xref: /aosp_15_r20/external/cronet/third_party/boringssl/src/crypto/hrss/hrss.c (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 /* Copyright (c) 2018, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/hrss.h>
16 
17 #include <assert.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 
21 #include <openssl/bn.h>
22 #include <openssl/hmac.h>
23 #include <openssl/mem.h>
24 #include <openssl/rand.h>
25 #include <openssl/sha.h>
26 
27 #if defined(_MSC_VER)
28 #define RESTRICT
29 #else
30 #define RESTRICT restrict
31 #endif
32 
33 #include "../internal.h"
34 #include "internal.h"
35 
36 #if defined(OPENSSL_SSE2)
37 #include <emmintrin.h>
38 #endif
39 
40 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && defined(__ARM_NEON)
41 #include <arm_neon.h>
42 #endif
43 
44 // This is an implementation of [HRSS], but with a KEM transformation based on
45 // [SXY]. The primary references are:
46 
47 // HRSS: https://eprint.iacr.org/2017/667.pdf
48 // HRSSNIST:
49 // https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
50 // SXY: https://eprint.iacr.org/2017/1005.pdf
51 // NTRUTN14:
52 // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
53 // NTRUCOMP: https://eprint.iacr.org/2018/1174
54 // SAFEGCD: https://gcd.cr.yp.to/papers.html#safegcd
55 
56 
57 // Vector operations.
58 //
59 // A couple of functions in this file can use vector operations to meaningful
60 // effect. If we're building for a target that has a supported vector unit,
61 // |HRSS_HAVE_VECTOR_UNIT| will be defined and |vec_t| will be typedefed to a
62 // 128-bit vector. The following functions abstract over the differences between
63 // NEON and SSE2 for implementing some vector operations.
64 
65 // TODO: MSVC can likely also be made to work with vector operations, but ^ must
66 // be replaced with _mm_xor_si128, etc.
67 #if defined(OPENSSL_SSE2) && (defined(__clang__) || !defined(_MSC_VER))
68 
69 #define HRSS_HAVE_VECTOR_UNIT
70 typedef __m128i vec_t;
71 
72 // vec_capable returns one iff the current platform supports SSE2.
vec_capable(void)73 static int vec_capable(void) { return 1; }
74 
75 // vec_add performs a pair-wise addition of four uint16s from |a| and |b|.
vec_add(vec_t a,vec_t b)76 static inline vec_t vec_add(vec_t a, vec_t b) { return _mm_add_epi16(a, b); }
77 
78 // vec_sub performs a pair-wise subtraction of four uint16s from |a| and |b|.
vec_sub(vec_t a,vec_t b)79 static inline vec_t vec_sub(vec_t a, vec_t b) { return _mm_sub_epi16(a, b); }
80 
81 // vec_mul multiplies each uint16_t in |a| by |b| and returns the resulting
82 // vector.
vec_mul(vec_t a,uint16_t b)83 static inline vec_t vec_mul(vec_t a, uint16_t b) {
84   return _mm_mullo_epi16(a, _mm_set1_epi16(b));
85 }
86 
87 // vec_fma multiplies each uint16_t in |b| by |c|, adds the result to |a|, and
88 // returns the resulting vector.
vec_fma(vec_t a,vec_t b,uint16_t c)89 static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
90   return _mm_add_epi16(a, _mm_mullo_epi16(b, _mm_set1_epi16(c)));
91 }
92 
93 // vec3_rshift_word right-shifts the 24 uint16_t's in |v| by one uint16.
vec3_rshift_word(vec_t v[3])94 static inline void vec3_rshift_word(vec_t v[3]) {
95   // Intel's left and right shifting is backwards compared to the order in
96   // memory because they're based on little-endian order of words (and not just
97   // bytes). So the shifts in this function will be backwards from what one
98   // might expect.
99   const __m128i carry0 = _mm_srli_si128(v[0], 14);
100   v[0] = _mm_slli_si128(v[0], 2);
101 
102   const __m128i carry1 = _mm_srli_si128(v[1], 14);
103   v[1] = _mm_slli_si128(v[1], 2);
104   v[1] |= carry0;
105 
106   v[2] = _mm_slli_si128(v[2], 2);
107   v[2] |= carry1;
108 }
109 
110 // vec4_rshift_word right-shifts the 32 uint16_t's in |v| by one uint16.
vec4_rshift_word(vec_t v[4])111 static inline void vec4_rshift_word(vec_t v[4]) {
112   // Intel's left and right shifting is backwards compared to the order in
113   // memory because they're based on little-endian order of words (and not just
114   // bytes). So the shifts in this function will be backwards from what one
115   // might expect.
116   const __m128i carry0 = _mm_srli_si128(v[0], 14);
117   v[0] = _mm_slli_si128(v[0], 2);
118 
119   const __m128i carry1 = _mm_srli_si128(v[1], 14);
120   v[1] = _mm_slli_si128(v[1], 2);
121   v[1] |= carry0;
122 
123   const __m128i carry2 = _mm_srli_si128(v[2], 14);
124   v[2] = _mm_slli_si128(v[2], 2);
125   v[2] |= carry1;
126 
127   v[3] = _mm_slli_si128(v[3], 2);
128   v[3] |= carry2;
129 }
130 
131 // vec_merge_3_5 takes the final three uint16_t's from |left|, appends the first
132 // five from |right|, and returns the resulting vector.
vec_merge_3_5(vec_t left,vec_t right)133 static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
134   return _mm_srli_si128(left, 10) | _mm_slli_si128(right, 6);
135 }
136 
137 // poly3_vec_lshift1 left-shifts the 768 bits in |a_s|, and in |a_a|, by one
138 // bit.
poly3_vec_lshift1(vec_t a_s[6],vec_t a_a[6])139 static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
140   vec_t carry_s = {0};
141   vec_t carry_a = {0};
142 
143   for (int i = 0; i < 6; i++) {
144     vec_t next_carry_s = _mm_srli_epi64(a_s[i], 63);
145     a_s[i] = _mm_slli_epi64(a_s[i], 1);
146     a_s[i] |= _mm_slli_si128(next_carry_s, 8);
147     a_s[i] |= carry_s;
148     carry_s = _mm_srli_si128(next_carry_s, 8);
149 
150     vec_t next_carry_a = _mm_srli_epi64(a_a[i], 63);
151     a_a[i] = _mm_slli_epi64(a_a[i], 1);
152     a_a[i] |= _mm_slli_si128(next_carry_a, 8);
153     a_a[i] |= carry_a;
154     carry_a = _mm_srli_si128(next_carry_a, 8);
155   }
156 }
157 
158 // poly3_vec_rshift1 right-shifts the 768 bits in |a_s|, and in |a_a|, by one
159 // bit.
poly3_vec_rshift1(vec_t a_s[6],vec_t a_a[6])160 static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
161   vec_t carry_s = {0};
162   vec_t carry_a = {0};
163 
164   for (int i = 5; i >= 0; i--) {
165     const vec_t next_carry_s = _mm_slli_epi64(a_s[i], 63);
166     a_s[i] = _mm_srli_epi64(a_s[i], 1);
167     a_s[i] |= _mm_srli_si128(next_carry_s, 8);
168     a_s[i] |= carry_s;
169     carry_s = _mm_slli_si128(next_carry_s, 8);
170 
171     const vec_t next_carry_a = _mm_slli_epi64(a_a[i], 63);
172     a_a[i] = _mm_srli_epi64(a_a[i], 1);
173     a_a[i] |= _mm_srli_si128(next_carry_a, 8);
174     a_a[i] |= carry_a;
175     carry_a = _mm_slli_si128(next_carry_a, 8);
176   }
177 }
178 
179 // vec_broadcast_bit duplicates the least-significant bit in |a| to all bits in
180 // a vector and returns the result.
vec_broadcast_bit(vec_t a)181 static inline vec_t vec_broadcast_bit(vec_t a) {
182   return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63), 31),
183                            0b01010101);
184 }
185 
186 // vec_get_word returns the |i|th uint16_t in |v|. (This is a macro because the
187 // compiler requires that |i| be a compile-time constant.)
188 #define vec_get_word(v, i) _mm_extract_epi16(v, i)
189 
190 #elif (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && defined(__ARM_NEON)
191 
192 #define HRSS_HAVE_VECTOR_UNIT
193 typedef uint16x8_t vec_t;
194 
195 // These functions perform the same actions as the SSE2 function of the same
196 // name, above.
197 
vec_capable(void)198 static int vec_capable(void) { return CRYPTO_is_NEON_capable(); }
199 
vec_add(vec_t a,vec_t b)200 static inline vec_t vec_add(vec_t a, vec_t b) { return a + b; }
201 
vec_sub(vec_t a,vec_t b)202 static inline vec_t vec_sub(vec_t a, vec_t b) { return a - b; }
203 
vec_mul(vec_t a,uint16_t b)204 static inline vec_t vec_mul(vec_t a, uint16_t b) { return vmulq_n_u16(a, b); }
205 
vec_fma(vec_t a,vec_t b,uint16_t c)206 static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
207   return vmlaq_n_u16(a, b, c);
208 }
209 
vec3_rshift_word(vec_t v[3])210 static inline void vec3_rshift_word(vec_t v[3]) {
211   const uint16x8_t kZero = {0};
212   v[2] = vextq_u16(v[1], v[2], 7);
213   v[1] = vextq_u16(v[0], v[1], 7);
214   v[0] = vextq_u16(kZero, v[0], 7);
215 }
216 
vec4_rshift_word(vec_t v[4])217 static inline void vec4_rshift_word(vec_t v[4]) {
218   const uint16x8_t kZero = {0};
219   v[3] = vextq_u16(v[2], v[3], 7);
220   v[2] = vextq_u16(v[1], v[2], 7);
221   v[1] = vextq_u16(v[0], v[1], 7);
222   v[0] = vextq_u16(kZero, v[0], 7);
223 }
224 
vec_merge_3_5(vec_t left,vec_t right)225 static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
226   return vextq_u16(left, right, 5);
227 }
228 
vec_get_word(vec_t v,unsigned i)229 static inline uint16_t vec_get_word(vec_t v, unsigned i) {
230   return v[i];
231 }
232 
233 #if !defined(OPENSSL_AARCH64)
234 
vec_broadcast_bit(vec_t a)235 static inline vec_t vec_broadcast_bit(vec_t a) {
236   a = (vec_t)vshrq_n_s16(((int16x8_t)a) << 15, 15);
237   return vdupq_lane_u16(vget_low_u16(a), 0);
238 }
239 
poly3_vec_lshift1(vec_t a_s[6],vec_t a_a[6])240 static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
241   vec_t carry_s = {0};
242   vec_t carry_a = {0};
243   const vec_t kZero = {0};
244 
245   for (int i = 0; i < 6; i++) {
246     vec_t next_carry_s = a_s[i] >> 15;
247     a_s[i] <<= 1;
248     a_s[i] |= vextq_u16(kZero, next_carry_s, 7);
249     a_s[i] |= carry_s;
250     carry_s = vextq_u16(next_carry_s, kZero, 7);
251 
252     vec_t next_carry_a = a_a[i] >> 15;
253     a_a[i] <<= 1;
254     a_a[i] |= vextq_u16(kZero, next_carry_a, 7);
255     a_a[i] |= carry_a;
256     carry_a = vextq_u16(next_carry_a, kZero, 7);
257   }
258 }
259 
poly3_vec_rshift1(vec_t a_s[6],vec_t a_a[6])260 static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
261   vec_t carry_s = {0};
262   vec_t carry_a = {0};
263   const vec_t kZero = {0};
264 
265   for (int i = 5; i >= 0; i--) {
266     vec_t next_carry_s = a_s[i] << 15;
267     a_s[i] >>= 1;
268     a_s[i] |= vextq_u16(next_carry_s, kZero, 1);
269     a_s[i] |= carry_s;
270     carry_s = vextq_u16(kZero, next_carry_s, 1);
271 
272     vec_t next_carry_a = a_a[i] << 15;
273     a_a[i] >>= 1;
274     a_a[i] |= vextq_u16(next_carry_a, kZero, 1);
275     a_a[i] |= carry_a;
276     carry_a = vextq_u16(kZero, next_carry_a, 1);
277   }
278 }
279 
280 #endif  // !OPENSSL_AARCH64
281 
282 #endif  // (ARM || AARCH64) && NEON
283 
284 // Polynomials in this scheme have N terms.
285 // #define N 701
286 
287 // Underlying data types and arithmetic operations.
288 // ------------------------------------------------
289 
290 // Binary polynomials.
291 
292 // poly2 represents a degree-N polynomial over GF(2). The words are in little-
293 // endian order, i.e. the coefficient of x^0 is the LSB of the first word. The
294 // final word is only partially used since N is not a multiple of the word size.
295 
296 // Defined in internal.h:
297 // struct poly2 {
298 //  crypto_word_t v[WORDS_PER_POLY];
299 // };
300 
hexdump(const void * void_in,size_t len)301 OPENSSL_UNUSED static void hexdump(const void *void_in, size_t len) {
302   const uint8_t *in = (const uint8_t *)void_in;
303   for (size_t i = 0; i < len; i++) {
304     printf("%02x", in[i]);
305   }
306   printf("\n");
307 }
308 
poly2_zero(struct poly2 * p)309 static void poly2_zero(struct poly2 *p) {
310   OPENSSL_memset(&p->v[0], 0, sizeof(crypto_word_t) * WORDS_PER_POLY);
311 }
312 
313 // word_reverse returns |in| with the bits in reverse order.
word_reverse(crypto_word_t in)314 static crypto_word_t word_reverse(crypto_word_t in) {
315 #if defined(OPENSSL_64_BIT)
316   static const crypto_word_t kMasks[6] = {
317     UINT64_C(0x5555555555555555),
318     UINT64_C(0x3333333333333333),
319     UINT64_C(0x0f0f0f0f0f0f0f0f),
320     UINT64_C(0x00ff00ff00ff00ff),
321     UINT64_C(0x0000ffff0000ffff),
322     UINT64_C(0x00000000ffffffff),
323   };
324 #else
325   static const crypto_word_t kMasks[5] = {
326     0x55555555,
327     0x33333333,
328     0x0f0f0f0f,
329     0x00ff00ff,
330     0x0000ffff,
331   };
332 #endif
333 
334   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMasks); i++) {
335     in = ((in >> (1 << i)) & kMasks[i]) | ((in & kMasks[i]) << (1 << i));
336   }
337 
338   return in;
339 }
340 
341 // lsb_to_all replicates the least-significant bit of |v| to all bits of the
342 // word. This is used in bit-slicing operations to make a vector from a fixed
343 // value.
lsb_to_all(crypto_word_t v)344 static crypto_word_t lsb_to_all(crypto_word_t v) { return 0u - (v & 1); }
345 
346 // poly2_mod_phiN reduces |p| by Φ(N).
poly2_mod_phiN(struct poly2 * p)347 static void poly2_mod_phiN(struct poly2 *p) {
348   // m is the term at x^700, replicated to every bit.
349   const crypto_word_t m =
350       lsb_to_all(p->v[WORDS_PER_POLY - 1] >> (BITS_IN_LAST_WORD - 1));
351   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
352     p->v[i] ^= m;
353   }
354   p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << (BITS_IN_LAST_WORD - 1)) - 1;
355 }
356 
357 // poly2_reverse_700 reverses the order of the first 700 bits of |in| and writes
358 // the result to |out|.
poly2_reverse_700(struct poly2 * out,const struct poly2 * in)359 static void poly2_reverse_700(struct poly2 *out, const struct poly2 *in) {
360   struct poly2 t;
361   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
362     t.v[i] = word_reverse(in->v[i]);
363   }
364 
365   static const size_t shift = BITS_PER_WORD - ((N-1) % BITS_PER_WORD);
366   for (size_t i = 0; i < WORDS_PER_POLY-1; i++) {
367     out->v[i] = t.v[WORDS_PER_POLY-1-i] >> shift;
368     out->v[i] |= t.v[WORDS_PER_POLY-2-i] << (BITS_PER_WORD - shift);
369   }
370   out->v[WORDS_PER_POLY-1] = t.v[0] >> shift;
371 }
372 
373 // poly2_cswap exchanges the values of |a| and |b| if |swap| is all ones.
poly2_cswap(struct poly2 * a,struct poly2 * b,crypto_word_t swap)374 static void poly2_cswap(struct poly2 *a, struct poly2 *b, crypto_word_t swap) {
375   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
376     const crypto_word_t sum = swap & (a->v[i] ^ b->v[i]);
377     a->v[i] ^= sum;
378     b->v[i] ^= sum;
379   }
380 }
381 
382 // poly2_fmadd sets |out| to |out| + |in| * m, where m is either
383 // |CONSTTIME_TRUE_W| or |CONSTTIME_FALSE_W|.
poly2_fmadd(struct poly2 * out,const struct poly2 * in,crypto_word_t m)384 static void poly2_fmadd(struct poly2 *out, const struct poly2 *in,
385                         crypto_word_t m) {
386   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
387     out->v[i] ^= in->v[i] & m;
388   }
389 }
390 
391 // poly2_lshift1 left-shifts |p| by one bit.
poly2_lshift1(struct poly2 * p)392 static void poly2_lshift1(struct poly2 *p) {
393   crypto_word_t carry = 0;
394   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
395     const crypto_word_t next_carry = p->v[i] >> (BITS_PER_WORD - 1);
396     p->v[i] <<= 1;
397     p->v[i] |= carry;
398     carry = next_carry;
399   }
400 }
401 
402 // poly2_rshift1 right-shifts |p| by one bit.
poly2_rshift1(struct poly2 * p)403 static void poly2_rshift1(struct poly2 *p) {
404   crypto_word_t carry = 0;
405   for (size_t i = WORDS_PER_POLY - 1; i < WORDS_PER_POLY; i--) {
406     const crypto_word_t next_carry = p->v[i] & 1;
407     p->v[i] >>= 1;
408     p->v[i] |= carry << (BITS_PER_WORD - 1);
409     carry = next_carry;
410   }
411 }
412 
413 // poly2_clear_top_bits clears the bits in the final word that are only for
414 // alignment.
poly2_clear_top_bits(struct poly2 * p)415 static void poly2_clear_top_bits(struct poly2 *p) {
416   p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1;
417 }
418 
419 // poly2_top_bits_are_clear returns one iff the extra bits in the final words of
420 // |p| are zero.
poly2_top_bits_are_clear(const struct poly2 * p)421 static int poly2_top_bits_are_clear(const struct poly2 *p) {
422   return (p->v[WORDS_PER_POLY - 1] &
423           ~((UINT64_C(1) << BITS_IN_LAST_WORD) - 1)) == 0;
424 }
425 
426 // Ternary polynomials.
427 
428 // poly3 represents a degree-N polynomial over GF(3). Each coefficient is
429 // bitsliced across the |s| and |a| arrays, like this:
430 //
431 //   s  |  a  | value
432 //  -----------------
433 //   0  |  0  | 0
434 //   0  |  1  | 1
435 //   1  |  1  | -1 (aka 2)
436 //   1  |  0  | <invalid>
437 //
438 // ('s' is for sign, and 'a' is the absolute value.)
439 //
440 // Once bitsliced as such, the following circuits can be used to implement
441 // addition and multiplication mod 3:
442 //
443 //   (s3, a3) = (s1, a1) × (s2, a2)
444 //   a3 = a1 ∧ a2
445 //   s3 = (s1 ⊕ s2) ∧ a3
446 //
447 //   (s3, a3) = (s1, a1) + (s2, a2)
448 //   t = s1 ⊕ a2
449 //   s3 = t ∧ (s2 ⊕ a1)
450 //   a3 = (a1 ⊕ a2) ∨ (t ⊕ s2)
451 //
452 //   (s3, a3) = (s1, a1) - (s2, a2)
453 //   t = a1 ⊕ a2
454 //   s3 = (s1 ⊕ a2) ∧ (t ⊕ s2)
455 //   a3 = t ∨ (s1 ⊕ s2)
456 //
457 // Negating a value just involves XORing s by a.
458 //
459 // struct poly3 {
460 //   struct poly2 s, a;
461 // };
462 
poly3_print(const struct poly3 * in)463 OPENSSL_UNUSED static void poly3_print(const struct poly3 *in) {
464   struct poly3 p;
465   OPENSSL_memcpy(&p, in, sizeof(p));
466   p.s.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
467   p.a.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
468 
469   printf("{[");
470   for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
471     if (i) {
472       printf(" ");
473     }
474     printf(BN_HEX_FMT2, p.s.v[i]);
475   }
476   printf("] [");
477   for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
478     if (i) {
479       printf(" ");
480     }
481     printf(BN_HEX_FMT2, p.a.v[i]);
482   }
483   printf("]}\n");
484 }
485 
poly3_zero(struct poly3 * p)486 static void poly3_zero(struct poly3 *p) {
487   poly2_zero(&p->s);
488   poly2_zero(&p->a);
489 }
490 
491 // poly3_reverse_700 reverses the order of the first 700 terms of |in| and
492 // writes them to |out|.
poly3_reverse_700(struct poly3 * out,const struct poly3 * in)493 static void poly3_reverse_700(struct poly3 *out, const struct poly3 *in) {
494   poly2_reverse_700(&out->a, &in->a);
495   poly2_reverse_700(&out->s, &in->s);
496 }
497 
498 // poly3_word_mul sets (|out_s|, |out_a|) to (|s1|, |a1|) × (|s2|, |a2|).
poly3_word_mul(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)499 static void poly3_word_mul(crypto_word_t *out_s, crypto_word_t *out_a,
500                            const crypto_word_t s1, const crypto_word_t a1,
501                            const crypto_word_t s2, const crypto_word_t a2) {
502   *out_a = a1 & a2;
503   *out_s = (s1 ^ s2) & *out_a;
504 }
505 
506 // poly3_word_add sets (|out_s|, |out_a|) to (|s1|, |a1|) + (|s2|, |a2|).
poly3_word_add(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)507 static void poly3_word_add(crypto_word_t *out_s, crypto_word_t *out_a,
508                            const crypto_word_t s1, const crypto_word_t a1,
509                            const crypto_word_t s2, const crypto_word_t a2) {
510   const crypto_word_t t = s1 ^ a2;
511   *out_s = t & (s2 ^ a1);
512   *out_a = (a1 ^ a2) | (t ^ s2);
513 }
514 
515 // poly3_word_sub sets (|out_s|, |out_a|) to (|s1|, |a1|) - (|s2|, |a2|).
poly3_word_sub(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)516 static void poly3_word_sub(crypto_word_t *out_s, crypto_word_t *out_a,
517                            const crypto_word_t s1, const crypto_word_t a1,
518                            const crypto_word_t s2, const crypto_word_t a2) {
519   const crypto_word_t t = a1 ^ a2;
520   *out_s = (s1 ^ a2) & (t ^ s2);
521   *out_a = t | (s1 ^ s2);
522 }
523 
524 // poly3_mul_const sets |p| to |p|×m, where m = (ms, ma).
poly3_mul_const(struct poly3 * p,crypto_word_t ms,crypto_word_t ma)525 static void poly3_mul_const(struct poly3 *p, crypto_word_t ms,
526                             crypto_word_t ma) {
527   ms = lsb_to_all(ms);
528   ma = lsb_to_all(ma);
529 
530   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
531     poly3_word_mul(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], ms, ma);
532   }
533 }
534 
535 // poly3_fmadd sets |out| to |out| - |in|×m, where m is (ms, ma).
poly3_fmsub(struct poly3 * RESTRICT out,const struct poly3 * RESTRICT in,crypto_word_t ms,crypto_word_t ma)536 static void poly3_fmsub(struct poly3 *RESTRICT out,
537                         const struct poly3 *RESTRICT in, crypto_word_t ms,
538                         crypto_word_t ma) {
539   crypto_word_t product_s, product_a;
540   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
541     poly3_word_mul(&product_s, &product_a, in->s.v[i], in->a.v[i], ms, ma);
542     poly3_word_sub(&out->s.v[i], &out->a.v[i], out->s.v[i], out->a.v[i],
543                    product_s, product_a);
544   }
545 }
546 
547 // final_bit_to_all replicates the bit in the final position of the last word to
548 // all the bits in the word.
final_bit_to_all(crypto_word_t v)549 static crypto_word_t final_bit_to_all(crypto_word_t v) {
550   return lsb_to_all(v >> (BITS_IN_LAST_WORD - 1));
551 }
552 
553 // poly3_top_bits_are_clear returns one iff the extra bits in the final words of
554 // |p| are zero.
poly3_top_bits_are_clear(const struct poly3 * p)555 OPENSSL_UNUSED static int poly3_top_bits_are_clear(const struct poly3 *p) {
556   return poly2_top_bits_are_clear(&p->s) && poly2_top_bits_are_clear(&p->a);
557 }
558 
559 // poly3_mod_phiN reduces |p| by Φ(N).
poly3_mod_phiN(struct poly3 * p)560 static void poly3_mod_phiN(struct poly3 *p) {
561   // In order to reduce by Φ(N) we subtract by the value of the greatest
562   // coefficient.
563   const crypto_word_t factor_s = final_bit_to_all(p->s.v[WORDS_PER_POLY - 1]);
564   const crypto_word_t factor_a = final_bit_to_all(p->a.v[WORDS_PER_POLY - 1]);
565 
566   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
567     poly3_word_sub(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], factor_s,
568                    factor_a);
569   }
570 
571   poly2_clear_top_bits(&p->s);
572   poly2_clear_top_bits(&p->a);
573 }
574 
poly3_cswap(struct poly3 * a,struct poly3 * b,crypto_word_t swap)575 static void poly3_cswap(struct poly3 *a, struct poly3 *b, crypto_word_t swap) {
576   poly2_cswap(&a->s, &b->s, swap);
577   poly2_cswap(&a->a, &b->a, swap);
578 }
579 
poly3_lshift1(struct poly3 * p)580 static void poly3_lshift1(struct poly3 *p) {
581   poly2_lshift1(&p->s);
582   poly2_lshift1(&p->a);
583 }
584 
poly3_rshift1(struct poly3 * p)585 static void poly3_rshift1(struct poly3 *p) {
586   poly2_rshift1(&p->s);
587   poly2_rshift1(&p->a);
588 }
589 
590 // poly3_span represents a pointer into a poly3.
591 struct poly3_span {
592   crypto_word_t *s;
593   crypto_word_t *a;
594 };
595 
596 // poly3_span_add adds |n| words of values from |a| and |b| and writes the
597 // result to |out|.
poly3_span_add(const struct poly3_span * out,const struct poly3_span * a,const struct poly3_span * b,size_t n)598 static void poly3_span_add(const struct poly3_span *out,
599                            const struct poly3_span *a,
600                            const struct poly3_span *b, size_t n) {
601   for (size_t i = 0; i < n; i++) {
602     poly3_word_add(&out->s[i], &out->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
603   }
604 }
605 
606 // poly3_span_sub subtracts |n| words of |b| from |n| words of |a|.
poly3_span_sub(const struct poly3_span * a,const struct poly3_span * b,size_t n)607 static void poly3_span_sub(const struct poly3_span *a,
608                            const struct poly3_span *b, size_t n) {
609   for (size_t i = 0; i < n; i++) {
610     poly3_word_sub(&a->s[i], &a->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
611   }
612 }
613 
614 // poly3_mul_aux is a recursive function that multiplies |n| words from |a| and
615 // |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements of
616 // |scratch| and the function recurses, except if |n| == 1, when |scratch| isn't
617 // used and the recursion stops. For |n| in {11, 22}, the transitive total
618 // amount of |scratch| needed happens to be 2n+2.
poly3_mul_aux(const struct poly3_span * out,const struct poly3_span * scratch,const struct poly3_span * a,const struct poly3_span * b,size_t n)619 static void poly3_mul_aux(const struct poly3_span *out,
620                           const struct poly3_span *scratch,
621                           const struct poly3_span *a,
622                           const struct poly3_span *b, size_t n) {
623   if (n == 1) {
624     crypto_word_t r_s_low = 0, r_s_high = 0, r_a_low = 0, r_a_high = 0;
625     crypto_word_t b_s = b->s[0], b_a = b->a[0];
626     const crypto_word_t a_s = a->s[0], a_a = a->a[0];
627 
628     for (size_t i = 0; i < BITS_PER_WORD; i++) {
629       // Multiply (s, a) by the next value from (b_s, b_a).
630       crypto_word_t m_s, m_a;
631       poly3_word_mul(&m_s, &m_a, a_s, a_a, lsb_to_all(b_s), lsb_to_all(b_a));
632       b_s >>= 1;
633       b_a >>= 1;
634 
635       if (i == 0) {
636         // Special case otherwise the code tries to shift by BITS_PER_WORD
637         // below, which is undefined.
638         r_s_low = m_s;
639         r_a_low = m_a;
640         continue;
641       }
642 
643       // Shift the multiplication result to the correct position.
644       const crypto_word_t m_s_low = m_s << i;
645       const crypto_word_t m_s_high = m_s >> (BITS_PER_WORD - i);
646       const crypto_word_t m_a_low = m_a << i;
647       const crypto_word_t m_a_high = m_a >> (BITS_PER_WORD - i);
648 
649       // Add into the result.
650       poly3_word_add(&r_s_low, &r_a_low, r_s_low, r_a_low, m_s_low, m_a_low);
651       poly3_word_add(&r_s_high, &r_a_high, r_s_high, r_a_high, m_s_high,
652                      m_a_high);
653     }
654 
655     out->s[0] = r_s_low;
656     out->s[1] = r_s_high;
657     out->a[0] = r_a_low;
658     out->a[1] = r_a_high;
659     return;
660   }
661 
662   // Karatsuba multiplication.
663   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
664 
665   // When |n| is odd, the two "halves" will have different lengths. The first
666   // is always the smaller.
667   const size_t low_len = n / 2;
668   const size_t high_len = n - low_len;
669   const struct poly3_span a_high = {&a->s[low_len], &a->a[low_len]};
670   const struct poly3_span b_high = {&b->s[low_len], &b->a[low_len]};
671 
672   // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
673   // half.
674   const struct poly3_span a_cross_sum = *out;
675   const struct poly3_span b_cross_sum = {&out->s[high_len], &out->a[high_len]};
676   poly3_span_add(&a_cross_sum, a, &a_high, low_len);
677   poly3_span_add(&b_cross_sum, b, &b_high, low_len);
678   if (high_len != low_len) {
679     a_cross_sum.s[low_len] = a_high.s[low_len];
680     a_cross_sum.a[low_len] = a_high.a[low_len];
681     b_cross_sum.s[low_len] = b_high.s[low_len];
682     b_cross_sum.a[low_len] = b_high.a[low_len];
683   }
684 
685   const struct poly3_span child_scratch = {&scratch->s[2 * high_len],
686                                            &scratch->a[2 * high_len]};
687   const struct poly3_span out_mid = {&out->s[low_len], &out->a[low_len]};
688   const struct poly3_span out_high = {&out->s[2 * low_len],
689                                       &out->a[2 * low_len]};
690 
691   // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
692   poly3_mul_aux(scratch, &child_scratch, &a_cross_sum, &b_cross_sum, high_len);
693   // Calculate a_1 × b_1.
694   poly3_mul_aux(&out_high, &child_scratch, &a_high, &b_high, high_len);
695   // Calculate a_0 × b_0.
696   poly3_mul_aux(out, &child_scratch, a, b, low_len);
697 
698   // Subtract those last two products from the first.
699   poly3_span_sub(scratch, out, low_len * 2);
700   poly3_span_sub(scratch, &out_high, high_len * 2);
701 
702   // Add the middle product into the output.
703   poly3_span_add(&out_mid, &out_mid, scratch, high_len * 2);
704 }
705 
706 // HRSS_poly3_mul sets |*out| to |x|×|y| mod Φ(N).
HRSS_poly3_mul(struct poly3 * out,const struct poly3 * x,const struct poly3 * y)707 void HRSS_poly3_mul(struct poly3 *out, const struct poly3 *x,
708                     const struct poly3 *y) {
709   crypto_word_t prod_s[WORDS_PER_POLY * 2];
710   crypto_word_t prod_a[WORDS_PER_POLY * 2];
711   crypto_word_t scratch_s[WORDS_PER_POLY * 2 + 2];
712   crypto_word_t scratch_a[WORDS_PER_POLY * 2 + 2];
713   const struct poly3_span prod_span = {prod_s, prod_a};
714   const struct poly3_span scratch_span = {scratch_s, scratch_a};
715   const struct poly3_span x_span = {(crypto_word_t *)x->s.v,
716                                     (crypto_word_t *)x->a.v};
717   const struct poly3_span y_span = {(crypto_word_t *)y->s.v,
718                                     (crypto_word_t *)y->a.v};
719 
720   poly3_mul_aux(&prod_span, &scratch_span, &x_span, &y_span, WORDS_PER_POLY);
721 
722   // |prod| needs to be reduced mod (��^n - 1), which just involves adding the
723   // upper-half to the lower-half. However, N is 701, which isn't a multiple of
724   // BITS_PER_WORD, so the upper-half vectors all have to be shifted before
725   // being added to the lower-half.
726   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
727     crypto_word_t v_s = prod_s[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
728     v_s |= prod_s[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
729     crypto_word_t v_a = prod_a[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
730     v_a |= prod_a[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
731 
732     poly3_word_add(&out->s.v[i], &out->a.v[i], prod_s[i], prod_a[i], v_s, v_a);
733   }
734 
735   poly3_mod_phiN(out);
736 }
737 
738 #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
739 
740 // poly3_vec_cswap swaps (|a_s|, |a_a|) and (|b_s|, |b_a|) if |swap| is
741 // |0xff..ff|. Otherwise, |swap| must be zero.
poly3_vec_cswap(vec_t a_s[6],vec_t a_a[6],vec_t b_s[6],vec_t b_a[6],const vec_t swap)742 static inline void poly3_vec_cswap(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
743                                    vec_t b_a[6], const vec_t swap) {
744   for (int i = 0; i < 6; i++) {
745     const vec_t sum_s = swap & (a_s[i] ^ b_s[i]);
746     a_s[i] ^= sum_s;
747     b_s[i] ^= sum_s;
748 
749     const vec_t sum_a = swap & (a_a[i] ^ b_a[i]);
750     a_a[i] ^= sum_a;
751     b_a[i] ^= sum_a;
752   }
753 }
754 
755 // poly3_vec_fmsub subtracts (|ms|, |ma|) × (|b_s|, |b_a|) from (|a_s|, |a_a|).
poly3_vec_fmsub(vec_t a_s[6],vec_t a_a[6],vec_t b_s[6],vec_t b_a[6],const vec_t ms,const vec_t ma)756 static inline void poly3_vec_fmsub(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
757                                    vec_t b_a[6], const vec_t ms,
758                                    const vec_t ma) {
759   for (int i = 0; i < 6; i++) {
760     // See the bitslice formula, above.
761     const vec_t s = b_s[i];
762     const vec_t a = b_a[i];
763     const vec_t product_a = a & ma;
764     const vec_t product_s = (s ^ ms) & product_a;
765 
766     const vec_t out_s = a_s[i];
767     const vec_t out_a = a_a[i];
768     const vec_t t = out_a ^ product_a;
769     a_s[i] = (out_s ^ product_a) & (t ^ product_s);
770     a_a[i] = t | (out_s ^ product_s);
771   }
772 }
773 
774 // poly3_invert_vec sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
775 // Φ(N).
poly3_invert_vec(struct poly3 * out,const struct poly3 * in)776 static void poly3_invert_vec(struct poly3 *out, const struct poly3 *in) {
777   // This algorithm is taken from section 7.1 of [SAFEGCD].
778   const vec_t kZero = {0};
779   const vec_t kOne = {1};
780   static const uint8_t kBottomSixtyOne[sizeof(vec_t)] = {
781       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f};
782 
783   vec_t v_s[6], v_a[6], r_s[6], r_a[6], f_s[6], f_a[6], g_s[6], g_a[6];
784   // v = 0
785   memset(&v_s, 0, sizeof(v_s));
786   memset(&v_a, 0, sizeof(v_a));
787   // r = 1
788   memset(&r_s, 0, sizeof(r_s));
789   memset(&r_a, 0, sizeof(r_a));
790   r_a[0] = kOne;
791   // f = all ones.
792   memset(f_s, 0, sizeof(f_s));
793   memset(f_a, 0xff, 5 * sizeof(vec_t));
794   memcpy(&f_a[5], kBottomSixtyOne, sizeof(kBottomSixtyOne));
795   // g is the reversal of |in|.
796   struct poly3 in_reversed;
797   poly3_reverse_700(&in_reversed, in);
798   g_s[5] = kZero;
799   memcpy(&g_s, &in_reversed.s.v, WORDS_PER_POLY * sizeof(crypto_word_t));
800   g_a[5] = kZero;
801   memcpy(&g_a, &in_reversed.a.v, WORDS_PER_POLY * sizeof(crypto_word_t));
802 
803   int delta = 1;
804 
805   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
806     poly3_vec_lshift1(v_s, v_a);
807 
808     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
809     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
810     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
811     const vec_t g_has_constant_term = vec_broadcast_bit(g_a[0]);
812     const vec_t mask_w =
813         {delta_is_non_negative & delta_is_non_zero};
814     const vec_t mask = vec_broadcast_bit(mask_w) & g_has_constant_term;
815 
816     const vec_t c_a = vec_broadcast_bit(f_a[0] & g_a[0]);
817     const vec_t c_s = vec_broadcast_bit((f_s[0] ^ g_s[0]) & c_a);
818 
819     delta = constant_time_select_int(lsb_to_all(mask[0]), -delta, delta);
820     delta++;
821 
822     poly3_vec_cswap(f_s, f_a, g_s, g_a, mask);
823     poly3_vec_fmsub(g_s, g_a, f_s, f_a, c_s, c_a);
824     poly3_vec_rshift1(g_s, g_a);
825 
826     poly3_vec_cswap(v_s, v_a, r_s, r_a, mask);
827     poly3_vec_fmsub(r_s, r_a, v_s, v_a, c_s, c_a);
828   }
829 
830   assert(delta == 0);
831   memcpy(out->s.v, v_s, WORDS_PER_POLY * sizeof(crypto_word_t));
832   memcpy(out->a.v, v_a, WORDS_PER_POLY * sizeof(crypto_word_t));
833   poly3_mul_const(out, vec_get_word(f_s[0], 0), vec_get_word(f_a[0], 0));
834   poly3_reverse_700(out, out);
835 }
836 
837 #endif  // HRSS_HAVE_VECTOR_UNIT
838 
839 // HRSS_poly3_invert sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
840 // Φ(N).
HRSS_poly3_invert(struct poly3 * out,const struct poly3 * in)841 void HRSS_poly3_invert(struct poly3 *out, const struct poly3 *in) {
842   // The vector version of this function seems slightly slower on AArch64, but
843   // is useful on ARMv7 and x86-64.
844 #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
845   if (vec_capable()) {
846     poly3_invert_vec(out, in);
847     return;
848   }
849 #endif
850 
851   // This algorithm is taken from section 7.1 of [SAFEGCD].
852   struct poly3 v, r, f, g;
853   // v = 0
854   poly3_zero(&v);
855   // r = 1
856   poly3_zero(&r);
857   r.a.v[0] = 1;
858   // f = all ones.
859   OPENSSL_memset(&f.s, 0, sizeof(struct poly2));
860   OPENSSL_memset(&f.a, 0xff, sizeof(struct poly2));
861   f.a.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
862   // g is the reversal of |in|.
863   poly3_reverse_700(&g, in);
864   int delta = 1;
865 
866   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
867     poly3_lshift1(&v);
868 
869     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
870     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
871     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
872     const crypto_word_t g_has_constant_term = lsb_to_all(g.a.v[0]);
873     const crypto_word_t mask =
874         g_has_constant_term & delta_is_non_negative & delta_is_non_zero;
875 
876     crypto_word_t c_s, c_a;
877     poly3_word_mul(&c_s, &c_a, f.s.v[0], f.a.v[0], g.s.v[0], g.a.v[0]);
878     c_s = lsb_to_all(c_s);
879     c_a = lsb_to_all(c_a);
880 
881     delta = constant_time_select_int(mask, -delta, delta);
882     delta++;
883 
884     poly3_cswap(&f, &g, mask);
885     poly3_fmsub(&g, &f, c_s, c_a);
886     poly3_rshift1(&g);
887 
888     poly3_cswap(&v, &r, mask);
889     poly3_fmsub(&r, &v, c_s, c_a);
890   }
891 
892   assert(delta == 0);
893   poly3_mul_const(&v, f.s.v[0], f.a.v[0]);
894   poly3_reverse_700(out, &v);
895 }
896 
897 // Polynomials in Q.
898 
899 // Coefficients are reduced mod Q. (Q is clearly not prime, therefore the
900 // coefficients do not form a field.)
901 #define Q 8192
902 
903 // VECS_PER_POLY is the number of 128-bit vectors needed to represent a
904 // polynomial.
905 #define COEFFICIENTS_PER_VEC (sizeof(vec_t) / sizeof(uint16_t))
906 #define VECS_PER_POLY ((N + COEFFICIENTS_PER_VEC - 1) / COEFFICIENTS_PER_VEC)
907 
908 // poly represents a polynomial with coefficients mod Q. Note that, while Q is a
909 // power of two, this does not operate in GF(Q). That would be a binary field
910 // but this is simply mod Q. Thus the coefficients are not a field.
911 //
912 // Coefficients are ordered little-endian, thus the coefficient of x^0 is the
913 // first element of the array.
914 struct poly {
915 #if defined(HRSS_HAVE_VECTOR_UNIT)
916   union {
917     // N + 3 = 704, which is a multiple of 64 and thus aligns things, esp for
918     // the vector code.
919     uint16_t v[N + 3];
920     vec_t vectors[VECS_PER_POLY];
921   };
922 #else
923   // Even if !HRSS_HAVE_VECTOR_UNIT, external assembly may be called that
924   // requires alignment.
925   alignas(16) uint16_t v[N + 3];
926 #endif
927 };
928 
929 // poly_normalize zeros out the excess elements of |x| which are included only
930 // for alignment.
poly_normalize(struct poly * x)931 static void poly_normalize(struct poly *x) {
932   OPENSSL_memset(&x->v[N], 0, 3 * sizeof(uint16_t));
933 }
934 
935 // poly_assert_normalized asserts that the excess elements of |x| are zeroed out
936 // for the cases that case. (E.g. |poly_mul_vec|.)
poly_assert_normalized(const struct poly * x)937 static void poly_assert_normalized(const struct poly *x) {
938   assert(x->v[N] == 0);
939   assert(x->v[N + 1] == 0);
940   assert(x->v[N + 2] == 0);
941 }
942 
poly_print(const struct poly * p)943 OPENSSL_UNUSED static void poly_print(const struct poly *p) {
944   printf("[");
945   for (unsigned i = 0; i < N; i++) {
946     if (i) {
947       printf(" ");
948     }
949     printf("%d", p->v[i]);
950   }
951   printf("]\n");
952 }
953 
954 // POLY_MUL_SCRATCH contains space for the working variables needed by
955 // |poly_mul|. The contents afterwards may be discarded, but the object may also
956 // be reused with future |poly_mul| calls to save heap allocations.
957 //
958 // This object must have 32-byte alignment.
959 struct POLY_MUL_SCRATCH {
960   union {
961     // This is used by |poly_mul_novec|.
962     struct {
963       uint16_t prod[2 * N];
964       uint16_t scratch[1318];
965     } novec;
966 
967 #if defined(HRSS_HAVE_VECTOR_UNIT)
968     // This is used by |poly_mul_vec|.
969     struct {
970       vec_t prod[VECS_PER_POLY * 2];
971       vec_t scratch[172];
972     } vec;
973 #endif
974 
975 #if defined(POLY_RQ_MUL_ASM)
976     // This is the space used by |poly_Rq_mul|.
977     uint8_t rq[POLY_MUL_RQ_SCRATCH_SPACE];
978 #endif
979   } u;
980 };
981 
982 #if defined(HRSS_HAVE_VECTOR_UNIT)
983 
984 // poly_mul_vec_aux is a recursive function that multiplies |n| words from |a|
985 // and |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements
986 // of |scratch| and the function recurses, except if |n| < 3, when |scratch|
987 // isn't used and the recursion stops. If |n| == |VECS_PER_POLY| then |scratch|
988 // needs 172 elements.
poly_mul_vec_aux(vec_t * restrict out,vec_t * restrict scratch,const vec_t * restrict a,const vec_t * restrict b,const size_t n)989 static void poly_mul_vec_aux(vec_t *restrict out, vec_t *restrict scratch,
990                              const vec_t *restrict a, const vec_t *restrict b,
991                              const size_t n) {
992   // In [HRSS], the technique they used for polynomial multiplication is
993   // described: they start with Toom-4 at the top level and then two layers of
994   // Karatsuba. Karatsuba is a specific instance of the general Toom–Cook
995   // decomposition, which splits an input n-ways and produces 2n-1
996   // multiplications of those parts. So, starting with 704 coefficients (rounded
997   // up from 701 to have more factors of two), Toom-4 gives seven
998   // multiplications of degree-174 polynomials. Each round of Karatsuba (which
999   // is Toom-2) increases the number of multiplications by a factor of three
1000   // while halving the size of the values being multiplied. So two rounds gives
1001   // 63 multiplications of degree-44 polynomials. Then they (I think) form
1002   // vectors by gathering all 63 coefficients of each power together, for each
1003   // input, and doing more rounds of Karatsuba on the vectors until they bottom-
1004   // out somewhere with schoolbook multiplication.
1005   //
1006   // I tried something like that for NEON. NEON vectors are 128 bits so hold
1007   // eight coefficients. I wrote a function that did Karatsuba on eight
1008   // multiplications at the same time, using such vectors, and a Go script that
1009   // decomposed from degree-704, with Karatsuba in non-transposed form, until it
1010   // reached multiplications of degree-44. It batched up those 81
1011   // multiplications into lots of eight with a single one left over (which was
1012   // handled directly).
1013   //
1014   // It worked, but it was significantly slower than the dumb algorithm used
1015   // below. Potentially that was because I misunderstood how [HRSS] did it, or
1016   // because Clang is bad at generating good code from NEON intrinsics on ARMv7.
1017   // (Which is true: the code generated by Clang for the below is pretty crap.)
1018   //
1019   // This algorithm is much simpler. It just does Karatsuba decomposition all
1020   // the way down and never transposes. When it gets down to degree-16 or
1021   // degree-24 values, they are multiplied using schoolbook multiplication and
1022   // vector intrinsics. The vector operations form each of the eight phase-
1023   // shifts of one of the inputs, point-wise multiply, and then add into the
1024   // result at the correct place. This means that 33% (degree-16) or 25%
1025   // (degree-24) of the multiplies and adds are wasted, but it does ok.
1026   if (n == 2) {
1027     vec_t result[4];
1028     vec_t vec_a[3];
1029     static const vec_t kZero = {0};
1030     vec_a[0] = a[0];
1031     vec_a[1] = a[1];
1032     vec_a[2] = kZero;
1033 
1034     result[0] = vec_mul(vec_a[0], vec_get_word(b[0], 0));
1035     result[1] = vec_mul(vec_a[1], vec_get_word(b[0], 0));
1036 
1037     result[1] = vec_fma(result[1], vec_a[0], vec_get_word(b[1], 0));
1038     result[2] = vec_mul(vec_a[1], vec_get_word(b[1], 0));
1039     result[3] = kZero;
1040 
1041     vec3_rshift_word(vec_a);
1042 
1043 #define BLOCK(x, y)                                                      \
1044   do {                                                                   \
1045     result[x + 0] =                                                      \
1046         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1047     result[x + 1] =                                                      \
1048         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1049     result[x + 2] =                                                      \
1050         vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
1051   } while (0)
1052 
1053     BLOCK(0, 1);
1054     BLOCK(1, 9);
1055 
1056     vec3_rshift_word(vec_a);
1057 
1058     BLOCK(0, 2);
1059     BLOCK(1, 10);
1060 
1061     vec3_rshift_word(vec_a);
1062 
1063     BLOCK(0, 3);
1064     BLOCK(1, 11);
1065 
1066     vec3_rshift_word(vec_a);
1067 
1068     BLOCK(0, 4);
1069     BLOCK(1, 12);
1070 
1071     vec3_rshift_word(vec_a);
1072 
1073     BLOCK(0, 5);
1074     BLOCK(1, 13);
1075 
1076     vec3_rshift_word(vec_a);
1077 
1078     BLOCK(0, 6);
1079     BLOCK(1, 14);
1080 
1081     vec3_rshift_word(vec_a);
1082 
1083     BLOCK(0, 7);
1084     BLOCK(1, 15);
1085 
1086 #undef BLOCK
1087 
1088     memcpy(out, result, sizeof(result));
1089     return;
1090   }
1091 
1092   if (n == 3) {
1093     vec_t result[6];
1094     vec_t vec_a[4];
1095     static const vec_t kZero = {0};
1096     vec_a[0] = a[0];
1097     vec_a[1] = a[1];
1098     vec_a[2] = a[2];
1099     vec_a[3] = kZero;
1100 
1101     result[0] = vec_mul(a[0], vec_get_word(b[0], 0));
1102     result[1] = vec_mul(a[1], vec_get_word(b[0], 0));
1103     result[2] = vec_mul(a[2], vec_get_word(b[0], 0));
1104 
1105 #define BLOCK_PRE(x, y)                                                  \
1106   do {                                                                   \
1107     result[x + 0] =                                                      \
1108         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1109     result[x + 1] =                                                      \
1110         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1111     result[x + 2] = vec_mul(vec_a[2], vec_get_word(b[y / 8], y % 8));    \
1112   } while (0)
1113 
1114     BLOCK_PRE(1, 8);
1115     BLOCK_PRE(2, 16);
1116 
1117     result[5] = kZero;
1118 
1119     vec4_rshift_word(vec_a);
1120 
1121 #define BLOCK(x, y)                                                      \
1122   do {                                                                   \
1123     result[x + 0] =                                                      \
1124         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1125     result[x + 1] =                                                      \
1126         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1127     result[x + 2] =                                                      \
1128         vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
1129     result[x + 3] =                                                      \
1130         vec_fma(result[x + 3], vec_a[3], vec_get_word(b[y / 8], y % 8)); \
1131   } while (0)
1132 
1133     BLOCK(0, 1);
1134     BLOCK(1, 9);
1135     BLOCK(2, 17);
1136 
1137     vec4_rshift_word(vec_a);
1138 
1139     BLOCK(0, 2);
1140     BLOCK(1, 10);
1141     BLOCK(2, 18);
1142 
1143     vec4_rshift_word(vec_a);
1144 
1145     BLOCK(0, 3);
1146     BLOCK(1, 11);
1147     BLOCK(2, 19);
1148 
1149     vec4_rshift_word(vec_a);
1150 
1151     BLOCK(0, 4);
1152     BLOCK(1, 12);
1153     BLOCK(2, 20);
1154 
1155     vec4_rshift_word(vec_a);
1156 
1157     BLOCK(0, 5);
1158     BLOCK(1, 13);
1159     BLOCK(2, 21);
1160 
1161     vec4_rshift_word(vec_a);
1162 
1163     BLOCK(0, 6);
1164     BLOCK(1, 14);
1165     BLOCK(2, 22);
1166 
1167     vec4_rshift_word(vec_a);
1168 
1169     BLOCK(0, 7);
1170     BLOCK(1, 15);
1171     BLOCK(2, 23);
1172 
1173 #undef BLOCK
1174 #undef BLOCK_PRE
1175 
1176     memcpy(out, result, sizeof(result));
1177 
1178     return;
1179   }
1180 
1181   // Karatsuba multiplication.
1182   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
1183 
1184   // When |n| is odd, the two "halves" will have different lengths. The first is
1185   // always the smaller.
1186   const size_t low_len = n / 2;
1187   const size_t high_len = n - low_len;
1188   const vec_t *a_high = &a[low_len];
1189   const vec_t *b_high = &b[low_len];
1190 
1191   // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
1192   // half.
1193   for (size_t i = 0; i < low_len; i++) {
1194     out[i] = vec_add(a_high[i], a[i]);
1195     out[high_len + i] = vec_add(b_high[i], b[i]);
1196   }
1197   if (high_len != low_len) {
1198     out[low_len] = a_high[low_len];
1199     out[high_len + low_len] = b_high[low_len];
1200   }
1201 
1202   vec_t *const child_scratch = &scratch[2 * high_len];
1203   // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
1204   poly_mul_vec_aux(scratch, child_scratch, out, &out[high_len], high_len);
1205   // Calculate a_1 × b_1.
1206   poly_mul_vec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len);
1207   // Calculate a_0 × b_0.
1208   poly_mul_vec_aux(out, child_scratch, a, b, low_len);
1209 
1210   // Subtract those last two products from the first.
1211   for (size_t i = 0; i < low_len * 2; i++) {
1212     scratch[i] = vec_sub(scratch[i], vec_add(out[i], out[low_len * 2 + i]));
1213   }
1214   if (low_len != high_len) {
1215     scratch[low_len * 2] = vec_sub(scratch[low_len * 2], out[low_len * 4]);
1216     scratch[low_len * 2 + 1] =
1217         vec_sub(scratch[low_len * 2 + 1], out[low_len * 4 + 1]);
1218   }
1219 
1220   // Add the middle product into the output.
1221   for (size_t i = 0; i < high_len * 2; i++) {
1222     out[low_len + i] = vec_add(out[low_len + i], scratch[i]);
1223   }
1224 }
1225 
1226 // poly_mul_vec sets |*out| to |x|×|y| mod (��^n - 1).
poly_mul_vec(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * x,const struct poly * y)1227 static void poly_mul_vec(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1228                          const struct poly *x, const struct poly *y) {
1229   static_assert(sizeof(out->v) == sizeof(vec_t) * VECS_PER_POLY,
1230                 "struct poly is the wrong size");
1231   static_assert(alignof(struct poly) == alignof(vec_t),
1232                 "struct poly has incorrect alignment");
1233   poly_assert_normalized(x);
1234   poly_assert_normalized(y);
1235 
1236   vec_t *const prod = scratch->u.vec.prod;
1237   vec_t *const aux_scratch = scratch->u.vec.scratch;
1238   poly_mul_vec_aux(prod, aux_scratch, x->vectors, y->vectors, VECS_PER_POLY);
1239 
1240   // |prod| needs to be reduced mod (��^n - 1), which just involves adding the
1241   // upper-half to the lower-half. However, N is 701, which isn't a multiple of
1242   // the vector size, so the upper-half vectors all have to be shifted before
1243   // being added to the lower-half.
1244   vec_t *out_vecs = (vec_t *)out->v;
1245 
1246   for (size_t i = 0; i < VECS_PER_POLY; i++) {
1247     const vec_t prev = prod[VECS_PER_POLY - 1 + i];
1248     const vec_t this = prod[VECS_PER_POLY + i];
1249     out_vecs[i] = vec_add(prod[i], vec_merge_3_5(prev, this));
1250   }
1251 
1252   OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
1253 }
1254 
1255 #endif  // HRSS_HAVE_VECTOR_UNIT
1256 
1257 // poly_mul_novec_aux writes the product of |a| and |b| to |out|, using
1258 // |scratch| as scratch space. It'll use Karatsuba if the inputs are large
1259 // enough to warrant it. Each call uses 2*ceil(n/2) elements of |scratch| and
1260 // the function recurses, except if |n| < 64, when |scratch| isn't used and the
1261 // recursion stops. If |n| == |N| then |scratch| needs 1318 elements.
poly_mul_novec_aux(uint16_t * out,uint16_t * scratch,const uint16_t * a,const uint16_t * b,size_t n)1262 static void poly_mul_novec_aux(uint16_t *out, uint16_t *scratch,
1263                                const uint16_t *a, const uint16_t *b, size_t n) {
1264   static const size_t kSchoolbookLimit = 64;
1265   if (n < kSchoolbookLimit) {
1266     OPENSSL_memset(out, 0, sizeof(uint16_t) * n * 2);
1267     for (size_t i = 0; i < n; i++) {
1268       for (size_t j = 0; j < n; j++) {
1269         out[i + j] += (unsigned) a[i] * b[j];
1270       }
1271     }
1272 
1273     return;
1274   }
1275 
1276   // Karatsuba multiplication.
1277   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
1278 
1279   // When |n| is odd, the two "halves" will have different lengths. The
1280   // first is always the smaller.
1281   const size_t low_len = n / 2;
1282   const size_t high_len = n - low_len;
1283   const uint16_t *const a_high = &a[low_len];
1284   const uint16_t *const b_high = &b[low_len];
1285 
1286   for (size_t i = 0; i < low_len; i++) {
1287     out[i] = a_high[i] + a[i];
1288     out[high_len + i] = b_high[i] + b[i];
1289   }
1290   if (high_len != low_len) {
1291     out[low_len] = a_high[low_len];
1292     out[high_len + low_len] = b_high[low_len];
1293   }
1294 
1295   uint16_t *const child_scratch = &scratch[2 * high_len];
1296   poly_mul_novec_aux(scratch, child_scratch, out, &out[high_len], high_len);
1297   poly_mul_novec_aux(&out[low_len * 2], child_scratch, a_high, b_high,
1298                      high_len);
1299   poly_mul_novec_aux(out, child_scratch, a, b, low_len);
1300 
1301   for (size_t i = 0; i < low_len * 2; i++) {
1302     scratch[i] -= out[i] + out[low_len * 2 + i];
1303   }
1304   if (low_len != high_len) {
1305     scratch[low_len * 2] -= out[low_len * 4];
1306     assert(out[low_len * 4 + 1] == 0);
1307   }
1308 
1309   for (size_t i = 0; i < high_len * 2; i++) {
1310     out[low_len + i] += scratch[i];
1311   }
1312 }
1313 
1314 // poly_mul_novec sets |*out| to |x|×|y| mod (��^n - 1).
poly_mul_novec(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * x,const struct poly * y)1315 static void poly_mul_novec(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1316                            const struct poly *x, const struct poly *y) {
1317   uint16_t *const prod = scratch->u.novec.prod;
1318   uint16_t *const aux_scratch = scratch->u.novec.scratch;
1319   poly_mul_novec_aux(prod, aux_scratch, x->v, y->v, N);
1320 
1321   for (size_t i = 0; i < N; i++) {
1322     out->v[i] = prod[i] + prod[i + N];
1323   }
1324   OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
1325 }
1326 
poly_mul(struct POLY_MUL_SCRATCH * scratch,struct poly * r,const struct poly * a,const struct poly * b)1327 static void poly_mul(struct POLY_MUL_SCRATCH *scratch, struct poly *r,
1328                      const struct poly *a, const struct poly *b) {
1329 #if defined(POLY_RQ_MUL_ASM)
1330   if (CRYPTO_is_AVX2_capable()) {
1331     poly_Rq_mul(r->v, a->v, b->v, scratch->u.rq);
1332     poly_normalize(r);
1333   } else
1334 #endif
1335 
1336 #if defined(HRSS_HAVE_VECTOR_UNIT)
1337   if (vec_capable()) {
1338     poly_mul_vec(scratch, r, a, b);
1339   } else
1340 #endif
1341 
1342   // Fallback, non-vector case.
1343   {
1344     poly_mul_novec(scratch, r, a, b);
1345   }
1346 
1347   poly_assert_normalized(r);
1348 }
1349 
1350 // poly_mul_x_minus_1 sets |p| to |p|×(�� - 1) mod (��^n - 1).
poly_mul_x_minus_1(struct poly * p)1351 static void poly_mul_x_minus_1(struct poly *p) {
1352   // Multiplying by (�� - 1) means negating each coefficient and adding in
1353   // the value of the previous one.
1354   const uint16_t orig_final_coefficient = p->v[N - 1];
1355 
1356   for (size_t i = N - 1; i > 0; i--) {
1357     p->v[i] = p->v[i - 1] - p->v[i];
1358   }
1359   p->v[0] = orig_final_coefficient - p->v[0];
1360 }
1361 
1362 // poly_mod_phiN sets |p| to |p| mod Φ(N).
poly_mod_phiN(struct poly * p)1363 static void poly_mod_phiN(struct poly *p) {
1364   const uint16_t coeff700 = p->v[N - 1];
1365 
1366   for (unsigned i = 0; i < N; i++) {
1367     p->v[i] -= coeff700;
1368   }
1369 }
1370 
1371 // poly_clamp reduces each coefficient mod Q.
poly_clamp(struct poly * p)1372 static void poly_clamp(struct poly *p) {
1373   for (unsigned i = 0; i < N; i++) {
1374     p->v[i] &= Q - 1;
1375   }
1376 }
1377 
1378 
1379 // Conversion functions
1380 // --------------------
1381 
1382 // poly2_from_poly sets |*out| to |in| mod 2.
poly2_from_poly(struct poly2 * out,const struct poly * in)1383 static void poly2_from_poly(struct poly2 *out, const struct poly *in) {
1384   crypto_word_t *words = out->v;
1385   unsigned shift = 0;
1386   crypto_word_t word = 0;
1387 
1388   for (unsigned i = 0; i < N; i++) {
1389     word >>= 1;
1390     word |= (crypto_word_t)(in->v[i] & 1) << (BITS_PER_WORD - 1);
1391     shift++;
1392 
1393     if (shift == BITS_PER_WORD) {
1394       *words = word;
1395       words++;
1396       word = 0;
1397       shift = 0;
1398     }
1399   }
1400 
1401   word >>= BITS_PER_WORD - shift;
1402   *words = word;
1403 }
1404 
1405 // mod3 treats |a| as a signed number and returns |a| mod 3.
mod3(int16_t a)1406 static uint16_t mod3(int16_t a) {
1407   const int16_t q = ((int32_t)a * 21845) >> 16;
1408   int16_t ret = a - 3 * q;
1409   // At this point, |ret| is in {0, 1, 2, 3} and that needs to be mapped to {0,
1410   // 1, 2, 0}.
1411   return ret & ((ret & (ret >> 1)) - 1);
1412 }
1413 
1414 // poly3_from_poly sets |*out| to |in|.
poly3_from_poly(struct poly3 * out,const struct poly * in)1415 static void poly3_from_poly(struct poly3 *out, const struct poly *in) {
1416   crypto_word_t *words_s = out->s.v;
1417   crypto_word_t *words_a = out->a.v;
1418   crypto_word_t s = 0;
1419   crypto_word_t a = 0;
1420   unsigned shift = 0;
1421 
1422   for (unsigned i = 0; i < N; i++) {
1423     // This duplicates the 13th bit upwards to the top of the uint16,
1424     // essentially treating it as a sign bit and converting into a signed int16.
1425     // The signed value is reduced mod 3, yielding {0, 1, 2}.
1426     const uint16_t v = mod3((int16_t)(in->v[i] << 3) >> 3);
1427     s >>= 1;
1428     const crypto_word_t s_bit = (crypto_word_t)(v & 2) << (BITS_PER_WORD - 2);
1429     s |= s_bit;
1430     a >>= 1;
1431     a |= s_bit | (crypto_word_t)(v & 1) << (BITS_PER_WORD - 1);
1432     shift++;
1433 
1434     if (shift == BITS_PER_WORD) {
1435       *words_s = s;
1436       words_s++;
1437       *words_a = a;
1438       words_a++;
1439       s = a = 0;
1440       shift = 0;
1441     }
1442   }
1443 
1444   s >>= BITS_PER_WORD - shift;
1445   a >>= BITS_PER_WORD - shift;
1446   *words_s = s;
1447   *words_a = a;
1448 }
1449 
1450 // poly3_from_poly_checked sets |*out| to |in|, which has coefficients in {0, 1,
1451 // Q-1}. It returns a mask indicating whether all coefficients were found to be
1452 // in that set.
poly3_from_poly_checked(struct poly3 * out,const struct poly * in)1453 static crypto_word_t poly3_from_poly_checked(struct poly3 *out,
1454                                              const struct poly *in) {
1455   crypto_word_t *words_s = out->s.v;
1456   crypto_word_t *words_a = out->a.v;
1457   crypto_word_t s = 0;
1458   crypto_word_t a = 0;
1459   unsigned shift = 0;
1460   crypto_word_t ok = CONSTTIME_TRUE_W;
1461 
1462   for (unsigned i = 0; i < N; i++) {
1463     const uint16_t v = in->v[i];
1464     // Maps {0, 1, Q-1} to {0, 1, 2}.
1465     uint16_t mod3 = v & 3;
1466     mod3 ^= mod3 >> 1;
1467     const uint16_t expected = (uint16_t)((~((mod3 >> 1) - 1)) | mod3) % Q;
1468     ok &= constant_time_eq_w(v, expected);
1469 
1470     s >>= 1;
1471     const crypto_word_t s_bit = (crypto_word_t)(mod3 & 2)
1472                                 << (BITS_PER_WORD - 2);
1473     s |= s_bit;
1474     a >>= 1;
1475     a |= s_bit | (crypto_word_t)(mod3 & 1) << (BITS_PER_WORD - 1);
1476     shift++;
1477 
1478     if (shift == BITS_PER_WORD) {
1479       *words_s = s;
1480       words_s++;
1481       *words_a = a;
1482       words_a++;
1483       s = a = 0;
1484       shift = 0;
1485     }
1486   }
1487 
1488   s >>= BITS_PER_WORD - shift;
1489   a >>= BITS_PER_WORD - shift;
1490   *words_s = s;
1491   *words_a = a;
1492 
1493   return ok;
1494 }
1495 
poly_from_poly2(struct poly * out,const struct poly2 * in)1496 static void poly_from_poly2(struct poly *out, const struct poly2 *in) {
1497   const crypto_word_t *words = in->v;
1498   unsigned shift = 0;
1499   crypto_word_t word = *words;
1500 
1501   for (unsigned i = 0; i < N; i++) {
1502     out->v[i] = word & 1;
1503     word >>= 1;
1504     shift++;
1505 
1506     if (shift == BITS_PER_WORD) {
1507       words++;
1508       word = *words;
1509       shift = 0;
1510     }
1511   }
1512 
1513   poly_normalize(out);
1514 }
1515 
poly_from_poly3(struct poly * out,const struct poly3 * in)1516 static void poly_from_poly3(struct poly *out, const struct poly3 *in) {
1517   const crypto_word_t *words_s = in->s.v;
1518   const crypto_word_t *words_a = in->a.v;
1519   crypto_word_t word_s = ~(*words_s);
1520   crypto_word_t word_a = *words_a;
1521   unsigned shift = 0;
1522 
1523   for (unsigned i = 0; i < N; i++) {
1524     out->v[i] = (uint16_t)(word_s & 1) - 1;
1525     out->v[i] |= word_a & 1;
1526     word_s >>= 1;
1527     word_a >>= 1;
1528     shift++;
1529 
1530     if (shift == BITS_PER_WORD) {
1531       words_s++;
1532       words_a++;
1533       word_s = ~(*words_s);
1534       word_a = *words_a;
1535       shift = 0;
1536     }
1537   }
1538 
1539   poly_normalize(out);
1540 }
1541 
1542 // Polynomial inversion
1543 // --------------------
1544 
1545 // poly_invert_mod2 sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod
1546 // Φ(N)), all mod 2. This isn't useful in itself, but is part of doing inversion
1547 // mod Q.
poly_invert_mod2(struct poly * out,const struct poly * in)1548 static void poly_invert_mod2(struct poly *out, const struct poly *in) {
1549   // This algorithm is taken from section 7.1 of [SAFEGCD].
1550   struct poly2 v, r, f, g;
1551 
1552   // v = 0
1553   poly2_zero(&v);
1554   // r = 1
1555   poly2_zero(&r);
1556   r.v[0] = 1;
1557   // f = all ones.
1558   OPENSSL_memset(&f, 0xff, sizeof(struct poly2));
1559   f.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
1560   // g is the reversal of |in|.
1561   poly2_from_poly(&g, in);
1562   poly2_mod_phiN(&g);
1563   poly2_reverse_700(&g, &g);
1564   int delta = 1;
1565 
1566   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
1567     poly2_lshift1(&v);
1568 
1569     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
1570     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
1571     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
1572     const crypto_word_t g_has_constant_term = lsb_to_all(g.v[0]);
1573     const crypto_word_t mask =
1574         g_has_constant_term & delta_is_non_negative & delta_is_non_zero;
1575 
1576     const crypto_word_t c = lsb_to_all(f.v[0] & g.v[0]);
1577 
1578     delta = constant_time_select_int(mask, -delta, delta);
1579     delta++;
1580 
1581     poly2_cswap(&f, &g, mask);
1582     poly2_fmadd(&g, &f, c);
1583     poly2_rshift1(&g);
1584 
1585     poly2_cswap(&v, &r, mask);
1586     poly2_fmadd(&r, &v, c);
1587   }
1588 
1589   assert(delta == 0);
1590   assert(f.v[0] & 1);
1591   poly2_reverse_700(&v, &v);
1592   poly_from_poly2(out, &v);
1593   poly_assert_normalized(out);
1594 }
1595 
1596 // poly_invert sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod Φ(N)).
poly_invert(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * in)1597 static void poly_invert(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1598                         const struct poly *in) {
1599   // Inversion mod Q, which is done based on the result of inverting mod
1600   // 2. See [NTRUTN14] paper, bottom of page two.
1601   struct poly a, *b, tmp;
1602 
1603   // a = -in.
1604   for (unsigned i = 0; i < N; i++) {
1605     a.v[i] = -in->v[i];
1606   }
1607   poly_normalize(&a);
1608 
1609   // b = in^-1 mod 2.
1610   b = out;
1611   poly_invert_mod2(b, in);
1612 
1613   // We are working mod Q=2**13 and we need to iterate ceil(log_2(13))
1614   // times, which is four.
1615   for (unsigned i = 0; i < 4; i++) {
1616     poly_mul(scratch, &tmp, &a, b);
1617     tmp.v[0] += 2;
1618     poly_mul(scratch, b, b, &tmp);
1619   }
1620 
1621   poly_assert_normalized(out);
1622 }
1623 
1624 // Marshal and unmarshal functions for various basic types.
1625 // --------------------------------------------------------
1626 
1627 #define POLY_BYTES 1138
1628 
1629 // poly_marshal serialises all but the final coefficient of |in| to |out|.
poly_marshal(uint8_t out[POLY_BYTES],const struct poly * in)1630 static void poly_marshal(uint8_t out[POLY_BYTES], const struct poly *in) {
1631   const uint16_t *p = in->v;
1632 
1633   for (size_t i = 0; i < N / 8; i++) {
1634     out[0] = p[0];
1635     out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
1636     out[2] = p[1] >> 3;
1637     out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
1638     out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
1639     out[5] = p[3] >> 1;
1640     out[6] = (0xf & (p[3] >> 9)) | ((p[4] & 0x0f) << 4);
1641     out[7] = p[4] >> 4;
1642     out[8] = (1 & (p[4] >> 12)) | ((p[5] & 0x7f) << 1);
1643     out[9] = (0x3f & (p[5] >> 7)) | ((p[6] & 0x03) << 6);
1644     out[10] = p[6] >> 2;
1645     out[11] = (7 & (p[6] >> 10)) | ((p[7] & 0x1f) << 3);
1646     out[12] = p[7] >> 5;
1647 
1648     p += 8;
1649     out += 13;
1650   }
1651 
1652   // There are four remaining values.
1653   out[0] = p[0];
1654   out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
1655   out[2] = p[1] >> 3;
1656   out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
1657   out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
1658   out[5] = p[3] >> 1;
1659   out[6] = 0xf & (p[3] >> 9);
1660 }
1661 
1662 // poly_unmarshal parses the output of |poly_marshal| and sets |out| such that
1663 // all but the final coefficients match, and the final coefficient is calculated
1664 // such that evaluating |out| at one results in zero. It returns one on success
1665 // or zero if |in| is an invalid encoding.
poly_unmarshal(struct poly * out,const uint8_t in[POLY_BYTES])1666 static int poly_unmarshal(struct poly *out, const uint8_t in[POLY_BYTES]) {
1667   uint16_t *p = out->v;
1668 
1669   for (size_t i = 0; i < N / 8; i++) {
1670     p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
1671     p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
1672            (uint16_t)(in[3] & 3) << 11;
1673     p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
1674     p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
1675            (uint16_t)(in[6] & 0xf) << 9;
1676     p[4] = (uint16_t)(in[6] >> 4) | (uint16_t)(in[7]) << 4 |
1677            (uint16_t)(in[8] & 1) << 12;
1678     p[5] = (uint16_t)(in[8] >> 1) | (uint16_t)(in[9] & 0x3f) << 7;
1679     p[6] = (uint16_t)(in[9] >> 6) | (uint16_t)(in[10]) << 2 |
1680            (uint16_t)(in[11] & 7) << 10;
1681     p[7] = (uint16_t)(in[11] >> 3) | (uint16_t)(in[12]) << 5;
1682 
1683     p += 8;
1684     in += 13;
1685   }
1686 
1687   // There are four coefficients remaining.
1688   p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
1689   p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
1690          (uint16_t)(in[3] & 3) << 11;
1691   p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
1692   p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
1693          (uint16_t)(in[6] & 0xf) << 9;
1694 
1695   for (unsigned i = 0; i < N - 1; i++) {
1696     out->v[i] = (int16_t)(out->v[i] << 3) >> 3;
1697   }
1698 
1699   // There are four unused bits in the last byte. We require them to be zero.
1700   if ((in[6] & 0xf0) != 0) {
1701     return 0;
1702   }
1703 
1704   // Set the final coefficient as specifed in [HRSSNIST] 1.9.2 step 6.
1705   uint32_t sum = 0;
1706   for (size_t i = 0; i < N - 1; i++) {
1707     sum += out->v[i];
1708   }
1709 
1710   out->v[N - 1] = (uint16_t)(0u - sum);
1711   poly_normalize(out);
1712 
1713   return 1;
1714 }
1715 
1716 // mod3_from_modQ maps {0, 1, Q-1, 65535} -> {0, 1, 2, 2}. Note that |v| may
1717 // have an invalid value when processing attacker-controlled inputs.
mod3_from_modQ(uint16_t v)1718 static uint16_t mod3_from_modQ(uint16_t v) {
1719   v &= 3;
1720   return v ^ (v >> 1);
1721 }
1722 
1723 // poly_marshal_mod3 marshals |in| to |out| where the coefficients of |in| are
1724 // all in {0, 1, Q-1, 65535} and |in| is mod Φ(N). (Note that coefficients may
1725 // have invalid values when processing attacker-controlled inputs.)
poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES],const struct poly * in)1726 static void poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES],
1727                               const struct poly *in) {
1728   const uint16_t *coeffs = in->v;
1729 
1730   // Only 700 coefficients are marshaled because in[700] must be zero.
1731   assert(coeffs[N-1] == 0);
1732 
1733   for (size_t i = 0; i < HRSS_POLY3_BYTES; i++) {
1734     const uint16_t coeffs0 = mod3_from_modQ(coeffs[0]);
1735     const uint16_t coeffs1 = mod3_from_modQ(coeffs[1]);
1736     const uint16_t coeffs2 = mod3_from_modQ(coeffs[2]);
1737     const uint16_t coeffs3 = mod3_from_modQ(coeffs[3]);
1738     const uint16_t coeffs4 = mod3_from_modQ(coeffs[4]);
1739     out[i] = coeffs0 + coeffs1 * 3 + coeffs2 * 9 + coeffs3 * 27 + coeffs4 * 81;
1740     coeffs += 5;
1741   }
1742 }
1743 
1744 // HRSS-specific functions
1745 // -----------------------
1746 
1747 // poly_short_sample samples a vector of values in {0xffff (i.e. -1), 0, 1}.
1748 // This is the same action as the algorithm in [HRSSNIST] section 1.8.1, but
1749 // with HRSS-SXY the sampling algorithm is now a private detail of the
1750 // implementation (previously it had to match between two parties). This
1751 // function uses that freedom to implement a flatter distribution of values.
poly_short_sample(struct poly * out,const uint8_t in[HRSS_SAMPLE_BYTES])1752 static void poly_short_sample(struct poly *out,
1753                               const uint8_t in[HRSS_SAMPLE_BYTES]) {
1754   static_assert(HRSS_SAMPLE_BYTES == N - 1, "HRSS_SAMPLE_BYTES incorrect");
1755   for (size_t i = 0; i < N - 1; i++) {
1756     uint16_t v = mod3(in[i]);
1757     // Map {0, 1, 2} -> {0, 1, 0xffff}
1758     v |= ((v >> 1) ^ 1) - 1;
1759     out->v[i] = v;
1760   }
1761   out->v[N - 1] = 0;
1762   poly_normalize(out);
1763 }
1764 
1765 // poly_short_sample_plus performs the T+ sample as defined in [HRSSNIST],
1766 // section 1.8.2.
poly_short_sample_plus(struct poly * out,const uint8_t in[HRSS_SAMPLE_BYTES])1767 static void poly_short_sample_plus(struct poly *out,
1768                                    const uint8_t in[HRSS_SAMPLE_BYTES]) {
1769   poly_short_sample(out, in);
1770 
1771   // sum (and the product in the for loop) will overflow. But that's fine
1772   // because |sum| is bound by +/- (N-2), and N < 2^15 so it works out.
1773   uint16_t sum = 0;
1774   for (unsigned i = 0; i < N - 2; i++) {
1775     sum += (unsigned) out->v[i] * out->v[i + 1];
1776   }
1777 
1778   // If the sum is negative, flip the sign of even-positioned coefficients. (See
1779   // page 8 of [HRSS].)
1780   sum = ((int16_t) sum) >> 15;
1781   const uint16_t scale = sum | (~sum & 1);
1782   for (unsigned i = 0; i < N; i += 2) {
1783     out->v[i] = (unsigned) out->v[i] * scale;
1784   }
1785   poly_assert_normalized(out);
1786 }
1787 
1788 // poly_lift computes the function discussed in [HRSS], appendix B.
poly_lift(struct poly * out,const struct poly * a)1789 static void poly_lift(struct poly *out, const struct poly *a) {
1790   // We wish to calculate a/(��-1) mod Φ(N) over GF(3), where Φ(N) is the
1791   // Nth cyclotomic polynomial, i.e. 1 + �� + … + ��^700 (since N is prime).
1792 
1793   // 1/(��-1) has a fairly basic structure that we can exploit to speed this up:
1794   //
1795   // R.<x> = PolynomialRing(GF(3)…)
1796   // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n))
1797   // list(inv)[:15]
1798   //   [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2]
1799   //
1800   // This three-element pattern of coefficients repeats for the whole
1801   // polynomial.
1802   //
1803   // Next define the overbar operator such that z̅ = z[0] +
1804   // reverse(z[1:]). (Index zero of a polynomial here is the coefficient
1805   // of the constant term. So index one is the coefficient of �� and so
1806   // on.)
1807   //
1808   // A less odd way to define this is to see that z̅ negates the indexes,
1809   // so z̅[0] = z[-0], z̅[1] = z[-1] and so on.
1810   //
1811   // The use of z̅ is that, when working mod (��^701 - 1), vz[0] = <v,
1812   // z̅>, vz[1] = <v, ��z̅>, …. (Where <a, b> is the inner product: the sum
1813   // of the point-wise products.) Although we calculated the inverse mod
1814   // Φ(N), we can work mod (��^N - 1) and reduce mod Φ(N) at the end.
1815   // (That's because (��^N - 1) is a multiple of Φ(N).)
1816   //
1817   // When working mod (��^N - 1), multiplication by �� is a right-rotation
1818   // of the list of coefficients.
1819   //
1820   // Thus we can consider what the pattern of z̅, ��z̅, ��^2z̅, … looks like:
1821   //
1822   // def reverse(xs):
1823   //   suffix = list(xs[1:])
1824   //   suffix.reverse()
1825   //   return [xs[0]] + suffix
1826   //
1827   // def rotate(xs):
1828   //   return [xs[-1]] + xs[:-1]
1829   //
1830   // zoverbar = reverse(list(inv) + [0])
1831   // xzoverbar = rotate(reverse(list(inv) + [0]))
1832   // x2zoverbar = rotate(rotate(reverse(list(inv) + [0])))
1833   //
1834   // zoverbar[:15]
1835   //   [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1]
1836   // xzoverbar[:15]
1837   //   [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
1838   // x2zoverbar[:15]
1839   //   [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]
1840   //
1841   // (For a formula for z̅, see lemma two of appendix B.)
1842   //
1843   // After the first three elements have been taken care of, all then have
1844   // a repeating three-element cycle. The next value (��^3z̅) involves
1845   // three rotations of the first pattern, thus the three-element cycle
1846   // lines up. However, the discontinuity in the first three elements
1847   // obviously moves to a different position. Consider the difference
1848   // between ��^3z̅ and z̅:
1849   //
1850   // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15]
1851   //    [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1852   //
1853   // This pattern of differences is the same for all elements, although it
1854   // obviously moves right with the rotations.
1855   //
1856   // From this, we reach algorithm eight of appendix B.
1857 
1858   // Handle the first three elements of the inner products.
1859   out->v[0] = a->v[0] + a->v[2];
1860   out->v[1] = a->v[1];
1861   out->v[2] = -a->v[0] + a->v[2];
1862 
1863   // s0, s1, s2 are added into out->v[0], out->v[1], and out->v[2],
1864   // respectively. We do not compute s1 because it's just -(s0 + s1).
1865   uint16_t s0 = 0, s2 = 0;
1866   for (size_t i = 3; i < 699; i += 3) {
1867     s0 += -a->v[i] + a->v[i + 2];
1868     // s1 += a->v[i] - a->v[i + 1];
1869     s2 += a->v[i + 1] - a->v[i + 2];
1870   }
1871 
1872   // Handle the fact that the three-element pattern doesn't fill the
1873   // polynomial exactly (since 701 isn't a multiple of three).
1874   s0 -= a->v[699];
1875   // s1 += a->v[699] - a->v[700];
1876   s2 += a->v[700];
1877 
1878   // Note that s0 + s1 + s2 = 0.
1879   out->v[0] += s0;
1880   out->v[1] -= (s0 + s2); // = s1
1881   out->v[2] += s2;
1882 
1883   // Calculate the remaining inner products by taking advantage of the
1884   // fact that the pattern repeats every three cycles and the pattern of
1885   // differences moves with the rotation.
1886   for (size_t i = 3; i < N; i++) {
1887     out->v[i] = (out->v[i - 3] - (a->v[i - 2] + a->v[i - 1] + a->v[i]));
1888   }
1889 
1890   // Reduce mod Φ(N) by subtracting a multiple of out[700] from every
1891   // element and convert to mod Q. (See above about adding twice as
1892   // subtraction.)
1893   const crypto_word_t v = out->v[700];
1894   for (unsigned i = 0; i < N; i++) {
1895     const uint16_t vi_mod3 = mod3(out->v[i] - v);
1896     // Map {0, 1, 2} to {0, 1, 0xffff}.
1897     out->v[i] = (~((vi_mod3 >> 1) - 1)) | vi_mod3;
1898   }
1899 
1900   poly_mul_x_minus_1(out);
1901   poly_normalize(out);
1902 }
1903 
1904 struct public_key {
1905   struct poly ph;
1906 };
1907 
1908 struct private_key {
1909   struct poly3 f, f_inverse;
1910   struct poly ph_inverse;
1911   uint8_t hmac_key[32];
1912 };
1913 
1914 // public_key_from_external converts an external public key pointer into an
1915 // internal one. Externally the alignment is only specified to be eight bytes
1916 // but we need 16-byte alignment. We could annotate the external struct with
1917 // that alignment but we can only assume that malloced pointers are 8-byte
1918 // aligned in any case. (Even if the underlying malloc returns values with
1919 // 16-byte alignment, |OPENSSL_malloc| will store an 8-byte size prefix and mess
1920 // that up.)
public_key_from_external(struct HRSS_public_key * ext)1921 static struct public_key *public_key_from_external(
1922     struct HRSS_public_key *ext) {
1923   static_assert(
1924       sizeof(struct HRSS_public_key) >= sizeof(struct public_key) + 15,
1925       "HRSS public key too small");
1926 
1927   return align_pointer(ext->opaque, 16);
1928 }
1929 
1930 // private_key_from_external does the same thing as |public_key_from_external|,
1931 // but for private keys. See the comment on that function about alignment
1932 // issues.
private_key_from_external(struct HRSS_private_key * ext)1933 static struct private_key *private_key_from_external(
1934     struct HRSS_private_key *ext) {
1935   static_assert(
1936       sizeof(struct HRSS_private_key) >= sizeof(struct private_key) + 15,
1937       "HRSS private key too small");
1938 
1939   return align_pointer(ext->opaque, 16);
1940 }
1941 
1942 // malloc_align32 returns a pointer to |size| bytes of 32-byte-aligned heap and
1943 // sets |*out_ptr| to a value that can be passed to |OPENSSL_free| to release
1944 // it. It returns NULL if out of memory.
malloc_align32(void ** out_ptr,size_t size)1945 static void *malloc_align32(void **out_ptr, size_t size) {
1946   void *ptr = OPENSSL_malloc(size + 31);
1947   if (!ptr) {
1948     *out_ptr = NULL;
1949     return NULL;
1950   }
1951 
1952   *out_ptr = ptr;
1953   return align_pointer(ptr, 32);
1954 }
1955 
HRSS_generate_key(struct HRSS_public_key * out_pub,struct HRSS_private_key * out_priv,const uint8_t in[HRSS_SAMPLE_BYTES+HRSS_SAMPLE_BYTES+32])1956 int HRSS_generate_key(
1957     struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv,
1958     const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES + 32]) {
1959   struct public_key *pub = public_key_from_external(out_pub);
1960   struct private_key *priv = private_key_from_external(out_priv);
1961 
1962   struct vars {
1963     struct POLY_MUL_SCRATCH scratch;
1964     struct poly f;
1965     struct poly pg_phi1;
1966     struct poly pfg_phi1;
1967     struct poly pfg_phi1_inverse;
1968   };
1969 
1970   void *malloc_ptr;
1971   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
1972   if (!vars) {
1973     // If the caller ignores the return value the output will still be safe.
1974     // The private key output is randomised in case it's later passed to
1975     // |HRSS_encap|.
1976     memset(out_pub, 0, sizeof(struct HRSS_public_key));
1977     RAND_bytes((uint8_t*) out_priv, sizeof(struct HRSS_private_key));
1978     return 0;
1979   }
1980 
1981 #if !defined(NDEBUG)
1982   OPENSSL_memset(vars, 0xff, sizeof(struct vars));
1983 #endif
1984 
1985   OPENSSL_memcpy(priv->hmac_key, in + 2 * HRSS_SAMPLE_BYTES,
1986                  sizeof(priv->hmac_key));
1987 
1988   poly_short_sample_plus(&vars->f, in);
1989   poly3_from_poly(&priv->f, &vars->f);
1990   HRSS_poly3_invert(&priv->f_inverse, &priv->f);
1991 
1992   // pg_phi1 is p (i.e. 3) × g × Φ(1) (i.e. ��-1).
1993   poly_short_sample_plus(&vars->pg_phi1, in + HRSS_SAMPLE_BYTES);
1994   for (unsigned i = 0; i < N; i++) {
1995     vars->pg_phi1.v[i] *= 3;
1996   }
1997   poly_mul_x_minus_1(&vars->pg_phi1);
1998 
1999   poly_mul(&vars->scratch, &vars->pfg_phi1, &vars->f, &vars->pg_phi1);
2000 
2001   poly_invert(&vars->scratch, &vars->pfg_phi1_inverse, &vars->pfg_phi1);
2002 
2003   poly_mul(&vars->scratch, &pub->ph, &vars->pfg_phi1_inverse, &vars->pg_phi1);
2004   poly_mul(&vars->scratch, &pub->ph, &pub->ph, &vars->pg_phi1);
2005   poly_clamp(&pub->ph);
2006 
2007   poly_mul(&vars->scratch, &priv->ph_inverse, &vars->pfg_phi1_inverse,
2008            &vars->f);
2009   poly_mul(&vars->scratch, &priv->ph_inverse, &priv->ph_inverse, &vars->f);
2010   poly_clamp(&priv->ph_inverse);
2011 
2012   OPENSSL_free(malloc_ptr);
2013   return 1;
2014 }
2015 
2016 static const char kSharedKey[] = "shared key";
2017 
HRSS_encap(uint8_t out_ciphertext[POLY_BYTES],uint8_t out_shared_key[32],const struct HRSS_public_key * in_pub,const uint8_t in[HRSS_SAMPLE_BYTES+HRSS_SAMPLE_BYTES])2018 int HRSS_encap(uint8_t out_ciphertext[POLY_BYTES], uint8_t out_shared_key[32],
2019                const struct HRSS_public_key *in_pub,
2020                const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES]) {
2021   const struct public_key *pub =
2022       public_key_from_external((struct HRSS_public_key *)in_pub);
2023 
2024   struct vars {
2025     struct POLY_MUL_SCRATCH scratch;
2026     struct poly m, r, m_lifted;
2027     struct poly prh_plus_m;
2028     SHA256_CTX hash_ctx;
2029     uint8_t m_bytes[HRSS_POLY3_BYTES];
2030     uint8_t r_bytes[HRSS_POLY3_BYTES];
2031   };
2032 
2033   void *malloc_ptr;
2034   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
2035   if (!vars) {
2036     // If the caller ignores the return value the output will still be safe.
2037     // The private key output is randomised in case it's used to encrypt and
2038     // transmit something.
2039     memset(out_ciphertext, 0, POLY_BYTES);
2040     RAND_bytes(out_shared_key, 32);
2041     return 0;
2042   }
2043 
2044 #if !defined(NDEBUG)
2045   OPENSSL_memset(vars, 0xff, sizeof(struct vars));
2046 #endif
2047 
2048   poly_short_sample(&vars->m, in);
2049   poly_short_sample(&vars->r, in + HRSS_SAMPLE_BYTES);
2050   poly_lift(&vars->m_lifted, &vars->m);
2051 
2052   poly_mul(&vars->scratch, &vars->prh_plus_m, &vars->r, &pub->ph);
2053   for (unsigned i = 0; i < N; i++) {
2054     vars->prh_plus_m.v[i] += vars->m_lifted.v[i];
2055   }
2056 
2057   poly_marshal(out_ciphertext, &vars->prh_plus_m);
2058 
2059   poly_marshal_mod3(vars->m_bytes, &vars->m);
2060   poly_marshal_mod3(vars->r_bytes, &vars->r);
2061 
2062   SHA256_Init(&vars->hash_ctx);
2063   SHA256_Update(&vars->hash_ctx, kSharedKey, sizeof(kSharedKey));
2064   SHA256_Update(&vars->hash_ctx, vars->m_bytes, sizeof(vars->m_bytes));
2065   SHA256_Update(&vars->hash_ctx, vars->r_bytes, sizeof(vars->r_bytes));
2066   SHA256_Update(&vars->hash_ctx, out_ciphertext, POLY_BYTES);
2067   SHA256_Final(out_shared_key, &vars->hash_ctx);
2068 
2069   OPENSSL_free(malloc_ptr);
2070   return 1;
2071 }
2072 
HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES],const struct HRSS_private_key * in_priv,const uint8_t * ciphertext,size_t ciphertext_len)2073 int HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES],
2074                 const struct HRSS_private_key *in_priv,
2075                 const uint8_t *ciphertext, size_t ciphertext_len) {
2076   const struct private_key *priv =
2077       private_key_from_external((struct HRSS_private_key *)in_priv);
2078 
2079   struct vars {
2080     struct POLY_MUL_SCRATCH scratch;
2081     uint8_t masked_key[SHA256_CBLOCK];
2082     SHA256_CTX hash_ctx;
2083     struct poly c;
2084     struct poly f, cf;
2085     struct poly3 cf3, m3;
2086     struct poly m, m_lifted;
2087     struct poly r;
2088     struct poly3 r3;
2089     uint8_t expected_ciphertext[HRSS_CIPHERTEXT_BYTES];
2090     uint8_t m_bytes[HRSS_POLY3_BYTES];
2091     uint8_t r_bytes[HRSS_POLY3_BYTES];
2092     uint8_t shared_key[32];
2093   };
2094 
2095   void *malloc_ptr;
2096   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
2097   if (!vars) {
2098     // If the caller ignores the return value the output will still be safe.
2099     // The private key output is randomised in case it's used to encrypt and
2100     // transmit something.
2101     RAND_bytes(out_shared_key, HRSS_KEY_BYTES);
2102     return 0;
2103   }
2104 
2105 #if !defined(NDEBUG)
2106   OPENSSL_memset(vars, 0xff, sizeof(struct vars));
2107 #endif
2108 
2109   // This is HMAC, expanded inline rather than using the |HMAC| function so that
2110   // we can avoid dealing with possible allocation failures and so keep this
2111   // function infallible.
2112   static_assert(sizeof(priv->hmac_key) <= sizeof(vars->masked_key),
2113                 "HRSS HMAC key larger than SHA-256 block size");
2114   for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
2115     vars->masked_key[i] = priv->hmac_key[i] ^ 0x36;
2116   }
2117   OPENSSL_memset(vars->masked_key + sizeof(priv->hmac_key), 0x36,
2118                  sizeof(vars->masked_key) - sizeof(priv->hmac_key));
2119 
2120   SHA256_Init(&vars->hash_ctx);
2121   SHA256_Update(&vars->hash_ctx, vars->masked_key, sizeof(vars->masked_key));
2122   SHA256_Update(&vars->hash_ctx, ciphertext, ciphertext_len);
2123   uint8_t inner_digest[SHA256_DIGEST_LENGTH];
2124   SHA256_Final(inner_digest, &vars->hash_ctx);
2125 
2126   for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
2127     vars->masked_key[i] ^= (0x5c ^ 0x36);
2128   }
2129   OPENSSL_memset(vars->masked_key + sizeof(priv->hmac_key), 0x5c,
2130                  sizeof(vars->masked_key) - sizeof(priv->hmac_key));
2131 
2132   SHA256_Init(&vars->hash_ctx);
2133   SHA256_Update(&vars->hash_ctx, vars->masked_key, sizeof(vars->masked_key));
2134   SHA256_Update(&vars->hash_ctx, inner_digest, sizeof(inner_digest));
2135   static_assert(HRSS_KEY_BYTES == SHA256_DIGEST_LENGTH,
2136                 "HRSS shared key length incorrect");
2137   SHA256_Final(out_shared_key, &vars->hash_ctx);
2138 
2139   // If the ciphertext is publicly invalid then a random shared key is still
2140   // returned to simply the logic of the caller, but this path is not constant
2141   // time.
2142   if (ciphertext_len != HRSS_CIPHERTEXT_BYTES ||
2143       !poly_unmarshal(&vars->c, ciphertext)) {
2144     goto out;
2145   }
2146 
2147   poly_from_poly3(&vars->f, &priv->f);
2148   poly_mul(&vars->scratch, &vars->cf, &vars->c, &vars->f);
2149   poly3_from_poly(&vars->cf3, &vars->cf);
2150   // Note that cf3 is not reduced mod Φ(N). That reduction is deferred.
2151   HRSS_poly3_mul(&vars->m3, &vars->cf3, &priv->f_inverse);
2152 
2153   poly_from_poly3(&vars->m, &vars->m3);
2154   poly_lift(&vars->m_lifted, &vars->m);
2155 
2156   for (unsigned i = 0; i < N; i++) {
2157     vars->r.v[i] = vars->c.v[i] - vars->m_lifted.v[i];
2158   }
2159   poly_normalize(&vars->r);
2160   poly_mul(&vars->scratch, &vars->r, &vars->r, &priv->ph_inverse);
2161   poly_mod_phiN(&vars->r);
2162   poly_clamp(&vars->r);
2163 
2164   crypto_word_t ok = poly3_from_poly_checked(&vars->r3, &vars->r);
2165 
2166   // [NTRUCOMP] section 5.1 includes ReEnc2 and a proof that it's valid. Rather
2167   // than do an expensive |poly_mul|, it rebuilds |c'| from |c - lift(m)|
2168   // (called |b|) with:
2169   //   t = (−b(1)/N) mod Q
2170   //   c' = b + tΦ(N) + lift(m) mod Q
2171   //
2172   // When polynomials are transmitted, the final coefficient is omitted and
2173   // |poly_unmarshal| sets it such that f(1) == 0. Thus c(1) == 0. Also,
2174   // |poly_lift| multiplies the result by (x-1) and therefore evaluating a
2175   // lifted polynomial at 1 is also zero. Thus lift(m)(1) == 0 and so
2176   // (c - lift(m))(1) == 0.
2177   //
2178   // Although we defer the reduction above, |b| is conceptually reduced mod
2179   // Φ(N). In order to do that reduction one subtracts |c[N-1]| from every
2180   // coefficient. Therefore b(1) = -c[N-1]×N. The value of |t|, above, then is
2181   // just recovering |c[N-1]|, and adding tΦ(N) is simply undoing the reduction.
2182   // Therefore b + tΦ(N) + lift(m) = c by construction and we don't need to
2183   // recover |c| at all so long as we do the checks in
2184   // |poly3_from_poly_checked|.
2185   //
2186   // The |poly_marshal| here then is just confirming that |poly_unmarshal| is
2187   // strict and could be omitted.
2188 
2189   static_assert(HRSS_CIPHERTEXT_BYTES == POLY_BYTES,
2190                 "ciphertext is the wrong size");
2191   assert(ciphertext_len == sizeof(vars->expected_ciphertext));
2192   poly_marshal(vars->expected_ciphertext, &vars->c);
2193 
2194   poly_marshal_mod3(vars->m_bytes, &vars->m);
2195   poly_marshal_mod3(vars->r_bytes, &vars->r);
2196 
2197   ok &= constant_time_is_zero_w(
2198       CRYPTO_memcmp(ciphertext, vars->expected_ciphertext,
2199                     sizeof(vars->expected_ciphertext)));
2200 
2201   SHA256_Init(&vars->hash_ctx);
2202   SHA256_Update(&vars->hash_ctx, kSharedKey, sizeof(kSharedKey));
2203   SHA256_Update(&vars->hash_ctx, vars->m_bytes, sizeof(vars->m_bytes));
2204   SHA256_Update(&vars->hash_ctx, vars->r_bytes, sizeof(vars->r_bytes));
2205   SHA256_Update(&vars->hash_ctx, vars->expected_ciphertext,
2206                 sizeof(vars->expected_ciphertext));
2207   SHA256_Final(vars->shared_key, &vars->hash_ctx);
2208 
2209   for (unsigned i = 0; i < sizeof(vars->shared_key); i++) {
2210     out_shared_key[i] =
2211         constant_time_select_8(ok, vars->shared_key[i], out_shared_key[i]);
2212   }
2213 
2214 out:
2215   OPENSSL_free(malloc_ptr);
2216   return 1;
2217 }
2218 
HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES],const struct HRSS_public_key * in_pub)2219 void HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES],
2220                              const struct HRSS_public_key *in_pub) {
2221   const struct public_key *pub =
2222       public_key_from_external((struct HRSS_public_key *)in_pub);
2223   poly_marshal(out, &pub->ph);
2224 }
2225 
HRSS_parse_public_key(struct HRSS_public_key * out,const uint8_t in[HRSS_PUBLIC_KEY_BYTES])2226 int HRSS_parse_public_key(struct HRSS_public_key *out,
2227                           const uint8_t in[HRSS_PUBLIC_KEY_BYTES]) {
2228   struct public_key *pub = public_key_from_external(out);
2229   if (!poly_unmarshal(&pub->ph, in)) {
2230     return 0;
2231   }
2232   OPENSSL_memset(&pub->ph.v[N], 0, 3 * sizeof(uint16_t));
2233   return 1;
2234 }
2235