |expanded_key|.
180 extern void aes128gcmsiv_ecb_enc_block(
181 const uint8_t in[16], uint8_t out[16],
182 const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
183
184 // aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for
185 // AES-256.
186 extern void aes256gcmsiv_ecb_enc_block(
187 const uint8_t in[16], uint8_t out[16],
188 const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
189
190 // aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the
191 // expanded key from |key|. (The value of |in_len| must be a multiple of 16.)
192 // The |in| and |out| buffers may be equal but must not otherwise overlap. The
193 // initial counter is constructed from the given |tag| as required by
194 // AES-GCM-SIV.
195 extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
196 const uint8_t *tag,
197 const struct aead_aes_gcm_siv_asm_ctx *key,
198 size_t in_len);
199
200 // aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for
201 // AES-256.
202 extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
203 const uint8_t *tag,
204 const struct aead_aes_gcm_siv_asm_ctx *key,
205 size_t in_len);
206
207 // aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is
208 // optimised for longer messages.
209 extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
210 const uint8_t *tag,
211 const struct aead_aes_gcm_siv_asm_ctx *key,
212 size_t in_len);
213
214 // aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is
215 // optimised for longer messages.
216 extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
217 const uint8_t *tag,
218 const struct aead_aes_gcm_siv_asm_ctx *key,
219 size_t in_len);
220
221 // gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext
222 // and AD. The result is written to |out_tag|.
gcm_siv_asm_polyval(uint8_t out_tag[16],const uint8_t * in,size_t in_len,const uint8_t * ad,size_t ad_len,const uint8_t auth_key[16],const uint8_t nonce[12])223 static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in,
224 size_t in_len, const uint8_t *ad, size_t ad_len,
225 const uint8_t auth_key[16],
226 const uint8_t nonce[12]) {
227 OPENSSL_memset(out_tag, 0, 16);
228 const size_t ad_blocks = ad_len / 16;
229 const size_t in_blocks = in_len / 16;
230 int htable_init = 0;
231 alignas(16) uint8_t htable[16*8];
232
233 if (ad_blocks > 8 || in_blocks > 8) {
234 htable_init = 1;
235 aesgcmsiv_htable_init(htable, auth_key);
236 }
237
238 if (htable_init) {
239 aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag);
240 } else {
241 aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks);
242 }
243
244 uint8_t scratch[16];
245 if (ad_len & 15) {
246 OPENSSL_memset(scratch, 0, sizeof(scratch));
247 OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
248 aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
249 }
250
251 if (htable_init) {
252 aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag);
253 } else {
254 aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks);
255 }
256
257 if (in_len & 15) {
258 OPENSSL_memset(scratch, 0, sizeof(scratch));
259 OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
260 aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
261 }
262
263 uint8_t length_block[16];
264 CRYPTO_store_u64_le(length_block, ad_len * 8);
265 CRYPTO_store_u64_le(length_block + 8, in_len * 8);
266 aesgcmsiv_polyval_horner(out_tag, auth_key, length_block, 1);
267
268 for (size_t i = 0; i < 12; i++) {
269 out_tag[i] ^= nonce[i];
270 }
271
272 out_tag[15] &= 0x7f;
273 }
274
275 // aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption
276 // (same thing in CTR mode) of the final block of a plaintext/ciphertext. It
277 // writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter
278 // derived from |tag|.
aead_aes_gcm_siv_asm_crypt_last_block(int is_128_bit,uint8_t * out,const uint8_t * in,size_t in_len,const uint8_t tag[16],const struct aead_aes_gcm_siv_asm_ctx * enc_key_expanded)279 static void aead_aes_gcm_siv_asm_crypt_last_block(
280 int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len,
281 const uint8_t tag[16],
282 const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) {
283 alignas(16) uint8_t counter[16];
284 OPENSSL_memcpy(&counter, tag, sizeof(counter));
285 counter[15] |= 0x80;
286 CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + in_len / 16);
287
288 if (is_128_bit) {
289 aes128gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
290 } else {
291 aes256gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
292 }
293
294 const size_t last_bytes_offset = in_len & ~15;
295 const size_t last_bytes_len = in_len & 15;
296 uint8_t *last_bytes_out = &out[last_bytes_offset];
297 const uint8_t *last_bytes_in = &in[last_bytes_offset];
298 for (size_t i = 0; i < last_bytes_len; i++) {
299 last_bytes_out[i] = last_bytes_in[i] ^ counter[i];
300 }
301 }
302
303 // aead_aes_gcm_siv_kdf calculates the record encryption and authentication
304 // keys given the |nonce|.
aead_aes_gcm_siv_kdf(int is_128_bit,const struct aead_aes_gcm_siv_asm_ctx * gcm_siv_ctx,uint64_t out_record_auth_key[2],uint64_t out_record_enc_key[4],const uint8_t nonce[12])305 static void aead_aes_gcm_siv_kdf(
306 int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx,
307 uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4],
308 const uint8_t nonce[12]) {
309 alignas(16) uint8_t padded_nonce[16];
310 OPENSSL_memcpy(padded_nonce, nonce, 12);
311
312 alignas(16) uint64_t key_material[12];
313 if (is_128_bit) {
314 aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
315 out_record_enc_key[0] = key_material[4];
316 out_record_enc_key[1] = key_material[6];
317 } else {
318 aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
319 out_record_enc_key[0] = key_material[4];
320 out_record_enc_key[1] = key_material[6];
321 out_record_enc_key[2] = key_material[8];
322 out_record_enc_key[3] = key_material[10];
323 }
324
325 out_record_auth_key[0] = key_material[0];
326 out_record_auth_key[1] = key_material[2];
327 }
328
aead_aes_gcm_siv_asm_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)329 static int aead_aes_gcm_siv_asm_seal_scatter(
330 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
331 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
332 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
333 size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
334 const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
335 const uint64_t in_len_64 = in_len;
336 const uint64_t ad_len_64 = ad_len;
337
338 if (in_len_64 > (UINT64_C(1) << 36) ||
339 ad_len_64 >= (UINT64_C(1) << 61)) {
340 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
341 return 0;
342 }
343
344 if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
345 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
346 return 0;
347 }
348
349 if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
350 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
351 return 0;
352 }
353
354 alignas(16) uint64_t record_auth_key[2];
355 alignas(16) uint64_t record_enc_key[4];
356 aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
357 record_enc_key, nonce);
358
359 alignas(16) uint8_t tag[16] = {0};
360 gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len,
361 (const uint8_t *)record_auth_key, nonce);
362
363 struct aead_aes_gcm_siv_asm_ctx enc_key_expanded;
364
365 if (gcm_siv_ctx->is_128_bit) {
366 aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
367 record_enc_key);
368
369 if (in_len < 128) {
370 aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
371 } else {
372 aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
373 }
374 } else {
375 aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
376 record_enc_key);
377
378 if (in_len < 128) {
379 aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
380 } else {
381 aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
382 }
383 }
384
385 if (in_len & 15) {
386 aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
387 in_len, tag, &enc_key_expanded);
388 }
389
390 OPENSSL_memcpy(out_tag, tag, sizeof(tag));
391 *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
392
393 return 1;
394 }
395
aead_aes_gcm_siv_asm_open_gather(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)396 static int aead_aes_gcm_siv_asm_open_gather(
397 const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
398 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
399 size_t in_tag_len, const uint8_t *ad, size_t ad_len) {
400 const uint64_t ad_len_64 = ad_len;
401 if (ad_len_64 >= (UINT64_C(1) << 61)) {
402 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
403 return 0;
404 }
405
406 const uint64_t in_len_64 = in_len;
407 if (in_len_64 > UINT64_C(1) << 36 ||
408 in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
409 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
410 return 0;
411 }
412
413 if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
414 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
415 return 0;
416 }
417
418 const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
419
420 alignas(16) uint64_t record_auth_key[2];
421 alignas(16) uint64_t record_enc_key[4];
422 aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
423 record_enc_key, nonce);
424
425 struct aead_aes_gcm_siv_asm_ctx expanded_key;
426 if (gcm_siv_ctx->is_128_bit) {
427 aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
428 } else {
429 aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
430 }
431 // calculated_tag is 16*8 bytes, rather than 16 bytes, because
432 // aes[128|256]gcmsiv_dec uses the extra as scratch space.
433 alignas(16) uint8_t calculated_tag[16 * 8] = {0};
434
435 OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
436 const size_t ad_blocks = ad_len / 16;
437 aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad,
438 ad_blocks);
439
440 uint8_t scratch[16];
441 if (ad_len & 15) {
442 OPENSSL_memset(scratch, 0, sizeof(scratch));
443 OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
444 aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
445 scratch, 1);
446 }
447
448 alignas(16) uint8_t htable[16 * 6];
449 aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key);
450
451 // aes[128|256]gcmsiv_dec needs access to the claimed tag. So it's put into
452 // its scratch space.
453 memcpy(calculated_tag + 16, in_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
454 if (gcm_siv_ctx->is_128_bit) {
455 aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, in_len);
456 } else {
457 aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, in_len);
458 }
459
460 if (in_len & 15) {
461 aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
462 in_len, in_tag, &expanded_key);
463 OPENSSL_memset(scratch, 0, sizeof(scratch));
464 OPENSSL_memcpy(scratch, out + (in_len & ~15), in_len & 15);
465 aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
466 scratch, 1);
467 }
468
469 uint8_t length_block[16];
470 CRYPTO_store_u64_le(length_block, ad_len * 8);
471 CRYPTO_store_u64_le(length_block + 8, in_len * 8);
472 aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
473 length_block, 1);
474
475 for (size_t i = 0; i < 12; i++) {
476 calculated_tag[i] ^= nonce[i];
477 }
478
479 calculated_tag[15] &= 0x7f;
480
481 if (gcm_siv_ctx->is_128_bit) {
482 aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
483 } else {
484 aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
485 }
486
487 if (CRYPTO_memcmp(calculated_tag, in_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) !=
488 0) {
489 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
490 return 0;
491 }
492
493 return 1;
494 }
495
496 static const EVP_AEAD aead_aes_128_gcm_siv_asm = {
497 16, // key length
498 EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
499 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
500 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
501 0, // seal_scatter_supports_extra_in
502
503 aead_aes_gcm_siv_asm_init,
504 NULL /* init_with_direction */,
505 aead_aes_gcm_siv_asm_cleanup,
506 NULL /* open */,
507 aead_aes_gcm_siv_asm_seal_scatter,
508 aead_aes_gcm_siv_asm_open_gather,
509 NULL /* get_iv */,
510 NULL /* tag_len */,
511 };
512
513 static const EVP_AEAD aead_aes_256_gcm_siv_asm = {
514 32, // key length
515 EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
516 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
517 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
518 0, // seal_scatter_supports_extra_in
519
520 aead_aes_gcm_siv_asm_init,
521 NULL /* init_with_direction */,
522 aead_aes_gcm_siv_asm_cleanup,
523 NULL /* open */,
524 aead_aes_gcm_siv_asm_seal_scatter,
525 aead_aes_gcm_siv_asm_open_gather,
526 NULL /* get_iv */,
527 NULL /* tag_len */,
528 };
529
530 #endif // X86_64 && !NO_ASM && !WINDOWS
531
532 struct aead_aes_gcm_siv_ctx {
533 union {
534 double align;
535 AES_KEY ks;
536 } ks;
537 block128_f kgk_block;
538 unsigned is_256:1;
539 };
540
541 static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
542 sizeof(struct aead_aes_gcm_siv_ctx),
543 "AEAD state is too small");
544 static_assert(alignof(union evp_aead_ctx_st_state) >=
545 alignof(struct aead_aes_gcm_siv_ctx),
546 "AEAD state has insufficient alignment");
547
aead_aes_gcm_siv_init(EVP_AEAD_CTX * ctx,const uint8_t * key,size_t key_len,size_t tag_len)548 static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
549 size_t key_len, size_t tag_len) {
550 const size_t key_bits = key_len * 8;
551
552 if (key_bits != 128 && key_bits != 256) {
553 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
554 return 0; // EVP_AEAD_CTX_init should catch this.
555 }
556
557 if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
558 tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
559 }
560 if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
561 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
562 return 0;
563 }
564
565 struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
566 (struct aead_aes_gcm_siv_ctx *)&ctx->state;
567 OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx));
568
569 aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key,
570 key_len);
571 gcm_siv_ctx->is_256 = (key_len == 32);
572 ctx->tag_len = tag_len;
573
574 return 1;
575 }
576
aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX * ctx)577 static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {}
578
579 // gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from
580 // |in| to |out|, using the block function |enc_block| with |key| in counter
581 // mode, starting at |initial_counter|. This differs from the traditional
582 // counter mode code in that the counter is handled little-endian, only the
583 // first four bytes are used and the GCM-SIV tweak to the final byte is
584 // applied. The |in| and |out| pointers may be equal but otherwise must not
585 // alias.
gcm_siv_crypt(uint8_t * out,const uint8_t * in,size_t in_len,const uint8_t initial_counter[AES_BLOCK_SIZE],block128_f enc_block,const AES_KEY * key)586 static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len,
587 const uint8_t initial_counter[AES_BLOCK_SIZE],
588 block128_f enc_block, const AES_KEY *key) {
589 uint8_t counter[16];
590
591 OPENSSL_memcpy(counter, initial_counter, AES_BLOCK_SIZE);
592 counter[15] |= 0x80;
593
594 for (size_t done = 0; done < in_len;) {
595 uint8_t keystream[AES_BLOCK_SIZE];
596 enc_block(counter, keystream, key);
597 CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + 1);
598
599 size_t todo = AES_BLOCK_SIZE;
600 if (in_len - done < todo) {
601 todo = in_len - done;
602 }
603
604 for (size_t i = 0; i < todo; i++) {
605 out[done + i] = keystream[i] ^ in[done + i];
606 }
607
608 done += todo;
609 }
610 }
611
612 // gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and
613 // AD. The result is written to |out_tag|.
gcm_siv_polyval(uint8_t out_tag[16],const uint8_t * in,size_t in_len,const uint8_t * ad,size_t ad_len,const uint8_t auth_key[16],const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN])614 static void gcm_siv_polyval(
615 uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad,
616 size_t ad_len, const uint8_t auth_key[16],
617 const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
618 struct polyval_ctx polyval_ctx;
619 CRYPTO_POLYVAL_init(&polyval_ctx, auth_key);
620
621 CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15);
622
623 uint8_t scratch[16];
624 if (ad_len & 15) {
625 OPENSSL_memset(scratch, 0, sizeof(scratch));
626 OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
627 CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
628 }
629
630 CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15);
631 if (in_len & 15) {
632 OPENSSL_memset(scratch, 0, sizeof(scratch));
633 OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
634 CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
635 }
636
637 uint8_t length_block[16];
638 CRYPTO_store_u64_le(length_block, ((uint64_t) ad_len) * 8);
639 CRYPTO_store_u64_le(length_block + 8, ((uint64_t) in_len) * 8);
640 CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block,
641 sizeof(length_block));
642
643 CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag);
644 for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) {
645 out_tag[i] ^= nonce[i];
646 }
647 out_tag[15] &= 0x7f;
648 }
649
650 // gcm_siv_record_keys contains the keys used for a specific GCM-SIV record.
651 struct gcm_siv_record_keys {
652 uint8_t auth_key[16];
653 union {
654 double align;
655 AES_KEY ks;
656 } enc_key;
657 block128_f enc_block;
658 };
659
660 // gcm_siv_keys calculates the keys for a specific GCM-SIV record with the
661 // given nonce and writes them to |*out_keys|.
gcm_siv_keys(const struct aead_aes_gcm_siv_ctx * gcm_siv_ctx,struct gcm_siv_record_keys * out_keys,const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN])662 static void gcm_siv_keys(
663 const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx,
664 struct gcm_siv_record_keys *out_keys,
665 const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
666 const AES_KEY *const key = &gcm_siv_ctx->ks.ks;
667 uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8];
668 const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4;
669
670 uint8_t counter[AES_BLOCK_SIZE];
671 OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
672 OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN,
673 nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
674 for (size_t i = 0; i < blocks_needed; i++) {
675 counter[0] = i;
676
677 uint8_t ciphertext[AES_BLOCK_SIZE];
678 gcm_siv_ctx->kgk_block(counter, ciphertext, key);
679 OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8);
680 }
681
682 OPENSSL_memcpy(out_keys->auth_key, key_material, 16);
683 // Note the |ctr128_f| function uses a big-endian couner, while AES-GCM-SIV
684 // uses a little-endian counter. We ignore the return value and only use
685 // |block128_f|. This has a significant performance cost for the fallback
686 // bitsliced AES implementations (bsaes and aes_nohw).
687 //
688 // We currently do not consider AES-GCM-SIV to be performance-sensitive on
689 // client hardware. If this changes, we can write little-endian |ctr128_f|
690 // functions.
691 aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block,
692 key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16);
693 }
694
aead_aes_gcm_siv_seal_scatter(const EVP_AEAD_CTX * ctx,uint8_t * out,uint8_t * out_tag,size_t * out_tag_len,size_t max_out_tag_len,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * extra_in,size_t extra_in_len,const uint8_t * ad,size_t ad_len)695 static int aead_aes_gcm_siv_seal_scatter(
696 const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
697 size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
698 size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
699 size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
700 const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
701 (struct aead_aes_gcm_siv_ctx *)&ctx->state;
702 const uint64_t in_len_64 = in_len;
703 const uint64_t ad_len_64 = ad_len;
704
705 if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len ||
706 in_len_64 > (UINT64_C(1) << 36) ||
707 ad_len_64 >= (UINT64_C(1) << 61)) {
708 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
709 return 0;
710 }
711
712 if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
713 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
714 return 0;
715 }
716
717 if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
718 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
719 return 0;
720 }
721
722 struct gcm_siv_record_keys keys;
723 gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
724
725 uint8_t tag[16];
726 gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce);
727 keys.enc_block(tag, tag, &keys.enc_key.ks);
728
729 gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks);
730
731 OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
732 *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
733
734 return 1;
735 }
736
aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX * ctx,uint8_t * out,const uint8_t * nonce,size_t nonce_len,const uint8_t * in,size_t in_len,const uint8_t * in_tag,size_t in_tag_len,const uint8_t * ad,size_t ad_len)737 static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
738 const uint8_t *nonce, size_t nonce_len,
739 const uint8_t *in, size_t in_len,
740 const uint8_t *in_tag,
741 size_t in_tag_len, const uint8_t *ad,
742 size_t ad_len) {
743 const uint64_t ad_len_64 = ad_len;
744 if (ad_len_64 >= (UINT64_C(1) << 61)) {
745 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
746 return 0;
747 }
748
749 const uint64_t in_len_64 = in_len;
750 if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
751 in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
752 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
753 return 0;
754 }
755
756 if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
757 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
758 return 0;
759 }
760
761 const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
762 (struct aead_aes_gcm_siv_ctx *)&ctx->state;
763
764 struct gcm_siv_record_keys keys;
765 gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
766
767 gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks);
768
769 uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN];
770 gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce);
771 keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks);
772
773 if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) {
774 OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
775 return 0;
776 }
777
778 return 1;
779 }
780
781 static const EVP_AEAD aead_aes_128_gcm_siv = {
782 16, // key length
783 EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
784 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
785 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
786 0, // seal_scatter_supports_extra_in
787
788 aead_aes_gcm_siv_init,
789 NULL /* init_with_direction */,
790 aead_aes_gcm_siv_cleanup,
791 NULL /* open */,
792 aead_aes_gcm_siv_seal_scatter,
793 aead_aes_gcm_siv_open_gather,
794 NULL /* get_iv */,
795 NULL /* tag_len */,
796 };
797
798 static const EVP_AEAD aead_aes_256_gcm_siv = {
799 32, // key length
800 EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
801 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
802 EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
803 0, // seal_scatter_supports_extra_in
804
805 aead_aes_gcm_siv_init,
806 NULL /* init_with_direction */,
807 aead_aes_gcm_siv_cleanup,
808 NULL /* open */,
809 aead_aes_gcm_siv_seal_scatter,
810 aead_aes_gcm_siv_open_gather,
811 NULL /* get_iv */,
812 NULL /* tag_len */,
813 };
814
815 #if defined(AES_GCM_SIV_ASM)
816
EVP_aead_aes_128_gcm_siv(void)817 const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
818 if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
819 return &aead_aes_128_gcm_siv_asm;
820 }
821 return &aead_aes_128_gcm_siv;
822 }
823
EVP_aead_aes_256_gcm_siv(void)824 const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
825 if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
826 return &aead_aes_256_gcm_siv_asm;
827 }
828 return &aead_aes_256_gcm_siv;
829 }
830
831 #else
832
EVP_aead_aes_128_gcm_siv(void)833 const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
834 return &aead_aes_128_gcm_siv;
835 }
836
EVP_aead_aes_256_gcm_siv(void)837 const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
838 return &aead_aes_256_gcm_siv;
839 }
840
841 #endif // AES_GCM_SIV_ASM
842