1 /* Copyright (C) 1995-1998 Eric Young ([email protected])
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young ([email protected]).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson ([email protected]).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young ([email protected])"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson ([email protected])"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * [email protected].
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * ([email protected]). This product includes software written by Tim
107 * Hudson ([email protected]).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE.
148 */
149
150 #include <openssl/ssl.h>
151
152 #include <assert.h>
153 #include <limits.h>
154 #include <string.h>
155
156 #include <algorithm>
157 #include <utility>
158
159 #include <openssl/aead.h>
160 #include <openssl/bn.h>
161 #include <openssl/bytestring.h>
162 #include <openssl/ec_key.h>
163 #include <openssl/ecdsa.h>
164 #include <openssl/err.h>
165 #include <openssl/evp.h>
166 #include <openssl/hpke.h>
167 #include <openssl/md5.h>
168 #include <openssl/mem.h>
169 #include <openssl/rand.h>
170 #include <openssl/sha.h>
171
172 #include "../crypto/internal.h"
173 #include "internal.h"
174
175
176 BSSL_NAMESPACE_BEGIN
177
178 enum ssl_client_hs_state_t {
179 state_start_connect = 0,
180 state_enter_early_data,
181 state_early_reverify_server_certificate,
182 state_read_hello_verify_request,
183 state_read_server_hello,
184 state_tls13,
185 state_read_server_certificate,
186 state_read_certificate_status,
187 state_verify_server_certificate,
188 state_reverify_server_certificate,
189 state_read_server_key_exchange,
190 state_read_certificate_request,
191 state_read_server_hello_done,
192 state_send_client_certificate,
193 state_send_client_key_exchange,
194 state_send_client_certificate_verify,
195 state_send_client_finished,
196 state_finish_flight,
197 state_read_session_ticket,
198 state_process_change_cipher_spec,
199 state_read_server_finished,
200 state_finish_client_handshake,
201 state_done,
202 };
203
204 // ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
205 // disabled algorithms.
ssl_get_client_disabled(const SSL_HANDSHAKE * hs,uint32_t * out_mask_a,uint32_t * out_mask_k)206 static void ssl_get_client_disabled(const SSL_HANDSHAKE *hs,
207 uint32_t *out_mask_a,
208 uint32_t *out_mask_k) {
209 *out_mask_a = 0;
210 *out_mask_k = 0;
211
212 // PSK requires a client callback.
213 if (hs->config->psk_client_callback == NULL) {
214 *out_mask_a |= SSL_aPSK;
215 *out_mask_k |= SSL_kPSK;
216 }
217 }
218
ssl_add_tls13_cipher(CBB * cbb,uint16_t cipher_id,ssl_compliance_policy_t policy)219 static bool ssl_add_tls13_cipher(CBB *cbb, uint16_t cipher_id,
220 ssl_compliance_policy_t policy) {
221 if (ssl_tls13_cipher_meets_policy(cipher_id, policy)) {
222 return CBB_add_u16(cbb, cipher_id);
223 }
224 return true;
225 }
226
ssl_write_client_cipher_list(const SSL_HANDSHAKE * hs,CBB * out,ssl_client_hello_type_t type)227 static bool ssl_write_client_cipher_list(const SSL_HANDSHAKE *hs, CBB *out,
228 ssl_client_hello_type_t type) {
229 const SSL *const ssl = hs->ssl;
230 uint32_t mask_a, mask_k;
231 ssl_get_client_disabled(hs, &mask_a, &mask_k);
232
233 CBB child;
234 if (!CBB_add_u16_length_prefixed(out, &child)) {
235 return false;
236 }
237
238 // Add a fake cipher suite. See RFC 8701.
239 if (ssl->ctx->grease_enabled &&
240 !CBB_add_u16(&child, ssl_get_grease_value(hs, ssl_grease_cipher))) {
241 return false;
242 }
243
244 // Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
245 // hardware support.
246 if (hs->max_version >= TLS1_3_VERSION) {
247 const bool has_aes_hw = ssl->config->aes_hw_override
248 ? ssl->config->aes_hw_override_value
249 : EVP_has_aes_hardware();
250
251 if ((!has_aes_hw && //
252 !ssl_add_tls13_cipher(&child,
253 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
254 ssl->config->tls13_cipher_policy)) ||
255 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_128_GCM_SHA256 & 0xffff,
256 ssl->config->tls13_cipher_policy) ||
257 !ssl_add_tls13_cipher(&child, TLS1_3_CK_AES_256_GCM_SHA384 & 0xffff,
258 ssl->config->tls13_cipher_policy) ||
259 (has_aes_hw && //
260 !ssl_add_tls13_cipher(&child,
261 TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff,
262 ssl->config->tls13_cipher_policy))) {
263 return false;
264 }
265 }
266
267 if (hs->min_version < TLS1_3_VERSION && type != ssl_client_hello_inner) {
268 bool any_enabled = false;
269 for (const SSL_CIPHER *cipher : SSL_get_ciphers(ssl)) {
270 // Skip disabled ciphers
271 if ((cipher->algorithm_mkey & mask_k) ||
272 (cipher->algorithm_auth & mask_a)) {
273 continue;
274 }
275 if (SSL_CIPHER_get_min_version(cipher) > hs->max_version ||
276 SSL_CIPHER_get_max_version(cipher) < hs->min_version) {
277 continue;
278 }
279 any_enabled = true;
280 if (!CBB_add_u16(&child, SSL_CIPHER_get_protocol_id(cipher))) {
281 return false;
282 }
283 }
284
285 // If all ciphers were disabled, return the error to the caller.
286 if (!any_enabled && hs->max_version < TLS1_3_VERSION) {
287 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
288 return false;
289 }
290 }
291
292 if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
293 if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
294 return false;
295 }
296 }
297
298 return CBB_flush(out);
299 }
300
ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE * hs,CBB * cbb,ssl_client_hello_type_t type,bool empty_session_id)301 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
302 CBB *cbb,
303 ssl_client_hello_type_t type,
304 bool empty_session_id) {
305 const SSL *const ssl = hs->ssl;
306 CBB child;
307 if (!CBB_add_u16(cbb, hs->client_version) ||
308 !CBB_add_bytes(cbb,
309 type == ssl_client_hello_inner ? hs->inner_client_random
310 : ssl->s3->client_random,
311 SSL3_RANDOM_SIZE) ||
312 !CBB_add_u8_length_prefixed(cbb, &child)) {
313 return false;
314 }
315
316 // Do not send a session ID on renegotiation.
317 if (!ssl->s3->initial_handshake_complete &&
318 !empty_session_id &&
319 !CBB_add_bytes(&child, hs->session_id, hs->session_id_len)) {
320 return false;
321 }
322
323 if (SSL_is_dtls(ssl)) {
324 if (!CBB_add_u8_length_prefixed(cbb, &child) ||
325 !CBB_add_bytes(&child, hs->dtls_cookie.data(),
326 hs->dtls_cookie.size())) {
327 return false;
328 }
329 }
330
331 if (!ssl_write_client_cipher_list(hs, cbb, type) ||
332 !CBB_add_u8(cbb, 1 /* one compression method */) ||
333 !CBB_add_u8(cbb, 0 /* null compression */)) {
334 return false;
335 }
336 return true;
337 }
338
ssl_add_client_hello(SSL_HANDSHAKE * hs)339 bool ssl_add_client_hello(SSL_HANDSHAKE *hs) {
340 SSL *const ssl = hs->ssl;
341 ScopedCBB cbb;
342 CBB body;
343 ssl_client_hello_type_t type = hs->selected_ech_config
344 ? ssl_client_hello_outer
345 : ssl_client_hello_unencrypted;
346 bool needs_psk_binder;
347 Array<uint8_t> msg;
348 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CLIENT_HELLO) ||
349 !ssl_write_client_hello_without_extensions(hs, &body, type,
350 /*empty_session_id=*/false) ||
351 !ssl_add_clienthello_tlsext(hs, &body, /*out_encoded=*/nullptr,
352 &needs_psk_binder, type, CBB_len(&body)) ||
353 !ssl->method->finish_message(ssl, cbb.get(), &msg)) {
354 return false;
355 }
356
357 // Now that the length prefixes have been computed, fill in the placeholder
358 // PSK binder.
359 if (needs_psk_binder) {
360 // ClientHelloOuter cannot have a PSK binder. Otherwise the
361 // ClientHellOuterAAD computation would break.
362 assert(type != ssl_client_hello_outer);
363 if (!tls13_write_psk_binder(hs, hs->transcript, MakeSpan(msg),
364 /*out_binder_len=*/0)) {
365 return false;
366 }
367 }
368
369 return ssl->method->add_message(ssl, std::move(msg));
370 }
371
parse_server_version(const SSL_HANDSHAKE * hs,uint16_t * out_version,uint8_t * out_alert,const ParsedServerHello & server_hello)372 static bool parse_server_version(const SSL_HANDSHAKE *hs, uint16_t *out_version,
373 uint8_t *out_alert,
374 const ParsedServerHello &server_hello) {
375 // If the outer version is not TLS 1.2, use it.
376 // TODO(davidben): This function doesn't quite match the RFC8446 formulation.
377 if (server_hello.legacy_version != TLS1_2_VERSION) {
378 *out_version = server_hello.legacy_version;
379 return true;
380 }
381
382 SSLExtension supported_versions(TLSEXT_TYPE_supported_versions);
383 CBS extensions = server_hello.extensions;
384 if (!ssl_parse_extensions(&extensions, out_alert, {&supported_versions},
385 /*ignore_unknown=*/true)) {
386 return false;
387 }
388
389 if (!supported_versions.present) {
390 *out_version = server_hello.legacy_version;
391 return true;
392 }
393
394 if (!CBS_get_u16(&supported_versions.data, out_version) ||
395 CBS_len(&supported_versions.data) != 0) {
396 *out_alert = SSL_AD_DECODE_ERROR;
397 return false;
398 }
399
400 return true;
401 }
402
403 // should_offer_early_data returns |ssl_early_data_accepted| if |hs| should
404 // offer early data, and some other reason code otherwise.
should_offer_early_data(const SSL_HANDSHAKE * hs)405 static ssl_early_data_reason_t should_offer_early_data(
406 const SSL_HANDSHAKE *hs) {
407 const SSL *const ssl = hs->ssl;
408 assert(!ssl->server);
409 if (!ssl->enable_early_data) {
410 return ssl_early_data_disabled;
411 }
412
413 if (hs->max_version < TLS1_3_VERSION) {
414 // We discard inapplicable sessions, so this is redundant with the session
415 // checks below, but reporting that TLS 1.3 was disabled is more useful.
416 return ssl_early_data_protocol_version;
417 }
418
419 if (ssl->session == nullptr) {
420 return ssl_early_data_no_session_offered;
421 }
422
423 if (ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION ||
424 ssl->session->ticket_max_early_data == 0) {
425 return ssl_early_data_unsupported_for_session;
426 }
427
428 if (!ssl->session->early_alpn.empty()) {
429 if (!ssl_is_alpn_protocol_allowed(hs, ssl->session->early_alpn)) {
430 // Avoid reporting a confusing value in |SSL_get0_alpn_selected|.
431 return ssl_early_data_alpn_mismatch;
432 }
433
434 // If the previous connection negotiated ALPS, only offer 0-RTT when the
435 // local are settings are consistent with what we'd offer for this
436 // connection.
437 if (ssl->session->has_application_settings) {
438 Span<const uint8_t> settings;
439 if (!ssl_get_local_application_settings(hs, &settings,
440 ssl->session->early_alpn) ||
441 settings != ssl->session->local_application_settings) {
442 return ssl_early_data_alps_mismatch;
443 }
444 }
445 }
446
447 // Early data has not yet been accepted, but we use it as a success code.
448 return ssl_early_data_accepted;
449 }
450
ssl_done_writing_client_hello(SSL_HANDSHAKE * hs)451 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs) {
452 hs->ech_client_outer.Reset();
453 hs->cookie.Reset();
454 hs->key_share_bytes.Reset();
455 }
456
do_start_connect(SSL_HANDSHAKE * hs)457 static enum ssl_hs_wait_t do_start_connect(SSL_HANDSHAKE *hs) {
458 SSL *const ssl = hs->ssl;
459
460 ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
461 // |session_reused| must be reset in case this is a renegotiation.
462 ssl->s3->session_reused = false;
463
464 // Freeze the version range.
465 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
466 return ssl_hs_error;
467 }
468
469 uint8_t ech_enc[EVP_HPKE_MAX_ENC_LENGTH];
470 size_t ech_enc_len;
471 if (!ssl_select_ech_config(hs, ech_enc, &ech_enc_len)) {
472 return ssl_hs_error;
473 }
474
475 // Always advertise the ClientHello version from the original maximum version,
476 // even on renegotiation. The static RSA key exchange uses this field, and
477 // some servers fail when it changes across handshakes.
478 if (SSL_is_dtls(hs->ssl)) {
479 hs->client_version =
480 hs->max_version >= TLS1_2_VERSION ? DTLS1_2_VERSION : DTLS1_VERSION;
481 } else {
482 hs->client_version =
483 hs->max_version >= TLS1_2_VERSION ? TLS1_2_VERSION : hs->max_version;
484 }
485
486 // If the configured session has expired or is not usable, drop it. We also do
487 // not offer sessions on renegotiation.
488 if (ssl->session != nullptr) {
489 if (ssl->session->is_server ||
490 !ssl_supports_version(hs, ssl->session->ssl_version) ||
491 // Do not offer TLS 1.2 sessions with ECH. ClientHelloInner does not
492 // offer TLS 1.2, and the cleartext session ID may leak the server
493 // identity.
494 (hs->selected_ech_config &&
495 ssl_session_protocol_version(ssl->session.get()) < TLS1_3_VERSION) ||
496 !SSL_SESSION_is_resumable(ssl->session.get()) ||
497 !ssl_session_is_time_valid(ssl, ssl->session.get()) ||
498 (ssl->quic_method != nullptr) != ssl->session->is_quic ||
499 ssl->s3->initial_handshake_complete) {
500 ssl_set_session(ssl, nullptr);
501 }
502 }
503
504 if (!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
505 return ssl_hs_error;
506 }
507 if (hs->selected_ech_config &&
508 !RAND_bytes(hs->inner_client_random, sizeof(hs->inner_client_random))) {
509 return ssl_hs_error;
510 }
511
512 // Never send a session ID in QUIC. QUIC uses TLS 1.3 at a minimum and
513 // disables TLS 1.3 middlebox compatibility mode.
514 if (ssl->quic_method == nullptr) {
515 const bool has_id_session = ssl->session != nullptr &&
516 ssl->session->session_id_length > 0 &&
517 ssl->session->ticket.empty();
518 const bool has_ticket_session =
519 ssl->session != nullptr && !ssl->session->ticket.empty();
520 if (has_id_session) {
521 hs->session_id_len = ssl->session->session_id_length;
522 OPENSSL_memcpy(hs->session_id, ssl->session->session_id,
523 hs->session_id_len);
524 } else if (has_ticket_session || hs->max_version >= TLS1_3_VERSION) {
525 // Send a random session ID. TLS 1.3 always sends one, and TLS 1.2 session
526 // tickets require a placeholder value to signal resumption.
527 hs->session_id_len = sizeof(hs->session_id);
528 if (!RAND_bytes(hs->session_id, hs->session_id_len)) {
529 return ssl_hs_error;
530 }
531 }
532 }
533
534 ssl_early_data_reason_t reason = should_offer_early_data(hs);
535 if (reason != ssl_early_data_accepted) {
536 ssl->s3->early_data_reason = reason;
537 } else {
538 hs->early_data_offered = true;
539 }
540
541 if (!ssl_setup_key_shares(hs, /*override_group_id=*/0) ||
542 !ssl_setup_extension_permutation(hs) ||
543 !ssl_encrypt_client_hello(hs, MakeConstSpan(ech_enc, ech_enc_len)) ||
544 !ssl_add_client_hello(hs)) {
545 return ssl_hs_error;
546 }
547
548 hs->state = state_enter_early_data;
549 return ssl_hs_flush;
550 }
551
do_enter_early_data(SSL_HANDSHAKE * hs)552 static enum ssl_hs_wait_t do_enter_early_data(SSL_HANDSHAKE *hs) {
553 SSL *const ssl = hs->ssl;
554
555 if (SSL_is_dtls(ssl)) {
556 hs->state = state_read_hello_verify_request;
557 return ssl_hs_ok;
558 }
559
560 if (!hs->early_data_offered) {
561 hs->state = state_read_server_hello;
562 return ssl_hs_ok;
563 }
564
565 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->session->ssl_version);
566 if (!ssl->method->add_change_cipher_spec(ssl)) {
567 return ssl_hs_error;
568 }
569
570 if (!tls13_init_early_key_schedule(hs, ssl->session.get()) ||
571 !tls13_derive_early_secret(hs)) {
572 return ssl_hs_error;
573 }
574
575 // Stash the early data session, so connection properties may be queried out
576 // of it.
577 hs->early_session = UpRef(ssl->session);
578 hs->state = state_early_reverify_server_certificate;
579 return ssl_hs_ok;
580 }
581
do_early_reverify_server_certificate(SSL_HANDSHAKE * hs)582 static enum ssl_hs_wait_t do_early_reverify_server_certificate(SSL_HANDSHAKE *hs) {
583 if (hs->ssl->ctx->reverify_on_resume) {
584 // Don't send an alert on error. The alert be in early data, which the
585 // server may not accept anyway. It would also be a mismatch between QUIC
586 // and TCP because the QUIC early keys are deferred below.
587 //
588 // TODO(davidben): The client behavior should be to verify the certificate
589 // before deciding whether to offer the session and, if invalid, decline to
590 // send the session.
591 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/false)) {
592 case ssl_verify_ok:
593 break;
594 case ssl_verify_invalid:
595 return ssl_hs_error;
596 case ssl_verify_retry:
597 hs->state = state_early_reverify_server_certificate;
598 return ssl_hs_certificate_verify;
599 }
600 }
601
602 // Defer releasing the 0-RTT key to after certificate reverification, so the
603 // QUIC implementation does not accidentally write data too early.
604 if (!tls13_set_traffic_key(hs->ssl, ssl_encryption_early_data, evp_aead_seal,
605 hs->early_session.get(),
606 hs->early_traffic_secret())) {
607 return ssl_hs_error;
608 }
609
610 hs->in_early_data = true;
611 hs->can_early_write = true;
612 hs->state = state_read_server_hello;
613 return ssl_hs_early_return;
614 }
615
do_read_hello_verify_request(SSL_HANDSHAKE * hs)616 static enum ssl_hs_wait_t do_read_hello_verify_request(SSL_HANDSHAKE *hs) {
617 SSL *const ssl = hs->ssl;
618
619 assert(SSL_is_dtls(ssl));
620
621 // When implementing DTLS 1.3, we need to handle the interactions between
622 // HelloVerifyRequest, DTLS 1.3's HelloVerifyRequest removal, and ECH.
623 assert(hs->max_version < TLS1_3_VERSION);
624
625 SSLMessage msg;
626 if (!ssl->method->get_message(ssl, &msg)) {
627 return ssl_hs_read_message;
628 }
629
630 if (msg.type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
631 hs->state = state_read_server_hello;
632 return ssl_hs_ok;
633 }
634
635 CBS hello_verify_request = msg.body, cookie;
636 uint16_t server_version;
637 if (!CBS_get_u16(&hello_verify_request, &server_version) ||
638 !CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
639 CBS_len(&hello_verify_request) != 0) {
640 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
641 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
642 return ssl_hs_error;
643 }
644
645 if (!hs->dtls_cookie.CopyFrom(cookie)) {
646 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
647 return ssl_hs_error;
648 }
649
650 ssl->method->next_message(ssl);
651
652 // DTLS resets the handshake buffer after HelloVerifyRequest.
653 if (!hs->transcript.Init()) {
654 return ssl_hs_error;
655 }
656
657 if (!ssl_add_client_hello(hs)) {
658 return ssl_hs_error;
659 }
660
661 hs->state = state_read_server_hello;
662 return ssl_hs_flush;
663 }
664
ssl_parse_server_hello(ParsedServerHello * out,uint8_t * out_alert,const SSLMessage & msg)665 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
666 const SSLMessage &msg) {
667 if (msg.type != SSL3_MT_SERVER_HELLO) {
668 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
669 *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
670 return false;
671 }
672 out->raw = msg.raw;
673 CBS body = msg.body;
674 if (!CBS_get_u16(&body, &out->legacy_version) ||
675 !CBS_get_bytes(&body, &out->random, SSL3_RANDOM_SIZE) ||
676 !CBS_get_u8_length_prefixed(&body, &out->session_id) ||
677 CBS_len(&out->session_id) > SSL3_SESSION_ID_SIZE ||
678 !CBS_get_u16(&body, &out->cipher_suite) ||
679 !CBS_get_u8(&body, &out->compression_method)) {
680 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
681 *out_alert = SSL_AD_DECODE_ERROR;
682 return false;
683 }
684 // In TLS 1.2 and below, empty extensions blocks may be omitted. In TLS 1.3,
685 // ServerHellos always have extensions, so this can be applied generically.
686 CBS_init(&out->extensions, nullptr, 0);
687 if ((CBS_len(&body) != 0 &&
688 !CBS_get_u16_length_prefixed(&body, &out->extensions)) ||
689 CBS_len(&body) != 0) {
690 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
691 *out_alert = SSL_AD_DECODE_ERROR;
692 return false;
693 }
694 return true;
695 }
696
do_read_server_hello(SSL_HANDSHAKE * hs)697 static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
698 SSL *const ssl = hs->ssl;
699 SSLMessage msg;
700 if (!ssl->method->get_message(ssl, &msg)) {
701 return ssl_hs_read_server_hello;
702 }
703
704 ParsedServerHello server_hello;
705 uint16_t server_version;
706 uint8_t alert = SSL_AD_DECODE_ERROR;
707 if (!ssl_parse_server_hello(&server_hello, &alert, msg) ||
708 !parse_server_version(hs, &server_version, &alert, server_hello)) {
709 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
710 return ssl_hs_error;
711 }
712
713 if (!ssl_supports_version(hs, server_version)) {
714 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
715 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
716 return ssl_hs_error;
717 }
718
719 assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
720 if (!ssl->s3->have_version) {
721 ssl->version = server_version;
722 // At this point, the connection's version is known and ssl->version is
723 // fixed. Begin enforcing the record-layer version.
724 ssl->s3->have_version = true;
725 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
726 } else if (server_version != ssl->version) {
727 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
728 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
729 return ssl_hs_error;
730 }
731
732 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
733 hs->state = state_tls13;
734 return ssl_hs_ok;
735 }
736
737 // Clear some TLS 1.3 state that no longer needs to be retained.
738 hs->key_shares[0].reset();
739 hs->key_shares[1].reset();
740 ssl_done_writing_client_hello(hs);
741
742 // A TLS 1.2 server would not know to skip the early data we offered. Report
743 // an error code sooner. The caller may use this error code to implement the
744 // fallback described in RFC 8446 appendix D.3.
745 if (hs->early_data_offered) {
746 // Disconnect early writes. This ensures subsequent |SSL_write| calls query
747 // the handshake which, in turn, will replay the error code rather than fail
748 // at the |write_shutdown| check. See https://crbug.com/1078515.
749 // TODO(davidben): Should all handshake errors do this? What about record
750 // decryption failures?
751 hs->can_early_write = false;
752 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
753 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
754 return ssl_hs_error;
755 }
756
757 // TLS 1.2 handshakes cannot accept ECH.
758 if (hs->selected_ech_config) {
759 ssl->s3->ech_status = ssl_ech_rejected;
760 }
761
762 // Copy over the server random.
763 OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
764 SSL3_RANDOM_SIZE);
765
766 // Enforce the TLS 1.3 anti-downgrade feature.
767 if (!ssl->s3->initial_handshake_complete &&
768 ssl_supports_version(hs, TLS1_3_VERSION)) {
769 static_assert(
770 sizeof(kTLS12DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
771 "downgrade signals have different size");
772 static_assert(
773 sizeof(kJDK11DowngradeRandom) == sizeof(kTLS13DowngradeRandom),
774 "downgrade signals have different size");
775 auto suffix =
776 MakeConstSpan(ssl->s3->server_random, sizeof(ssl->s3->server_random))
777 .subspan(SSL3_RANDOM_SIZE - sizeof(kTLS13DowngradeRandom));
778 if (suffix == kTLS12DowngradeRandom || suffix == kTLS13DowngradeRandom ||
779 suffix == kJDK11DowngradeRandom) {
780 OPENSSL_PUT_ERROR(SSL, SSL_R_TLS13_DOWNGRADE);
781 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
782 return ssl_hs_error;
783 }
784 }
785
786 // The cipher must be allowed in the selected version and enabled.
787 const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
788 uint32_t mask_a, mask_k;
789 ssl_get_client_disabled(hs, &mask_a, &mask_k);
790 if (cipher == nullptr ||
791 (cipher->algorithm_mkey & mask_k) ||
792 (cipher->algorithm_auth & mask_a) ||
793 SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) ||
794 SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) ||
795 !sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), nullptr, cipher)) {
796 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
797 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
798 return ssl_hs_error;
799 }
800
801 hs->new_cipher = cipher;
802
803 if (hs->session_id_len != 0 &&
804 CBS_mem_equal(&server_hello.session_id, hs->session_id,
805 hs->session_id_len)) {
806 // Echoing the ClientHello session ID in TLS 1.2, whether from the session
807 // or a synthetic one, indicates resumption. If there was no session (or if
808 // the session was only offered in ECH ClientHelloInner), this was the
809 // TLS 1.3 compatibility mode session ID. As we know this is not a session
810 // the server knows about, any server resuming it is in error. Reject the
811 // first connection deterministicly, rather than installing an invalid
812 // session into the session cache. https://crbug.com/796910
813 if (ssl->session == nullptr || ssl->s3->ech_status == ssl_ech_rejected) {
814 OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_ECHOED_INVALID_SESSION_ID);
815 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
816 return ssl_hs_error;
817 }
818 if (ssl->session->ssl_version != ssl->version) {
819 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
820 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
821 return ssl_hs_error;
822 }
823 if (ssl->session->cipher != hs->new_cipher) {
824 OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
825 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
826 return ssl_hs_error;
827 }
828 if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
829 // This is actually a client application bug.
830 OPENSSL_PUT_ERROR(SSL,
831 SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
832 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
833 return ssl_hs_error;
834 }
835 // We never offer sessions on renegotiation.
836 assert(!ssl->s3->initial_handshake_complete);
837 ssl->s3->session_reused = true;
838 } else {
839 // The session wasn't resumed. Create a fresh SSL_SESSION to fill out.
840 ssl_set_session(ssl, NULL);
841 if (!ssl_get_new_session(hs)) {
842 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
843 return ssl_hs_error;
844 }
845
846 // Save the session ID from the server. This may be empty if the session
847 // isn't resumable, or if we'll receive a session ticket later.
848 assert(CBS_len(&server_hello.session_id) <= SSL3_SESSION_ID_SIZE);
849 static_assert(SSL3_SESSION_ID_SIZE <= UINT8_MAX,
850 "max session ID is too large");
851 hs->new_session->session_id_length =
852 static_cast<uint8_t>(CBS_len(&server_hello.session_id));
853 OPENSSL_memcpy(hs->new_session->session_id,
854 CBS_data(&server_hello.session_id),
855 CBS_len(&server_hello.session_id));
856
857 hs->new_session->cipher = hs->new_cipher;
858 }
859
860 // Now that the cipher is known, initialize the handshake hash and hash the
861 // ServerHello.
862 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
863 !ssl_hash_message(hs, msg)) {
864 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
865 return ssl_hs_error;
866 }
867
868 // If doing a full handshake, the server may request a client certificate
869 // which requires hashing the handshake transcript. Otherwise, the handshake
870 // buffer may be released.
871 if (ssl->session != NULL ||
872 !ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
873 hs->transcript.FreeBuffer();
874 }
875
876 // Only the NULL compression algorithm is supported.
877 if (server_hello.compression_method != 0) {
878 OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
879 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
880 return ssl_hs_error;
881 }
882
883 if (!ssl_parse_serverhello_tlsext(hs, &server_hello.extensions)) {
884 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
885 return ssl_hs_error;
886 }
887
888 if (ssl->session != NULL &&
889 hs->extended_master_secret != ssl->session->extended_master_secret) {
890 if (ssl->session->extended_master_secret) {
891 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
892 } else {
893 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
894 }
895 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
896 return ssl_hs_error;
897 }
898
899 ssl->method->next_message(ssl);
900
901 if (ssl->session != NULL) {
902 if (ssl->ctx->reverify_on_resume &&
903 ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
904 hs->state = state_reverify_server_certificate;
905 } else {
906 hs->state = state_read_session_ticket;
907 }
908 return ssl_hs_ok;
909 }
910
911 hs->state = state_read_server_certificate;
912 return ssl_hs_ok;
913 }
914
do_tls13(SSL_HANDSHAKE * hs)915 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
916 enum ssl_hs_wait_t wait = tls13_client_handshake(hs);
917 if (wait == ssl_hs_ok) {
918 hs->state = state_finish_client_handshake;
919 return ssl_hs_ok;
920 }
921
922 return wait;
923 }
924
do_read_server_certificate(SSL_HANDSHAKE * hs)925 static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
926 SSL *const ssl = hs->ssl;
927
928 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
929 hs->state = state_read_certificate_status;
930 return ssl_hs_ok;
931 }
932
933 SSLMessage msg;
934 if (!ssl->method->get_message(ssl, &msg)) {
935 return ssl_hs_read_message;
936 }
937
938 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE) ||
939 !ssl_hash_message(hs, msg)) {
940 return ssl_hs_error;
941 }
942
943 CBS body = msg.body;
944 uint8_t alert = SSL_AD_DECODE_ERROR;
945 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
946 NULL, &body, ssl->ctx->pool)) {
947 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
948 return ssl_hs_error;
949 }
950
951 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0 ||
952 CBS_len(&body) != 0 ||
953 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
954 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
955 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
956 return ssl_hs_error;
957 }
958
959 if (!ssl_check_leaf_certificate(
960 hs, hs->peer_pubkey.get(),
961 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0))) {
962 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
963 return ssl_hs_error;
964 }
965
966 ssl->method->next_message(ssl);
967
968 hs->state = state_read_certificate_status;
969 return ssl_hs_ok;
970 }
971
do_read_certificate_status(SSL_HANDSHAKE * hs)972 static enum ssl_hs_wait_t do_read_certificate_status(SSL_HANDSHAKE *hs) {
973 SSL *const ssl = hs->ssl;
974
975 if (!hs->certificate_status_expected) {
976 hs->state = state_verify_server_certificate;
977 return ssl_hs_ok;
978 }
979
980 SSLMessage msg;
981 if (!ssl->method->get_message(ssl, &msg)) {
982 return ssl_hs_read_message;
983 }
984
985 if (msg.type != SSL3_MT_CERTIFICATE_STATUS) {
986 // A server may send status_request in ServerHello and then change its mind
987 // about sending CertificateStatus.
988 hs->state = state_verify_server_certificate;
989 return ssl_hs_ok;
990 }
991
992 if (!ssl_hash_message(hs, msg)) {
993 return ssl_hs_error;
994 }
995
996 CBS certificate_status = msg.body, ocsp_response;
997 uint8_t status_type;
998 if (!CBS_get_u8(&certificate_status, &status_type) ||
999 status_type != TLSEXT_STATUSTYPE_ocsp ||
1000 !CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
1001 CBS_len(&ocsp_response) == 0 ||
1002 CBS_len(&certificate_status) != 0) {
1003 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1004 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1005 return ssl_hs_error;
1006 }
1007
1008 hs->new_session->ocsp_response.reset(
1009 CRYPTO_BUFFER_new_from_CBS(&ocsp_response, ssl->ctx->pool));
1010 if (hs->new_session->ocsp_response == nullptr) {
1011 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1012 return ssl_hs_error;
1013 }
1014
1015 ssl->method->next_message(ssl);
1016
1017 hs->state = state_verify_server_certificate;
1018 return ssl_hs_ok;
1019 }
1020
do_verify_server_certificate(SSL_HANDSHAKE * hs)1021 static enum ssl_hs_wait_t do_verify_server_certificate(SSL_HANDSHAKE *hs) {
1022 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1023 hs->state = state_read_server_key_exchange;
1024 return ssl_hs_ok;
1025 }
1026
1027 switch (ssl_verify_peer_cert(hs)) {
1028 case ssl_verify_ok:
1029 break;
1030 case ssl_verify_invalid:
1031 return ssl_hs_error;
1032 case ssl_verify_retry:
1033 hs->state = state_verify_server_certificate;
1034 return ssl_hs_certificate_verify;
1035 }
1036
1037 hs->state = state_read_server_key_exchange;
1038 return ssl_hs_ok;
1039 }
1040
do_reverify_server_certificate(SSL_HANDSHAKE * hs)1041 static enum ssl_hs_wait_t do_reverify_server_certificate(SSL_HANDSHAKE *hs) {
1042 assert(hs->ssl->ctx->reverify_on_resume);
1043
1044 switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
1045 case ssl_verify_ok:
1046 break;
1047 case ssl_verify_invalid:
1048 return ssl_hs_error;
1049 case ssl_verify_retry:
1050 hs->state = state_reverify_server_certificate;
1051 return ssl_hs_certificate_verify;
1052 }
1053
1054 hs->state = state_read_session_ticket;
1055 return ssl_hs_ok;
1056 }
1057
do_read_server_key_exchange(SSL_HANDSHAKE * hs)1058 static enum ssl_hs_wait_t do_read_server_key_exchange(SSL_HANDSHAKE *hs) {
1059 SSL *const ssl = hs->ssl;
1060 SSLMessage msg;
1061 if (!ssl->method->get_message(ssl, &msg)) {
1062 return ssl_hs_read_message;
1063 }
1064
1065 if (msg.type != SSL3_MT_SERVER_KEY_EXCHANGE) {
1066 // Some ciphers (pure PSK) have an optional ServerKeyExchange message.
1067 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
1068 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1069 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1070 return ssl_hs_error;
1071 }
1072
1073 hs->state = state_read_certificate_request;
1074 return ssl_hs_ok;
1075 }
1076
1077 if (!ssl_hash_message(hs, msg)) {
1078 return ssl_hs_error;
1079 }
1080
1081 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1082 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1083 CBS server_key_exchange = msg.body;
1084 if (alg_a & SSL_aPSK) {
1085 CBS psk_identity_hint;
1086
1087 // Each of the PSK key exchanges begins with a psk_identity_hint.
1088 if (!CBS_get_u16_length_prefixed(&server_key_exchange,
1089 &psk_identity_hint)) {
1090 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1091 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1092 return ssl_hs_error;
1093 }
1094
1095 // Store the PSK identity hint for the ClientKeyExchange. Assume that the
1096 // maximum length of a PSK identity hint can be as long as the maximum
1097 // length of a PSK identity. Also do not allow NULL characters; identities
1098 // are saved as C strings.
1099 //
1100 // TODO(davidben): Should invalid hints be ignored? It's a hint rather than
1101 // a specific identity.
1102 if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
1103 CBS_contains_zero_byte(&psk_identity_hint)) {
1104 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1105 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1106 return ssl_hs_error;
1107 }
1108
1109 // Save non-empty identity hints as a C string. Empty identity hints we
1110 // treat as missing. Plain PSK makes it possible to send either no hint
1111 // (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
1112 // empty hint. Having different capabilities is odd, so we interpret empty
1113 // and missing as identical.
1114 char *raw = nullptr;
1115 if (CBS_len(&psk_identity_hint) != 0 &&
1116 !CBS_strdup(&psk_identity_hint, &raw)) {
1117 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1118 return ssl_hs_error;
1119 }
1120 hs->peer_psk_identity_hint.reset(raw);
1121 }
1122
1123 if (alg_k & SSL_kECDHE) {
1124 // Parse the server parameters.
1125 uint8_t group_type;
1126 uint16_t group_id;
1127 CBS point;
1128 if (!CBS_get_u8(&server_key_exchange, &group_type) ||
1129 group_type != NAMED_CURVE_TYPE ||
1130 !CBS_get_u16(&server_key_exchange, &group_id) ||
1131 !CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
1132 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1133 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1134 return ssl_hs_error;
1135 }
1136
1137 // Ensure the group is consistent with preferences.
1138 if (!tls1_check_group_id(hs, group_id)) {
1139 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
1140 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1141 return ssl_hs_error;
1142 }
1143
1144 // Save the group and peer public key for later.
1145 hs->new_session->group_id = group_id;
1146 if (!hs->peer_key.CopyFrom(point)) {
1147 return ssl_hs_error;
1148 }
1149 } else if (!(alg_k & SSL_kPSK)) {
1150 OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
1151 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1152 return ssl_hs_error;
1153 }
1154
1155 // At this point, |server_key_exchange| contains the signature, if any, while
1156 // |msg.body| contains the entire message. From that, derive a CBS containing
1157 // just the parameter.
1158 CBS parameter;
1159 CBS_init(¶meter, CBS_data(&msg.body),
1160 CBS_len(&msg.body) - CBS_len(&server_key_exchange));
1161
1162 // ServerKeyExchange should be signed by the server's public key.
1163 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1164 uint16_t signature_algorithm = 0;
1165 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1166 if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
1167 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1168 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1169 return ssl_hs_error;
1170 }
1171 uint8_t alert = SSL_AD_DECODE_ERROR;
1172 if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm)) {
1173 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1174 return ssl_hs_error;
1175 }
1176 hs->new_session->peer_signature_algorithm = signature_algorithm;
1177 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1178 hs->peer_pubkey.get())) {
1179 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1180 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1181 return ssl_hs_error;
1182 }
1183
1184 // The last field in |server_key_exchange| is the signature.
1185 CBS signature;
1186 if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
1187 CBS_len(&server_key_exchange) != 0) {
1188 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1189 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1190 return ssl_hs_error;
1191 }
1192
1193 ScopedCBB transcript;
1194 Array<uint8_t> transcript_data;
1195 if (!CBB_init(transcript.get(),
1196 2 * SSL3_RANDOM_SIZE + CBS_len(¶meter)) ||
1197 !CBB_add_bytes(transcript.get(), ssl->s3->client_random,
1198 SSL3_RANDOM_SIZE) ||
1199 !CBB_add_bytes(transcript.get(), ssl->s3->server_random,
1200 SSL3_RANDOM_SIZE) ||
1201 !CBB_add_bytes(transcript.get(), CBS_data(¶meter),
1202 CBS_len(¶meter)) ||
1203 !CBBFinishArray(transcript.get(), &transcript_data)) {
1204 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1205 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1206 return ssl_hs_error;
1207 }
1208
1209 if (!ssl_public_key_verify(ssl, signature, signature_algorithm,
1210 hs->peer_pubkey.get(), transcript_data)) {
1211 // bad signature
1212 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1213 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1214 return ssl_hs_error;
1215 }
1216 } else {
1217 // PSK ciphers are the only supported certificate-less ciphers.
1218 assert(alg_a == SSL_aPSK);
1219
1220 if (CBS_len(&server_key_exchange) > 0) {
1221 OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
1222 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1223 return ssl_hs_error;
1224 }
1225 }
1226
1227 ssl->method->next_message(ssl);
1228 hs->state = state_read_certificate_request;
1229 return ssl_hs_ok;
1230 }
1231
do_read_certificate_request(SSL_HANDSHAKE * hs)1232 static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
1233 SSL *const ssl = hs->ssl;
1234
1235 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1236 hs->state = state_read_server_hello_done;
1237 return ssl_hs_ok;
1238 }
1239
1240 SSLMessage msg;
1241 if (!ssl->method->get_message(ssl, &msg)) {
1242 return ssl_hs_read_message;
1243 }
1244
1245 if (msg.type == SSL3_MT_SERVER_HELLO_DONE) {
1246 // If we get here we don't need the handshake buffer as we won't be doing
1247 // client auth.
1248 hs->transcript.FreeBuffer();
1249 hs->state = state_read_server_hello_done;
1250 return ssl_hs_ok;
1251 }
1252
1253 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_REQUEST) ||
1254 !ssl_hash_message(hs, msg)) {
1255 return ssl_hs_error;
1256 }
1257
1258 // Get the certificate types.
1259 CBS body = msg.body, certificate_types;
1260 if (!CBS_get_u8_length_prefixed(&body, &certificate_types)) {
1261 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1262 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1263 return ssl_hs_error;
1264 }
1265
1266 if (!hs->certificate_types.CopyFrom(certificate_types)) {
1267 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1268 return ssl_hs_error;
1269 }
1270
1271 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1272 CBS supported_signature_algorithms;
1273 if (!CBS_get_u16_length_prefixed(&body, &supported_signature_algorithms) ||
1274 !tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
1275 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1276 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1277 return ssl_hs_error;
1278 }
1279 }
1280
1281 uint8_t alert = SSL_AD_DECODE_ERROR;
1282 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names =
1283 ssl_parse_client_CA_list(ssl, &alert, &body);
1284 if (!ca_names) {
1285 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1286 return ssl_hs_error;
1287 }
1288
1289 if (CBS_len(&body) != 0) {
1290 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1291 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1292 return ssl_hs_error;
1293 }
1294
1295 hs->cert_request = true;
1296 hs->ca_names = std::move(ca_names);
1297 ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
1298
1299 ssl->method->next_message(ssl);
1300 hs->state = state_read_server_hello_done;
1301 return ssl_hs_ok;
1302 }
1303
do_read_server_hello_done(SSL_HANDSHAKE * hs)1304 static enum ssl_hs_wait_t do_read_server_hello_done(SSL_HANDSHAKE *hs) {
1305 SSL *const ssl = hs->ssl;
1306 SSLMessage msg;
1307 if (!ssl->method->get_message(ssl, &msg)) {
1308 return ssl_hs_read_message;
1309 }
1310
1311 if (!ssl_check_message_type(ssl, msg, SSL3_MT_SERVER_HELLO_DONE) ||
1312 !ssl_hash_message(hs, msg)) {
1313 return ssl_hs_error;
1314 }
1315
1316 // ServerHelloDone is empty.
1317 if (CBS_len(&msg.body) != 0) {
1318 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1319 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1320 return ssl_hs_error;
1321 }
1322
1323 // ServerHelloDone should be the end of the flight.
1324 if (ssl->method->has_unprocessed_handshake_data(ssl)) {
1325 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
1326 OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
1327 return ssl_hs_error;
1328 }
1329
1330 ssl->method->next_message(ssl);
1331 hs->state = state_send_client_certificate;
1332 return ssl_hs_ok;
1333 }
1334
check_credential(SSL_HANDSHAKE * hs,const SSL_CREDENTIAL * cred,uint16_t * out_sigalg)1335 static bool check_credential(SSL_HANDSHAKE *hs, const SSL_CREDENTIAL *cred,
1336 uint16_t *out_sigalg) {
1337 if (cred->type != SSLCredentialType::kX509) {
1338 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1339 return false;
1340 }
1341
1342 if (hs->config->check_client_certificate_type) {
1343 // Check the certificate types advertised by the peer.
1344 uint8_t cert_type;
1345 switch (EVP_PKEY_id(cred->pubkey.get())) {
1346 case EVP_PKEY_RSA:
1347 cert_type = SSL3_CT_RSA_SIGN;
1348 break;
1349 case EVP_PKEY_EC:
1350 case EVP_PKEY_ED25519:
1351 cert_type = TLS_CT_ECDSA_SIGN;
1352 break;
1353 default:
1354 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1355 return false;
1356 }
1357 if (std::find(hs->certificate_types.begin(), hs->certificate_types.end(),
1358 cert_type) == hs->certificate_types.end()) {
1359 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1360 return false;
1361 }
1362 }
1363
1364 // All currently supported credentials require a signature. Note this does not
1365 // check the ECDSA curve. Prior to TLS 1.3, there is no way to determine which
1366 // ECDSA curves are supported by the peer, so we must assume all curves are
1367 // supported.
1368 return tls1_choose_signature_algorithm(hs, cred, out_sigalg);
1369 }
1370
do_send_client_certificate(SSL_HANDSHAKE * hs)1371 static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
1372 SSL *const ssl = hs->ssl;
1373
1374 // The peer didn't request a certificate.
1375 if (!hs->cert_request) {
1376 hs->state = state_send_client_key_exchange;
1377 return ssl_hs_ok;
1378 }
1379
1380 if (ssl->s3->ech_status == ssl_ech_rejected) {
1381 // Do not send client certificates on ECH reject. We have not authenticated
1382 // the server for the name that can learn the certificate.
1383 SSL_certs_clear(ssl);
1384 } else if (hs->config->cert->cert_cb != nullptr) {
1385 // Call cert_cb to update the certificate.
1386 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
1387 if (rv == 0) {
1388 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1389 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
1390 return ssl_hs_error;
1391 }
1392 if (rv < 0) {
1393 hs->state = state_send_client_certificate;
1394 return ssl_hs_x509_lookup;
1395 }
1396 }
1397
1398 Array<SSL_CREDENTIAL *> creds;
1399 if (!ssl_get_credential_list(hs, &creds)) {
1400 return ssl_hs_error;
1401 }
1402
1403 if (creds.empty()) {
1404 // If there were no credentials, proceed without a client certificate. In
1405 // this case, the handshake buffer may be released early.
1406 hs->transcript.FreeBuffer();
1407 } else {
1408 // Select the credential to use.
1409 for (SSL_CREDENTIAL *cred : creds) {
1410 ERR_clear_error();
1411 uint16_t sigalg;
1412 if (check_credential(hs, cred, &sigalg)) {
1413 hs->credential = UpRef(cred);
1414 hs->signature_algorithm = sigalg;
1415 break;
1416 }
1417 }
1418 if (hs->credential == nullptr) {
1419 // The error from the last attempt is in the error queue.
1420 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1421 return ssl_hs_error;
1422 }
1423 }
1424
1425 if (!ssl_send_tls12_certificate(hs)) {
1426 return ssl_hs_error;
1427 }
1428
1429 hs->state = state_send_client_key_exchange;
1430 return ssl_hs_ok;
1431 }
1432
1433 static_assert(sizeof(size_t) >= sizeof(unsigned),
1434 "size_t is smaller than unsigned");
1435
do_send_client_key_exchange(SSL_HANDSHAKE * hs)1436 static enum ssl_hs_wait_t do_send_client_key_exchange(SSL_HANDSHAKE *hs) {
1437 SSL *const ssl = hs->ssl;
1438 ScopedCBB cbb;
1439 CBB body;
1440 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1441 SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1442 return ssl_hs_error;
1443 }
1444
1445 Array<uint8_t> pms;
1446 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1447 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1448 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
1449 const CRYPTO_BUFFER *leaf =
1450 sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0);
1451 CBS leaf_cbs;
1452 CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs);
1453
1454 // Check the key usage matches the cipher suite. We do this unconditionally
1455 // for non-RSA certificates. In particular, it's needed to distinguish ECDH
1456 // certificates, which we do not support, from ECDSA certificates.
1457 // Historically, we have not checked RSA key usages, so it is controlled by
1458 // a flag for now. See https://crbug.com/795089.
1459 ssl_key_usage_t intended_use = (alg_k & SSL_kRSA)
1460 ? key_usage_encipherment
1461 : key_usage_digital_signature;
1462 if (!ssl_cert_check_key_usage(&leaf_cbs, intended_use)) {
1463 if (hs->config->enforce_rsa_key_usage ||
1464 EVP_PKEY_id(hs->peer_pubkey.get()) != EVP_PKEY_RSA) {
1465 return ssl_hs_error;
1466 }
1467 ERR_clear_error();
1468 ssl->s3->was_key_usage_invalid = true;
1469 }
1470 }
1471
1472 // If using a PSK key exchange, prepare the pre-shared key.
1473 unsigned psk_len = 0;
1474 uint8_t psk[PSK_MAX_PSK_LEN];
1475 if (alg_a & SSL_aPSK) {
1476 if (hs->config->psk_client_callback == NULL) {
1477 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
1478 return ssl_hs_error;
1479 }
1480
1481 char identity[PSK_MAX_IDENTITY_LEN + 1];
1482 OPENSSL_memset(identity, 0, sizeof(identity));
1483 psk_len = hs->config->psk_client_callback(
1484 ssl, hs->peer_psk_identity_hint.get(), identity, sizeof(identity), psk,
1485 sizeof(psk));
1486 if (psk_len == 0) {
1487 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1488 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1489 return ssl_hs_error;
1490 }
1491 assert(psk_len <= PSK_MAX_PSK_LEN);
1492
1493 hs->new_session->psk_identity.reset(OPENSSL_strdup(identity));
1494 if (hs->new_session->psk_identity == nullptr) {
1495 return ssl_hs_error;
1496 }
1497
1498 // Write out psk_identity.
1499 CBB child;
1500 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1501 !CBB_add_bytes(&child, (const uint8_t *)identity,
1502 OPENSSL_strnlen(identity, sizeof(identity))) ||
1503 !CBB_flush(&body)) {
1504 return ssl_hs_error;
1505 }
1506 }
1507
1508 // Depending on the key exchange method, compute |pms|.
1509 if (alg_k & SSL_kRSA) {
1510 if (!pms.Init(SSL_MAX_MASTER_KEY_LENGTH)) {
1511 return ssl_hs_error;
1512 }
1513
1514 RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey.get());
1515 if (rsa == NULL) {
1516 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1517 return ssl_hs_error;
1518 }
1519
1520 pms[0] = hs->client_version >> 8;
1521 pms[1] = hs->client_version & 0xff;
1522 if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
1523 return ssl_hs_error;
1524 }
1525
1526 CBB enc_pms;
1527 uint8_t *ptr;
1528 size_t enc_pms_len;
1529 if (!CBB_add_u16_length_prefixed(&body, &enc_pms) ||
1530 !CBB_reserve(&enc_pms, &ptr, RSA_size(rsa)) ||
1531 !RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms.data(),
1532 pms.size(), RSA_PKCS1_PADDING) ||
1533 !CBB_did_write(&enc_pms, enc_pms_len) ||
1534 !CBB_flush(&body)) {
1535 return ssl_hs_error;
1536 }
1537 } else if (alg_k & SSL_kECDHE) {
1538 CBB child;
1539 if (!CBB_add_u8_length_prefixed(&body, &child)) {
1540 return ssl_hs_error;
1541 }
1542
1543 // Generate a premaster secret and encapsulate it.
1544 bssl::UniquePtr<SSLKeyShare> kem =
1545 SSLKeyShare::Create(hs->new_session->group_id);
1546 uint8_t alert = SSL_AD_DECODE_ERROR;
1547 if (!kem || !kem->Encap(&child, &pms, &alert, hs->peer_key)) {
1548 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1549 return ssl_hs_error;
1550 }
1551 if (!CBB_flush(&body)) {
1552 return ssl_hs_error;
1553 }
1554
1555 // The peer key can now be discarded.
1556 hs->peer_key.Reset();
1557 } else if (alg_k & SSL_kPSK) {
1558 // For plain PSK, other_secret is a block of 0s with the same length as
1559 // the pre-shared key.
1560 if (!pms.Init(psk_len)) {
1561 return ssl_hs_error;
1562 }
1563 OPENSSL_memset(pms.data(), 0, pms.size());
1564 } else {
1565 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1566 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1567 return ssl_hs_error;
1568 }
1569
1570 // For a PSK cipher suite, other_secret is combined with the pre-shared
1571 // key.
1572 if (alg_a & SSL_aPSK) {
1573 ScopedCBB pms_cbb;
1574 CBB child;
1575 if (!CBB_init(pms_cbb.get(), 2 + psk_len + 2 + pms.size()) ||
1576 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1577 !CBB_add_bytes(&child, pms.data(), pms.size()) ||
1578 !CBB_add_u16_length_prefixed(pms_cbb.get(), &child) ||
1579 !CBB_add_bytes(&child, psk, psk_len) ||
1580 !CBBFinishArray(pms_cbb.get(), &pms)) {
1581 return ssl_hs_error;
1582 }
1583 }
1584
1585 // The message must be added to the finished hash before calculating the
1586 // master secret.
1587 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1588 return ssl_hs_error;
1589 }
1590
1591 hs->new_session->secret_length =
1592 tls1_generate_master_secret(hs, hs->new_session->secret, pms);
1593 if (hs->new_session->secret_length == 0) {
1594 return ssl_hs_error;
1595 }
1596 hs->new_session->extended_master_secret = hs->extended_master_secret;
1597
1598 hs->state = state_send_client_certificate_verify;
1599 return ssl_hs_ok;
1600 }
1601
do_send_client_certificate_verify(SSL_HANDSHAKE * hs)1602 static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
1603 SSL *const ssl = hs->ssl;
1604
1605 if (!hs->cert_request || hs->credential == nullptr) {
1606 hs->state = state_send_client_finished;
1607 return ssl_hs_ok;
1608 }
1609
1610 ScopedCBB cbb;
1611 CBB body, child;
1612 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1613 SSL3_MT_CERTIFICATE_VERIFY)) {
1614 return ssl_hs_error;
1615 }
1616
1617 assert(hs->signature_algorithm != 0);
1618 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1619 // Write out the digest type in TLS 1.2.
1620 if (!CBB_add_u16(&body, hs->signature_algorithm)) {
1621 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1622 return ssl_hs_error;
1623 }
1624 }
1625
1626 // Set aside space for the signature.
1627 const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get());
1628 uint8_t *ptr;
1629 if (!CBB_add_u16_length_prefixed(&body, &child) ||
1630 !CBB_reserve(&child, &ptr, max_sig_len)) {
1631 return ssl_hs_error;
1632 }
1633
1634 size_t sig_len = max_sig_len;
1635 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1636 hs->signature_algorithm,
1637 hs->transcript.buffer())) {
1638 case ssl_private_key_success:
1639 break;
1640 case ssl_private_key_failure:
1641 return ssl_hs_error;
1642 case ssl_private_key_retry:
1643 hs->state = state_send_client_certificate_verify;
1644 return ssl_hs_private_key_operation;
1645 }
1646
1647 if (!CBB_did_write(&child, sig_len) ||
1648 !ssl_add_message_cbb(ssl, cbb.get())) {
1649 return ssl_hs_error;
1650 }
1651
1652 // The handshake buffer is no longer necessary.
1653 hs->transcript.FreeBuffer();
1654
1655 hs->state = state_send_client_finished;
1656 return ssl_hs_ok;
1657 }
1658
do_send_client_finished(SSL_HANDSHAKE * hs)1659 static enum ssl_hs_wait_t do_send_client_finished(SSL_HANDSHAKE *hs) {
1660 SSL *const ssl = hs->ssl;
1661 hs->can_release_private_key = true;
1662 if (!ssl->method->add_change_cipher_spec(ssl) ||
1663 !tls1_change_cipher_state(hs, evp_aead_seal)) {
1664 return ssl_hs_error;
1665 }
1666
1667 if (hs->next_proto_neg_seen) {
1668 static const uint8_t kZero[32] = {0};
1669 size_t padding_len =
1670 32 - ((ssl->s3->next_proto_negotiated.size() + 2) % 32);
1671
1672 ScopedCBB cbb;
1673 CBB body, child;
1674 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_NEXT_PROTO) ||
1675 !CBB_add_u8_length_prefixed(&body, &child) ||
1676 !CBB_add_bytes(&child, ssl->s3->next_proto_negotiated.data(),
1677 ssl->s3->next_proto_negotiated.size()) ||
1678 !CBB_add_u8_length_prefixed(&body, &child) ||
1679 !CBB_add_bytes(&child, kZero, padding_len) ||
1680 !ssl_add_message_cbb(ssl, cbb.get())) {
1681 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1682 return ssl_hs_error;
1683 }
1684 }
1685
1686 if (hs->channel_id_negotiated) {
1687 ScopedCBB cbb;
1688 CBB body;
1689 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
1690 !tls1_write_channel_id(hs, &body) ||
1691 !ssl_add_message_cbb(ssl, cbb.get())) {
1692 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1693 return ssl_hs_error;
1694 }
1695 }
1696
1697 if (!ssl_send_finished(hs)) {
1698 return ssl_hs_error;
1699 }
1700
1701 hs->state = state_finish_flight;
1702 return ssl_hs_flush;
1703 }
1704
can_false_start(const SSL_HANDSHAKE * hs)1705 static bool can_false_start(const SSL_HANDSHAKE *hs) {
1706 const SSL *const ssl = hs->ssl;
1707
1708 // False Start bypasses the Finished check's downgrade protection. This can
1709 // enable attacks where we send data under weaker settings than supported
1710 // (e.g. the Logjam attack). Thus we require TLS 1.2 with an ECDHE+AEAD
1711 // cipher, our strongest settings before TLS 1.3.
1712 //
1713 // Now that TLS 1.3 exists, we would like to avoid similar attacks between
1714 // TLS 1.2 and TLS 1.3, but there are too many TLS 1.2 deployments to
1715 // sacrifice False Start on them. Instead, we rely on the ServerHello.random
1716 // downgrade signal, which we unconditionally enforce.
1717 if (SSL_is_dtls(ssl) ||
1718 SSL_version(ssl) != TLS1_2_VERSION ||
1719 hs->new_cipher->algorithm_mkey != SSL_kECDHE ||
1720 hs->new_cipher->algorithm_mac != SSL_AEAD) {
1721 return false;
1722 }
1723
1724 // If ECH was rejected, disable False Start. We run the handshake to
1725 // completion, including the Finished downgrade check, to authenticate the
1726 // recovery flow.
1727 if (ssl->s3->ech_status == ssl_ech_rejected) {
1728 return false;
1729 }
1730
1731 // Additionally require ALPN or NPN by default.
1732 //
1733 // TODO(davidben): Can this constraint be relaxed globally now that cipher
1734 // suite requirements have been tightened?
1735 if (!ssl->ctx->false_start_allowed_without_alpn &&
1736 ssl->s3->alpn_selected.empty() &&
1737 ssl->s3->next_proto_negotiated.empty()) {
1738 return false;
1739 }
1740
1741 return true;
1742 }
1743
do_finish_flight(SSL_HANDSHAKE * hs)1744 static enum ssl_hs_wait_t do_finish_flight(SSL_HANDSHAKE *hs) {
1745 SSL *const ssl = hs->ssl;
1746 if (ssl->session != NULL) {
1747 hs->state = state_finish_client_handshake;
1748 return ssl_hs_ok;
1749 }
1750
1751 // This is a full handshake. If it involves ChannelID, then record the
1752 // handshake hashes at this point in the session so that any resumption of
1753 // this session with ChannelID can sign those hashes.
1754 if (!tls1_record_handshake_hashes_for_channel_id(hs)) {
1755 return ssl_hs_error;
1756 }
1757
1758 hs->state = state_read_session_ticket;
1759
1760 if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
1761 can_false_start(hs) &&
1762 // No False Start on renegotiation (would complicate the state machine).
1763 !ssl->s3->initial_handshake_complete) {
1764 hs->in_false_start = true;
1765 hs->can_early_write = true;
1766 return ssl_hs_early_return;
1767 }
1768
1769 return ssl_hs_ok;
1770 }
1771
do_read_session_ticket(SSL_HANDSHAKE * hs)1772 static enum ssl_hs_wait_t do_read_session_ticket(SSL_HANDSHAKE *hs) {
1773 SSL *const ssl = hs->ssl;
1774
1775 if (!hs->ticket_expected) {
1776 hs->state = state_process_change_cipher_spec;
1777 return ssl_hs_read_change_cipher_spec;
1778 }
1779
1780 SSLMessage msg;
1781 if (!ssl->method->get_message(ssl, &msg)) {
1782 return ssl_hs_read_message;
1783 }
1784
1785 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEW_SESSION_TICKET) ||
1786 !ssl_hash_message(hs, msg)) {
1787 return ssl_hs_error;
1788 }
1789
1790 CBS new_session_ticket = msg.body, ticket;
1791 uint32_t ticket_lifetime_hint;
1792 if (!CBS_get_u32(&new_session_ticket, &ticket_lifetime_hint) ||
1793 !CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
1794 CBS_len(&new_session_ticket) != 0) {
1795 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1796 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1797 return ssl_hs_error;
1798 }
1799
1800 if (CBS_len(&ticket) == 0) {
1801 // RFC 5077 allows a server to change its mind and send no ticket after
1802 // negotiating the extension. The value of |ticket_expected| is checked in
1803 // |ssl_update_cache| so is cleared here to avoid an unnecessary update.
1804 hs->ticket_expected = false;
1805 ssl->method->next_message(ssl);
1806 hs->state = state_process_change_cipher_spec;
1807 return ssl_hs_read_change_cipher_spec;
1808 }
1809
1810 if (ssl->session != nullptr) {
1811 // The server is sending a new ticket for an existing session. Sessions are
1812 // immutable once established, so duplicate all but the ticket of the
1813 // existing session.
1814 assert(!hs->new_session);
1815 hs->new_session =
1816 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1817 if (!hs->new_session) {
1818 return ssl_hs_error;
1819 }
1820 }
1821
1822 // |ticket_lifetime_hint| is measured from when the ticket was issued.
1823 ssl_session_rebase_time(ssl, hs->new_session.get());
1824
1825 if (!hs->new_session->ticket.CopyFrom(ticket)) {
1826 return ssl_hs_error;
1827 }
1828 hs->new_session->ticket_lifetime_hint = ticket_lifetime_hint;
1829
1830 // Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
1831 // TODO(davidben): Are external callers relying on this? Try removing this.
1832 SHA256(CBS_data(&ticket), CBS_len(&ticket), hs->new_session->session_id);
1833 hs->new_session->session_id_length = SHA256_DIGEST_LENGTH;
1834
1835 ssl->method->next_message(ssl);
1836 hs->state = state_process_change_cipher_spec;
1837 return ssl_hs_read_change_cipher_spec;
1838 }
1839
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1840 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1841 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1842 return ssl_hs_error;
1843 }
1844
1845 hs->state = state_read_server_finished;
1846 return ssl_hs_ok;
1847 }
1848
do_read_server_finished(SSL_HANDSHAKE * hs)1849 static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
1850 SSL *const ssl = hs->ssl;
1851 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1852 if (wait != ssl_hs_ok) {
1853 return wait;
1854 }
1855
1856 if (ssl->session != NULL) {
1857 hs->state = state_send_client_finished;
1858 return ssl_hs_ok;
1859 }
1860
1861 hs->state = state_finish_client_handshake;
1862 return ssl_hs_ok;
1863 }
1864
do_finish_client_handshake(SSL_HANDSHAKE * hs)1865 static enum ssl_hs_wait_t do_finish_client_handshake(SSL_HANDSHAKE *hs) {
1866 SSL *const ssl = hs->ssl;
1867 if (ssl->s3->ech_status == ssl_ech_rejected) {
1868 // Release the retry configs.
1869 hs->ech_authenticated_reject = true;
1870 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ECH_REQUIRED);
1871 OPENSSL_PUT_ERROR(SSL, SSL_R_ECH_REJECTED);
1872 return ssl_hs_error;
1873 }
1874
1875 ssl->method->on_handshake_complete(ssl);
1876
1877 // Note TLS 1.2 resumptions with ticket renewal have both |ssl->session| (the
1878 // resumed session) and |hs->new_session| (the session with the new ticket).
1879 bool has_new_session = hs->new_session != nullptr;
1880 if (has_new_session) {
1881 // When False Start is enabled, the handshake reports completion early. The
1882 // caller may then have passed the (then unresuable) |hs->new_session| to
1883 // another thread via |SSL_get0_session| for resumption. To avoid potential
1884 // race conditions in such callers, we duplicate the session before
1885 // clearing |not_resumable|.
1886 ssl->s3->established_session =
1887 SSL_SESSION_dup(hs->new_session.get(), SSL_SESSION_DUP_ALL);
1888 if (!ssl->s3->established_session) {
1889 return ssl_hs_error;
1890 }
1891 // Renegotiations do not participate in session resumption.
1892 if (!ssl->s3->initial_handshake_complete) {
1893 ssl->s3->established_session->not_resumable = false;
1894 }
1895
1896 hs->new_session.reset();
1897 } else {
1898 assert(ssl->session != nullptr);
1899 ssl->s3->established_session = UpRef(ssl->session);
1900 }
1901
1902 hs->handshake_finalized = true;
1903 ssl->s3->initial_handshake_complete = true;
1904 if (has_new_session) {
1905 ssl_update_cache(ssl);
1906 }
1907
1908 hs->state = state_done;
1909 return ssl_hs_ok;
1910 }
1911
ssl_client_handshake(SSL_HANDSHAKE * hs)1912 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs) {
1913 while (hs->state != state_done) {
1914 enum ssl_hs_wait_t ret = ssl_hs_error;
1915 enum ssl_client_hs_state_t state =
1916 static_cast<enum ssl_client_hs_state_t>(hs->state);
1917 switch (state) {
1918 case state_start_connect:
1919 ret = do_start_connect(hs);
1920 break;
1921 case state_enter_early_data:
1922 ret = do_enter_early_data(hs);
1923 break;
1924 case state_early_reverify_server_certificate:
1925 ret = do_early_reverify_server_certificate(hs);
1926 break;
1927 case state_read_hello_verify_request:
1928 ret = do_read_hello_verify_request(hs);
1929 break;
1930 case state_read_server_hello:
1931 ret = do_read_server_hello(hs);
1932 break;
1933 case state_tls13:
1934 ret = do_tls13(hs);
1935 break;
1936 case state_read_server_certificate:
1937 ret = do_read_server_certificate(hs);
1938 break;
1939 case state_read_certificate_status:
1940 ret = do_read_certificate_status(hs);
1941 break;
1942 case state_verify_server_certificate:
1943 ret = do_verify_server_certificate(hs);
1944 break;
1945 case state_reverify_server_certificate:
1946 ret = do_reverify_server_certificate(hs);
1947 break;
1948 case state_read_server_key_exchange:
1949 ret = do_read_server_key_exchange(hs);
1950 break;
1951 case state_read_certificate_request:
1952 ret = do_read_certificate_request(hs);
1953 break;
1954 case state_read_server_hello_done:
1955 ret = do_read_server_hello_done(hs);
1956 break;
1957 case state_send_client_certificate:
1958 ret = do_send_client_certificate(hs);
1959 break;
1960 case state_send_client_key_exchange:
1961 ret = do_send_client_key_exchange(hs);
1962 break;
1963 case state_send_client_certificate_verify:
1964 ret = do_send_client_certificate_verify(hs);
1965 break;
1966 case state_send_client_finished:
1967 ret = do_send_client_finished(hs);
1968 break;
1969 case state_finish_flight:
1970 ret = do_finish_flight(hs);
1971 break;
1972 case state_read_session_ticket:
1973 ret = do_read_session_ticket(hs);
1974 break;
1975 case state_process_change_cipher_spec:
1976 ret = do_process_change_cipher_spec(hs);
1977 break;
1978 case state_read_server_finished:
1979 ret = do_read_server_finished(hs);
1980 break;
1981 case state_finish_client_handshake:
1982 ret = do_finish_client_handshake(hs);
1983 break;
1984 case state_done:
1985 ret = ssl_hs_ok;
1986 break;
1987 }
1988
1989 if (hs->state != state) {
1990 ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
1991 }
1992
1993 if (ret != ssl_hs_ok) {
1994 return ret;
1995 }
1996 }
1997
1998 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1999 return ssl_hs_ok;
2000 }
2001
ssl_client_handshake_state(SSL_HANDSHAKE * hs)2002 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs) {
2003 enum ssl_client_hs_state_t state =
2004 static_cast<enum ssl_client_hs_state_t>(hs->state);
2005 switch (state) {
2006 case state_start_connect:
2007 return "TLS client start_connect";
2008 case state_enter_early_data:
2009 return "TLS client enter_early_data";
2010 case state_early_reverify_server_certificate:
2011 return "TLS client early_reverify_server_certificate";
2012 case state_read_hello_verify_request:
2013 return "TLS client read_hello_verify_request";
2014 case state_read_server_hello:
2015 return "TLS client read_server_hello";
2016 case state_tls13:
2017 return tls13_client_handshake_state(hs);
2018 case state_read_server_certificate:
2019 return "TLS client read_server_certificate";
2020 case state_read_certificate_status:
2021 return "TLS client read_certificate_status";
2022 case state_verify_server_certificate:
2023 return "TLS client verify_server_certificate";
2024 case state_reverify_server_certificate:
2025 return "TLS client reverify_server_certificate";
2026 case state_read_server_key_exchange:
2027 return "TLS client read_server_key_exchange";
2028 case state_read_certificate_request:
2029 return "TLS client read_certificate_request";
2030 case state_read_server_hello_done:
2031 return "TLS client read_server_hello_done";
2032 case state_send_client_certificate:
2033 return "TLS client send_client_certificate";
2034 case state_send_client_key_exchange:
2035 return "TLS client send_client_key_exchange";
2036 case state_send_client_certificate_verify:
2037 return "TLS client send_client_certificate_verify";
2038 case state_send_client_finished:
2039 return "TLS client send_client_finished";
2040 case state_finish_flight:
2041 return "TLS client finish_flight";
2042 case state_read_session_ticket:
2043 return "TLS client read_session_ticket";
2044 case state_process_change_cipher_spec:
2045 return "TLS client process_change_cipher_spec";
2046 case state_read_server_finished:
2047 return "TLS client read_server_finished";
2048 case state_finish_client_handshake:
2049 return "TLS client finish_client_handshake";
2050 case state_done:
2051 return "TLS client done";
2052 }
2053
2054 return "TLS client unknown";
2055 }
2056
2057 BSSL_NAMESPACE_END
2058