xref: /aosp_15_r20/external/pytorch/torch/_functorch/aot_autograd.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: ignore-errors
2
3import itertools
4from contextlib import contextmanager, nullcontext
5from functools import partial, wraps
6from typing import Any, Callable, Dict, List, NewType, Optional, Tuple
7from unittest.mock import patch
8
9import torch
10import torch._dynamo.logging
11import torch.nn as nn
12import torch.utils._pytree as pytree
13import torch.utils.dlpack
14from torch import Tensor
15from torch._decomp.decompositions_for_rng import PhiloxStateTracker, rng_decompositions
16from torch._dispatch.python import enable_python_dispatcher
17from torch._dynamo import compiled_autograd
18from torch._dynamo.utils import dynamo_timed, preserve_rng_state
19from torch._guards import detect_fake_mode
20from torch._inductor.utils import BoxedBool
21from torch._subclasses import FakeTensor, FakeTensorMode
22from torch.fx.experimental.proxy_tensor import make_fx
23from torch.fx.experimental.symbolic_shapes import ShapeEnv
24from torch.utils._python_dispatch import is_traceable_wrapper_subclass
25
26
27static_inputs_log = torch._logging.getArtifactLogger(
28    __name__, "cudagraph_static_inputs"
29)
30
31from . import config
32from ._aot_autograd.autograd_cache import (  # noqa: F401
33    AOTAutogradCache,
34    autograd_cache_key,
35)
36from ._aot_autograd.collect_metadata_analysis import (  # noqa: F401
37    run_functionalized_fw_and_collect_metadata,
38)
39from ._aot_autograd.functional_utils import (  # noqa: F401
40    _check_if_mutation_can_be_in_graph,
41    are_all_mutations_hidden_from_autograd,
42    are_all_mutations_under_no_grad_or_inference_mode,
43    assert_functional_graph,
44    from_fun,
45    gen_alias_from_base,
46    has_data_mutation,
47    has_metadata_mutation,
48    is_fun,
49    sync_functional_tensor,
50    to_fun,
51)
52from ._aot_autograd.input_output_analysis import (  # noqa: F401
53    _tensors_definitely_do_not_overlap,
54    compute_overlapping_inputs,
55    create_graph_signature,
56    create_synthetic_base_metadata,
57    remove_dupe_metadata,
58)
59from ._aot_autograd.jit_compile_runtime_wrappers import (  # noqa: F401
60    aot_dispatch_autograd,
61    aot_dispatch_base,
62    aot_dispatch_export,
63)
64from ._aot_autograd.logging_utils import (  # noqa: F401
65    callback_set,
66    describe_input,
67    format_guard_bug_msg,
68    get_aot_compilation_context,
69    get_aot_graph_name,
70    get_graph_being_compiled,
71    graph_being_compiled,
72    model_name,
73    nth_graph,
74    set_model_name,
75    setup_stacktrace_preservation_hooks,
76    track_graph_compiling,
77)
78from ._aot_autograd.runtime_wrappers import (  # noqa: F401
79    AOTDedupeWrapper,
80    AOTSyntheticBaseWrapper,
81)
82from ._aot_autograd.schemas import (  # noqa: F401
83    AOTConfig,
84    BackwardSignature,
85    FQN,
86    GraphInputName,
87    GraphOutputName,
88    GraphSignature,
89    InputAliasInfo,
90    MutationType,
91    OutputAliasInfo,
92    OutputType,
93    SubclassCreationMeta,
94    SubclassMeta,
95    TensorAlias,
96    ViewAndMutationMeta,
97)
98from ._aot_autograd.subclass_utils import (  # noqa: F401
99    create_metadata_for_subclass,
100    requires_subclass_dispatch,
101    unwrap_tensor_subclasses,
102    wrap_tensor_subclasses,
103    wrap_tensor_subclasses_maybe_joint,
104)
105from ._aot_autograd.traced_function_transforms import (  # noqa: F401
106    aot_dispatch_subclass,
107    create_functional_call,
108    create_functionalized_fn,
109    create_functionalized_rng_ops_wrapper,
110    create_joint,
111    fn_input_mutations_to_outputs,
112    fn_prepped_for_autograd,
113)
114from ._aot_autograd.utils import (  # noqa: F401
115    _get_autocast_states,
116    _get_symint_hints,
117    call_func_at_runtime_with_args,
118    create_tree_flattened_fn,
119    KNOWN_TYPES,
120    make_boxed_compiler,
121    make_boxed_func,
122    maybe_to_fresh_input,
123    normalize_as_list,
124    partial_flatten_asdict,
125    root_module_when_exporting_non_strict,
126    strict_zip,
127)
128from .partitioners import default_partition
129
130
131zip = strict_zip
132
133# This global counter increments every time we compile a graph with
134# AOTAutograd.  You can use this to correlate runtime error messages
135# with compile time (e.g., if you get an error at runtime saying
136# compiled graph 3 failed, you can set a breakpoint at compile time
137# for this graph number to investigate further at compile time.)
138#
139# NB: this is different from get_aot_compilation_context, which tracks
140# each underlying graph that is compiled.  In contrast, AOT_COUNTER
141# corresponds to top-level invocations of aot_module/aot_function;
142# one counter is allocated per entire compiled block (but this block
143# may involve compiling multiple subgraphs; e.g., for forwards/backwards)
144AOT_COUNTER = itertools.count()
145
146# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
147# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
148#
149# AOT Autograd contains a pretty non-trivial amount of logic to handle edge cases around aliasing and mutation
150# that are external to the graph (they show up as side effects in some way when you run the graph).
151#
152# Take a look at `test_aotdispatch.py TestAOTAutograd.test_input_mutation*` tests for some examples functions
153# and what they're compiled graphs looks like.
154# Below is a very long comment detailing several edge cases, and showing how AOT Autograd handles them.
155#
156# Note [AOT Autograd: input data mutations]
157#
158# If we compile a function that mutates inputs, then those input mutations are real side effects
159# that a user expects to see after running the compiled graph.
160# However, the graph that we want to send to a backend needs to be *entirely* functional.
161# The way we reconcile this difference is that we remove the mutations completely from the graph that we compile
162# but we update the graph to return (updated_inputs, user_outputs).
163# In the epilogue that runs after the compiled graph is executed, we copy the updated inputs back to the originals.
164#
165# Example: original user code:
166# def f(x):
167#     x.mul_(2)
168#     out = x.mul(3)
169#     return out
170#
171# After AOT Autograd compiles, we end up with a:
172# (a) compiled graph
173# (b) autograd.Function.forward() method, that executes the compiled graph
174# (c) wrapper function, that calls the autograd.Function.forward() and performs the epilogue
175#
176# The output of (a, b, c) are all written below.
177#
178# def compiled_forward_graph(x):
179#     x_updated = x.mul(2)
180#     out = x_updated.mul(3)
181#     return x_updated, out
182#
183# # x_updated gets a gradient in the compiled backward
184# def compiled_backward_graph(grad_x_updated, grad_out):
185#     grad_x = ...
186#     return grad_x
187#
188# def autograd.Function.forward(x):
189#     x_updated, out = compiled_forward_graph(x)
190#     return x_updated, out
191#
192# def compiled_wrapper(x):
193#     x_updated, out = autograd.Function.apply(x)
194#     x.copy_(x_updated)
195#     return out
196#
197# Another important thing to note is that updated inputs (due to data mutations) *do* participate
198# in the compiled backward graph! Since the compiled forward graph gets N extra outputs
199# (due to updated inputs showing up as graph outputs),
200# The compiled backward gets an additional N inputs.
201# That way, during the x.copy_(x_updated) bit in the epilogue, gradients will flow from the updated input
202# back to the original input.
203
204
205# Note [AOT Autograd: input metadata mutations]
206#
207# For the same reason as input mutations, we also don't put input metadata mutations in the graph.
208# Instead, we return the updated version of the input (a view), and mutate the input's metadata outside of the graph
209#
210# Example: original user code:
211# def f(x):
212#     x.t_()
213#     out = x.mul(3)
214#     return out
215#
216# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
217# def compiled_forward_graph(x):
218#     x_updated = x.t()
219#     out = x_updated.mul(3)
220#     return x_updated, out
221#
222# # x_updated does *not* get a gradient in the compiled backward
223# def compiled_backward_graph(grad_out):
224#     grad_x = ...
225#     return grad_x
226#
227# def autograd.Function.forward(x):
228#     x_updated, out = compiled_forward_graph(x)
229#     return x_updated, out
230#
231# def compiled_wrapper(x):
232#     x_updated, out = autograd.Function.apply(x)
233#     x.as_strided_(x_updated)
234#     return out
235
236
237# Note [AOT Autograd: outputs aliasing inputs or intermediates!]
238#
239# AOT Autograd needs special handling for outputs that alias graph inputs or intermediates!
240# Why?
241# (1) autograd.Function.forward() has a limitation, where views that returned in the forward cannot later be mutated.
242# (2) views don't need to be compiled in the graph anyway - it's cheap to generate them outside of the compiled graph,
243#     in an epilogue.
244# For outputs that alias inputs, we do the following:
245# (a) *still* return the aliased output as a graph output
246# (b) In the AOT Autograd wrapper/epilogue, we don't return that aliased output. Instead, we use it to regenerate the output.
247#
248# For outputs that alias *intermediates*, we do the following:
249# (a) Return the output in the compiled forward, **and** return it's ._base (a graph intermediates) as an output in the forward
250# (b) Use (output, graph_intermediate) to regenerate the alias, and return that to the user (instead of the compiled fw output).
251# You might wonder why we return the aliased output directly in the graph (and making the graph compute it),
252# only to not return it and instead generate a fresh alias off of the intermediate,
253# instead of (say) just storing metadata about the size/stride of the output somewhere to generate the alias. There are two reasons:
254# (1) Getting the actual alias tensor allows us to use view-replay to generate the alias, instead of an as_strided() call
255# (2) Inductor (and other backends) are free to change the memory format of graph outputs, if it results in better performance.
256#     This can result in problems if a user later tries to .view() that output expecting it to have one set of strides,
257#     when it has a different set of strides.
258#     By including the view op directly in the graph, inductor takes that into account when deciding what memory format
259#     the graph intermediate should be.
260#
261# Another important thing to note is how our traced backward() graph handles aliases.
262# (this applies to outputs aliasing inputs, outputs aliasing intermediates,
263#  *and* updated inputs returned in the compiled forward due to metadata-only mutations).
264# Any outputs that alias (either inputs or intermediates) do NOT participate in the compiled backward graph
265# It would be wasteful to include them in the compiled backward(), because we regenerate them eagerly
266# at the end of the forward.
267#
268# Example: original user code:
269# def f(x):
270#     out1 = x.t()
271#     intermediate = x.mul(2)
272#     out2 = intermediate.view(-1)
273#     return out1, out2
274#
275# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
276# def compiled_forward_graph(x):
277#     out1 = x.t()
278#     intermediate = x.mul(2)
279#     out2 = intermediate.view(-1)
280#     # the compiled graph also returns the intermediate
281#     return out1, out2, intermediate
282#
283# # intermediate gets a gradient in the compiled backward.
284# # both output aliases (out1 and out2) do not.
285# def compiled_backward_graph(grad_intermediate):
286#     grad_x = ...
287#     return grad_x
288#
289# def autograd.Function.forward(x):
290#     out1, out2, intermediate = compiled_forward_graph(x)
291#     return out1, out2, intermediate
292#
293# def compiled_wrapper(x):
294#     out1, out2, intermediate = autograd.Function.apply(x)
295#     # regenerate out1 from the input
296#     out1_regenerated = out1._view_func(x)
297#     # regenerate out1 from the intermediate
298#     out2_regenerated = out2._view_func(intermediate)
299#     return out1_regenerated, out2_regenerated
300
301
302# Note [AOT Autograd: mutations to inputs that alias other inputs]
303#
304# Another edge case that is (only partially) handled today is when an input is mutated, but itself aliases another input.
305# AOT Autograd needs to **ensure** that functionalization knows that the two inputs are aliased to each other.
306# That way, when the aliased input is accessed later in the graph, functionalization knows to "update" the alias
307# given the mutation that occurred.
308#
309# This is handled by updating the calling convention: we create a "synthetic base" that becomes a new input
310# in the compiled function, and we regenerate the original (aliased) inputs directly off of the base
311# inside of the compiled function.
312#
313# This logic is fully encapsulated in aot_wrapper_synthetic_base()
314#
315# Example: original user code:
316# def f(x, x_view):
317#     x.mul_(2)
318#     out = x * x_view
319#     return out
320# f(x, x.view(-1))
321#
322# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
323# def compiled_forward_graph(base)
324#     x = generate_x(base)
325#     x_view = generate_x_view(base)
326#     x_updated = x.mul(2)
327#     x_view_updated = x_updated.view(-1)
328#     out = x_updated * x_view_updated
329#     return x_updated, out
330#
331# # The calling convention change from (aliases) -> (base) happens
332# # *outside* of the autograd.Function.forward().
333# # That means the forward() only has 1 input (base),
334# # and the backward() only has 1 output (grad_base)
335# def compiled_backward_graph(grad_out):
336#     grad_base = ...
337#     return grad_base
338#
339# def autograd.Function.forward(base):
340#     x_updated, out = compiled_forward_graph(base)
341#     return x_updated, out
342#
343# # The compiled wrapper is where we create synthetic bases.
344# # The info on which inputs are mutated is also tracked *before* synthetic base creation.
345# def compiled_wrapper(x, x_view):
346#     base = merge_view_inputs(x, x_view)
347#     x_updated, out = autograd.Function.apply(base)
348#     # x and x_view are aliased in eager mode, so this mutation to x will automatically affect x_view.
349#     x.copy_(x_updated)
350#     return out
351
352
353# Note [AOT Autograd: Views to avoid tangents aliasing inputs]
354#
355# We view every forward output when creating out tangent tensors to handle the problematic
356# case in which a subclass does extra aliasing between graph outputs/inputs in a way that
357# is not visible above the sublass.
358#
359# Ordinarily, when constructing the joint function that we want to trace in AOTAutograd,
360# we're guaranteed that the tangent tensors that we pass
361# into the joint are distinct tensors from the primals. This is because when
362# decide which forward outputs to create tangents for, we only create tangents
363# for forward outputs that are not aliases of inputs (See Note
364# [AOT Autograd: outputs aliasing inputs or intermediates!]).
365#
366# However, when wrapper tensor subclasses enter the picture, it is possible
367# to have an output of the forward that is a subclass that is not an
368# input / alias of an input, but one of its inner tensors is an alias!
369# NestedTensor is an example: Performing an out-of-place pointwise op on a
370# NestedTensor constructs a fresh NestedTensor that holds onto the input's
371# offsets tensor directly.
372#
373# Having tangent tensors that are the same as the (primal) forward inputs,
374# can cause problems during tracing as make_fx() will specialize on our
375# duplicate inputs: If we passed in the same tensor for primals_1 and
376# tangents_1 during tracing, make_fx() will happily sub out all usages of
377# tangents_1 with primals_1 in the graph, which is not what we want.
378#
379# To work around this, we view every forward output when creating out tangent
380# tensors so that tangents can never be the same as forward inputs even if
381# forward inputs alias forward outputs.
382
383# Note [Side-Effectful Tokens in AOTAutograd]
384#
385# We allow some some side-effectful operators in
386# the post-AOTAutograd (functional) graph, such as prints and torchbind operations.
387# To ensure that these side-effects are compatible to future graph passes that
388# assume that the graph is functional, we will thread "effect tokens" to show
389# data dependence between these side-effectful operators. Practically speaking,
390# effect tokens are just dummy values (torch.tensor([])). The graph would look
391# like the following:
392#
393# def gm(self, token0, reader):
394#    token1, frame = with_token(ordered_effect_op, (reader,), token0)
395#    frame = frame * 2
396#    token2, frame2 = with_token(ordered_effect_op, (reader,), token1)
397#    frame2 = frame2 * 2
398#    return token2, frame, frame2
399#
400# We will pass the token as an input to the graph, thread it through
401# side-effectful operators using the `with_effects` high order operator, and then
402# return the updated token as an output.
403# So the signature of the graph input would look something like
404# (*tokens, *params_buffers, *user_inputs), and the signature of the graph
405# output would look something like (*tokens, *outputs).
406#
407# However, Inductor does not want the concept of tokens in the final generated
408# code's input and output. Since changing the graph signature inside of inductor
409# is difficult, after generating the forward graph, we will run a pass to
410# remove the tokens from the inputgenerate the following graph for Inductor, where
411# the tokens are created and sunk within the graph, rather than as inputs and
412# outputs:
413#
414# def gm(self, reader):
415#    token0 = torch.ops.prims._make_token()
416#    token1, frame = with_token(ordered_effect_op, (reader,), token0)
417#    frame = frame * 2
418#    token2, frame2 = with_token(ordered_effect_op, (reader,), token1)
419#    frame2 = frame2 * 2
420#    sink_token = torch.ops.prims._sink_tokens([token2])
421#    return frame, frame2
422
423#
424#
425# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
426# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
427
428
429aot_autograd_decompositions = {}
430
431FakifiedFlatArgs = NewType("FakifiedFlatArgs", List[Any])
432
433
434def process_inputs(
435    flat_args: List[Any],
436    aot_config: AOTConfig,
437    fake_mode: FakeTensorMode,
438    shape_env: Optional[ShapeEnv],
439) -> FakifiedFlatArgs:
440    with fake_mode:
441
442        def convert(idx, x):
443            if shape_env is not None:
444                from torch._dynamo.source import ConstantSource
445
446                if isinstance(x, int):
447                    # We always specialize on scalar values in export.
448                    if aot_config.is_export:
449                        return x
450                    source = ConstantSource(f"sym_{idx}")
451                    return shape_env.create_symintnode(
452                        shape_env.create_symbol(x, source), hint=x, source=source
453                    )
454            if isinstance(x, torch.ScriptObject):
455                return torch._library.fake_class_registry.maybe_to_fake_obj(
456                    fake_mode, x
457                )
458            if not isinstance(x, torch.Tensor):
459                return x
460            if isinstance(x, FakeTensor):
461                assert x.fake_mode is fake_mode
462                return x
463            if is_traceable_wrapper_subclass(x):
464                attrs, _ = x.__tensor_flatten__()
465                if all(isinstance(getattr(x, attr), FakeTensor) for attr in attrs):
466                    assert all(
467                        getattr(x, attr).fake_mode is fake_mode for attr in attrs
468                    )
469                    return x
470
471            # see note [Tensor Fakification and Symbol Caching]
472            symbolic_context = None
473            source = None
474            trace = True
475            if tracing_context := torch._guards.TracingContext.try_get():
476                if x in tracing_context.tensor_to_context:
477                    symbolic_context = tracing_context.tensor_to_context[x]
478                    source = symbolic_context.tensor_source
479                    # We already fakeified this tensor in Dynamo, don't
480                    # dump the trace for it again
481                    trace = False
482            if (
483                idx < aot_config.num_params_buffers
484                and config.static_weight_shapes
485                and not symbolic_context
486            ):
487                # TODO: Ensure that this codepath is never exercised from
488                # Dynamo
489                return fake_mode.from_tensor(x, static_shapes=True)
490
491            return fake_mode.from_tensor(
492                x,
493                static_shapes=False,
494                symbolic_context=symbolic_context,
495                source=source,
496                trace=trace,
497            )
498
499        return FakifiedFlatArgs([convert(idx, x) for idx, x in enumerate(flat_args)])
500
501
502def construct_fake_mode(
503    flat_args: List[Any], aot_config: AOTConfig
504) -> Tuple[FakeTensorMode, Optional[ShapeEnv]]:
505    fake_mode = detect_fake_mode(flat_args)
506    if fake_mode is None:
507        shape_env = ShapeEnv() if aot_config.dynamic_shapes else None
508        fake_mode = FakeTensorMode(shape_env=shape_env)
509    else:
510        shape_env = fake_mode.shape_env
511    return (fake_mode, shape_env)
512
513
514def create_aot_dispatcher_function(
515    flat_fn,
516    fake_flat_args: FakifiedFlatArgs,
517    aot_config: AOTConfig,
518    fake_mode: FakeTensorMode,
519    shape_env: Optional[ShapeEnv],
520) -> Tuple[Callable, ViewAndMutationMeta]:
521    with dynamo_timed("create_aot_dispatcher_function"):
522        return _create_aot_dispatcher_function(
523            flat_fn, fake_flat_args, aot_config, fake_mode, shape_env
524        )
525
526
527def _create_aot_dispatcher_function(
528    flat_fn,
529    fake_flat_args: FakifiedFlatArgs,
530    aot_config: AOTConfig,
531    fake_mode: FakeTensorMode,
532    shape_env: Optional[ShapeEnv],
533) -> Tuple[Callable, ViewAndMutationMeta]:
534    """
535    Traces the forward and backward graphs of the attr:`flat_fn` to generate a
536    joint graph. The joint graph is an Fx graph with Aten ops. Please refer to
537    the tracing mechanism to understand the graph capturing details.
538
539    The joint graph is then passed through attr:`partition_fn` to isolate the
540    forward and backward portions, which are then respectively compiled via the
541    provided attr:`fw_compiler` and attr:`bw_compiler`.
542
543    The resulting compiled forward and backward graphs are then wrapped up in a
544    ``torch.autograd.Function`` object.
545
546    The calling convention here is that the first aot_config.num_params_buffers
547    inputs in flat_args are parameters and buffers, and the rest are inputs.
548
549    We use this to assume that parameters/buffer's shapes don't change.
550
551    Note: this function is used both by aot_function and aot_export (controlled by aot_config.is_export)
552        When aot_config.is_export is True, we return an FX graph + metadata
553        When aot_config.is_export is False, we return an ordinary runtime function
554    """
555
556    # This is the main entry point.
557    # TODO: Chillee argues that dynamo itself should pass in fake tensors to
558    # the list of arguments when compiling; at the moment we do not do this
559
560    if aot_config.decompositions is None:
561        aot_config.decompositions = {}
562
563    aot_config.decompositions = {
564        **aot_autograd_decompositions,
565        **aot_config.decompositions,
566    }
567
568    if config.functionalize_rng_ops:
569        # Update the decompositions with functionalized random decompositions
570        aot_config.decompositions = {
571            **rng_decompositions,
572            **aot_config.decompositions,
573        }
574
575    # Check flat_args to see if they're already fake.  If so, use that fake
576    # mode instead.
577
578    python_dispatcher_mode = (
579        enable_python_dispatcher() if shape_env is not None else nullcontext()
580    )
581
582    # See NOTE: [Deferring tensor pack/unpack hooks until runtime]
583    # If any saved tensor hooks are active, we **don't** want to trace them.
584    # Instead, we'll let them run at runtime, around the custom autograd.Function
585    # that we generate in torch.compile.
586    with torch.autograd.set_multithreading_enabled(
587        False
588    ), preserve_rng_state(), (
589        fake_mode
590    ), (
591        python_dispatcher_mode
592    ), PhiloxStateTracker(), torch._dynamo.utils._disable_saved_tensors_hooks_during_tracing():
593        from torch._library.fake_class_registry import (
594            FakeScriptObject,
595            maybe_to_fake_obj,
596        )
597
598        # Tracing may mutate the states the fake script object,
599        # so we need to duplicate the fake script objects so that subsequent tracing
600        # won't be affected.
601        def _dup_fake_script_obj(fake_flat_args):
602            return [
603                maybe_to_fake_obj(detect_fake_mode(fake_flat_args), arg.real_obj)
604                if isinstance(arg, FakeScriptObject)
605                else arg
606                for arg in fake_flat_args
607            ]
608
609        needs_autograd = any(
610            x.requires_grad for x in fake_flat_args if isinstance(x, Tensor)
611        )
612
613        with enable_python_dispatcher():
614            # Patch set_rng_state as set_rng_state with fake tensors is
615            # nonsensical. This does not affect the collection of metadata.
616            with patch("torch.cuda.set_rng_state", lambda *args: None):
617                mod = root_module_when_exporting_non_strict(flat_fn)
618                if mod is not None:
619                    ctx = _detect_attribute_assignment(mod)
620                else:
621                    ctx = nullcontext()
622                with ctx:
623                    fw_metadata = run_functionalized_fw_and_collect_metadata(
624                        flat_fn,
625                        static_input_indices=aot_config.static_input_indices,
626                        keep_input_mutations=aot_config.keep_inference_input_mutations,
627                        is_train=needs_autograd,
628                        pre_dispatch=aot_config.pre_dispatch,
629                    )(*_dup_fake_script_obj(fake_flat_args))
630
631                req_subclass_dispatch = requires_subclass_dispatch(
632                    fake_flat_args, fw_metadata
633                )
634
635                output_and_mutation_safe = not any(
636                    x.requires_grad
637                    # view-type operations preserve requires_grad even in no_grad.
638                    # Do not count aliases of inputs with requires_grad as reason to make a training graph,
639                    # as AOTAutograd will perform view-replay to regenerate the view outputs at runtime,
640                    # setting their grad_fn properly.
641                    and not (
642                        x.output_type
643                        in (OutputType.alias_of_input, OutputType.is_input)
644                        and fw_metadata.input_info[x.base_idx].requires_grad
645                    )
646                    for x in fw_metadata.output_info
647                ) and not any(
648                    x.requires_grad
649                    and x.mutates_data
650                    and not x.mutations_under_no_grad_or_inference_mode
651                    and not x.mutations_hidden_from_autograd
652                    for x in fw_metadata.input_info
653                )
654
655                if needs_autograd and output_and_mutation_safe:
656                    # We realized that none of the outputs require grad,
657                    # and none of the inputs that require grad are mutated.
658                    # so we actually have an inference graph.
659                    needs_autograd = False
660                    # A bit silly: right now in the subclass codepath, our ViewAndMutationMeta
661                    # changes depending on whether we pass in is_train / keep_input_mutations,
662                    # so we're forced to recompute the metadata.
663                    # TODO: refactor the subclass path of run_functionalized_fw_and_collect_metadata
664                    # so that this is unnecessary.
665                    if req_subclass_dispatch:
666                        fw_metadata = run_functionalized_fw_and_collect_metadata(
667                            flat_fn,
668                            keep_input_mutations=aot_config.keep_inference_input_mutations,
669                            is_train=False,
670                            pre_dispatch=aot_config.pre_dispatch,
671                            static_input_indices=aot_config.static_input_indices,
672                        )(*fake_flat_args)
673                    else:
674                        fw_metadata = ViewAndMutationMeta(
675                            input_info=fw_metadata.input_info,
676                            output_info=fw_metadata.output_info,
677                            num_intermediate_bases=fw_metadata.num_intermediate_bases,
678                            keep_input_mutations=aot_config.keep_inference_input_mutations,
679                            traced_tangents=fw_metadata.traced_tangents,
680                            subclass_inp_meta=fw_metadata.subclass_inp_meta,
681                            subclass_fw_graph_out_meta=fw_metadata.subclass_fw_graph_out_meta,
682                            subclass_tangent_meta=fw_metadata.subclass_tangent_meta,
683                            is_train=False,
684                            tokens=fw_metadata.tokens,
685                            static_input_indices=fw_metadata.static_input_indices,
686                        )
687
688        if fw_metadata.num_intermediate_bases > 0:
689            assert not req_subclass_dispatch, f"""\
690torch.compile is currently being used with tensor subclass inputs:
691{','.join([str(type(x)) for x in fake_flat_args])}. We are attempting to a compile a graph with two graph outputs
692that alias one another, which is currently unsupported in the subclass use case. If you run into this,
693please file a github issue"""
694
695        if aot_config.is_export:
696            # aot_export: ban input metadata mutations for now to keep shared code paths simpler.
697            # Keeping .resize_() in the graph will require some work
698            # Allowing it but keeping the graph functional will require some calling convention changes.
699            if len([x for x in fw_metadata.input_info if x.mutates_metadata]) != 0:
700                raise RuntimeError(
701                    f"""\
702Found an input that received a metadata mutation, through e.g. a call to `.resize_()` or `.transpose_()`.
703This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
704
705fw_metadata={str(fw_metadata)}"""
706                )
707            # In export, banning data mutations on inputs that require grad for now.
708            # This should be rare, and is tricky to get right. When we trace the backward,
709            # we currently trace with autograd.grad instead of .backward(), which makes it difficult
710            # to ensure that we run autograd all the way through the input **before** it saw the mutation.
711            if (
712                len(
713                    [
714                        x
715                        for x in fw_metadata.input_info
716                        if x.requires_grad and x.mutates_data
717                    ]
718                )
719                != 0
720            ):
721                raise RuntimeError(
722                    f"""\
723Found a graph input that requires gradients, and received a mutation.
724This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
725
726fw_metadata={str(fw_metadata)}"""
727                )
728            if req_subclass_dispatch:
729                raise RuntimeError(
730                    """\
731aot_export is not currently supported with traceable tensor subclass.
732If you need this feature, please comment on <CREATE_ISSUE_LINK>"""
733                )
734
735            # Need to decide on a strategy for functionalized RNG: toggling via global config seems bad,
736            # and turning it on will require a non-trivial calling convention change for any export runtime.
737            if config.functionalize_rng_ops:
738                raise RuntimeError(
739                    """\
740Functionalized RNG is not currently supported in the aot_export workflow. Please file a github issue,
741or otherwise set torch._functorch.config.functionalize_rng_ops = False."""
742                )
743
744        def choose_dispatcher(needs_autograd, aot_config):
745            """
746            Pick a dispatcher based on the config rules.
747            """
748            if aot_config.is_export:
749                # export uses just the "graph bits", whereas the other
750                # two dispatchers include some extra work around handling a runtime epilogue
751                return partial(aot_dispatch_export, needs_autograd=needs_autograd)
752            elif needs_autograd and not aot_config.pre_dispatch:
753                return aot_dispatch_autograd
754            else:
755                return aot_dispatch_base
756
757        compiler_fn = choose_dispatcher(needs_autograd, aot_config)
758
759        compiled_fn, fw_metadata = compiler_fn(
760            flat_fn,
761            _dup_fake_script_obj(fake_flat_args),
762            aot_config,
763            fw_metadata=fw_metadata,
764        )
765        return compiled_fn, fw_metadata
766
767
768def aot_function(
769    fn: Callable,
770    fw_compiler: Callable,
771    bw_compiler: Optional[Callable] = None,
772    partition_fn: Callable = default_partition,
773    decompositions: Optional[Dict] = None,
774    num_params_buffers: int = 0,
775    keep_inference_input_mutations: bool = False,
776    inference_compiler: Optional[Callable] = None,
777    *,
778    # Whether or not to trace with dynamic shapes
779    dynamic=False,
780    enable_log=True,
781) -> Callable:
782    """
783    Traces the forward and backward graph of :attr:`fn` using torch dispatch
784    mechanism, and then compiles the generated forward and backward graphs
785    through :attr:`fw_compiler` and :attr:`bw_compiler`.
786
787    :func:`aot_function` traces the forward and backward graph ahead of time,
788    and generates a joint forward and backward graph.  :attr:`partition_fn` is
789    then used to separate out forward and backward graphs. The partitioner
790    function can be used to perform optimizations such as recomputation. One can
791    set `decompositions` dictionary to decompose the operators into a sequence
792    of core or simpler operators supported by the backend compilers.
793
794    .. warning::
795        This API is experimental and likely to change.
796
797    Args:
798        fn (Callable): A Python function that takes one ore more arguments. Must
799            return one or more Tensors.
800        fw_compiler (Callable): A Python function that accepts an Fx graph with
801            Aten ops and input args, and returns a Callable that semantically is
802            equivalent to the input Fx graph.
803        bw_compiler (Optional[Callable]): A Python function that accepts an
804            Fx graph with Aten ops and input args, and returns a Callable that
805            semantically is equivalent to the input Fx graph.  Default: None
806            (when None, it defaults to the :attr:`fw_compiler`)
807        partition_fn (Callable): A Python function that takes a joint forward
808            and backward graph, and partitions it into separate forward and
809            backward graphs.
810        decompositions (Dict): A dictionary to define the decomposition of
811            larger Aten ops into simpler or core Aten ops.
812        inference_compiler (Optional[Callable]): A Python function that accepts an
813            Fx graph with Aten ops and input args, and returns a Callable that
814            semantically is equivalent to the input Fx graph. inference_compiler is invoked
815            if no autograd is needed. Default: None
816            (when None, it defaults to the :attr:`fw_compiler`)
817    Returns:
818        Returns a ``Callable`` that retains the eager behavior of the original
819        :attr:`fn`, but with forward and backward graph compiled via
820        :attr:`fw_compile` and :attr:`bw_compile`.
821
822    A simple example usage of :func:`aot_function` is as follows. This example
823    will print the forward and backward graphs of the function ``fn``
824
825        >>> fn = lambda x : x.sin().cos()
826        >>> def print_compile_fn(fx_module, args):
827        >>>     print(fx_module)
828        >>>     return fx_module
829        >>> aot_fn = aot_function(fn, print_compile_fn)
830        >>> x = torch.randn(4, 5, requires_grad=True)
831        >>> aot_fn(x)
832    """
833
834    if bw_compiler is None:
835        bw_compiler = fw_compiler
836    if inference_compiler is None:
837        inference_compiler = fw_compiler
838    aot_config = AOTConfig(
839        fw_compiler=fw_compiler,
840        bw_compiler=bw_compiler,
841        inference_compiler=inference_compiler,
842        partition_fn=partition_fn,
843        decompositions=decompositions,
844        num_params_buffers=num_params_buffers,
845        aot_id=next(AOT_COUNTER),
846        keep_inference_input_mutations=keep_inference_input_mutations,
847        dynamic_shapes=dynamic,
848        aot_autograd_arg_pos_to_source=None,
849        is_export=False,
850        no_tangents=False,
851        enable_log=enable_log,
852    )
853    cached_res = None
854
855    @wraps(fn)
856    def returned_function(*args, **kwargs):
857        nonlocal cached_res
858        # Now flatten the tensor args
859        flat_args = pytree.arg_tree_leaves(*args, **kwargs)
860
861        # Compile the function and save it in the cache
862        if cached_res is None:
863            flat_fn, out_spec = create_tree_flattened_fn(fn, args, kwargs)
864            (fake_mode, shape_env) = construct_fake_mode(flat_args, aot_config)
865            fake_flat_args: FakifiedFlatArgs = process_inputs(
866                flat_args, aot_config, fake_mode, shape_env
867            )
868            compiled_fn, _ = create_aot_dispatcher_function(
869                flat_fn,
870                fake_flat_args,
871                aot_config,
872                fake_mode,
873                shape_env,
874            )
875            cached_res = (compiled_fn, out_spec)
876
877        cached_fn, out_spec = cached_res
878        out = cached_fn(flat_args)
879        return out_spec.unflatten(out)
880
881    return returned_function
882
883
884def aot_module(mod: nn.Module, *args, **kwargs) -> nn.Module:
885    """
886    Traces the forward and backward graph of :attr:`mod` using torch dispatch
887    tracing mechanism. It is wrapper function, that underneath uses
888    :func:`aot_function` to perform tracing and compilation.
889
890    :func:`aot_module` lifts the parameters and buffers of ``nn.Module`` as inputs
891    to a new callable which is then compiled through :func:`aot_function`.
892
893    .. warning::
894        This API is experimental and likely to change.
895
896    Args:
897        mod (Callable): A ``nn.Module`` module.
898        args : args to be passed to :func:`aot_function`
899        kwargs : kwargs to be passed to :func:`aot_function`
900
901    Returns:
902        Returns a ``nn.Module`` that retains the eager behavior of the original
903        :attr:`mod`, but with forward and backward graph compiled.
904
905    """
906    # See Note: [Fake Modules and AOTAutograd]
907    torch._dynamo.utils.assert_no_fake_params_or_buffers(mod)
908
909    def functional_call(named_params, named_buffers, *args, **kwargs):
910        params_and_buffers = {**named_params, **named_buffers}
911        return torch.func.functional_call(mod, params_and_buffers, args, kwargs)
912
913    named_params = dict(mod.named_parameters(remove_duplicate=False))
914    named_buffers = dict(mod.named_buffers(remove_duplicate=False))
915    num_params_buffers = len(named_params) + len(named_buffers)
916    compiled_f = aot_function(
917        functional_call, *args, num_params_buffers=num_params_buffers, **kwargs
918    )
919
920    class AOTModule(nn.Module):
921        def __init__(self) -> None:
922            super().__init__()
923            self.orig_module = mod
924
925        def forward(self, *args, **kwargs):
926            return compiled_f(
927                named_params,
928                named_buffers,
929                *args,
930                **kwargs,
931            )
932
933    return AOTModule()
934
935
936def aot_module_simplified(
937    mod: nn.Module,
938    args,
939    fw_compiler: Callable,
940    bw_compiler: Optional[Callable] = None,
941    partition_fn: Callable = default_partition,
942    decompositions: Optional[Dict] = None,
943    keep_inference_input_mutations=False,
944    inference_compiler: Optional[Callable] = None,
945    cudagraphs: Optional[BoxedBool] = None,
946) -> nn.Module:
947    """
948    This is the simplified or low overhead version of aot_module. For frontends
949    like TorchDynamo, the input functions/modules to AOT are static and have
950    unpacked inputs/outputs. This gives us an opportunity to remove the
951        (1) pytree overhead to parse inputs/outputs,
952        (2) AOT Autograd cache,
953        (3) Reading of params/buffers in every forward call
954
955    :func:`aot_module_simplified` removes these overheads.
956    """
957    params = {
958        **dict(mod.named_parameters(remove_duplicate=False)),
959        **dict(mod.named_buffers(remove_duplicate=False)),
960    }
961    params_flat, params_spec = pytree.tree_flatten(params)
962    params_flat = list(params_flat)
963    params_len = len(params_flat)
964
965    if cudagraphs is None:
966        cudagraphs = BoxedBool(torch._inductor.config.triton.cudagraphs)
967
968    if bw_compiler is None:
969        bw_compiler = fw_compiler
970    if inference_compiler is None:
971        inference_compiler = fw_compiler
972
973    seen_sources = set()
974
975    full_args = []
976    # First, the params
977    full_args.extend(params_flat)
978
979    if tracing_context := torch._guards.TracingContext.try_get():
980        tracing_context.params_flat = params_flat
981
982    aot_autograd_arg_pos_to_source = None
983    # Then, the params 1:1 mapped sources, if relevant.
984    if hasattr(mod, "_param_name_to_source"):
985        aot_autograd_arg_pos_to_source = []
986        # We now know this came from dynamo, and (1) we care about guards,
987        # so setting up aot_autograd_arg_pos_to_source for downstream dedup guards
988        # can now be done safely. (2) Dynamo logic protects the 1:1 sizing below.
989        for name in params.keys():
990            assert name in mod._param_name_to_source, f"{name} not found."
991            source = mod._param_name_to_source[name]
992            assert source not in seen_sources, source
993            seen_sources.add(source)
994            aot_autograd_arg_pos_to_source.append(source)
995
996    # Next, the input args
997    full_args.extend(args)
998
999    static_input_indices = []
1000    if hasattr(mod, "graph"):
1001        # Non dynamo entrypoints can get to here...
1002        for pos, node in enumerate(mod.graph.find_nodes(op="placeholder")):
1003            if hasattr(node, "_dynamo_source"):
1004                # ... but not here!
1005                if aot_autograd_arg_pos_to_source is None:
1006                    aot_autograd_arg_pos_to_source = []
1007                source = node._dynamo_source
1008                assert source not in seen_sources, source
1009                seen_sources.add(source)
1010                aot_autograd_arg_pos_to_source.append(source)
1011                source_name = source.name() if source else str(source)
1012
1013                if "tensor_dict" in node.meta and node.meta["tensor_dict"].get(
1014                    "_dynamo_static_input_type", None
1015                ):
1016                    static_inputs_log.debug(
1017                        "Adding static input pos %s for source %s", pos, source_name
1018                    )
1019                    static_input_indices.append(pos)
1020                else:
1021                    static_inputs_log.debug(
1022                        "Non-static input pos %s for source %s", pos, source_name
1023                    )
1024
1025    if aot_autograd_arg_pos_to_source is not None:
1026        assert len(full_args) == len(aot_autograd_arg_pos_to_source)
1027
1028    dynamic_shapes = False
1029    for x in full_args:
1030        if isinstance(x, FakeTensor):
1031            dynamic_shapes = x.fake_mode.shape_env is not None
1032            break
1033
1034    aot_config = AOTConfig(
1035        fw_compiler=fw_compiler,
1036        bw_compiler=bw_compiler,
1037        inference_compiler=inference_compiler,
1038        partition_fn=partition_fn,
1039        decompositions=decompositions,
1040        num_params_buffers=params_len,
1041        aot_id=next(AOT_COUNTER),
1042        keep_inference_input_mutations=keep_inference_input_mutations,
1043        dynamic_shapes=dynamic_shapes,
1044        aot_autograd_arg_pos_to_source=aot_autograd_arg_pos_to_source,
1045        static_input_indices=static_input_indices,
1046        is_export=False,
1047        no_tangents=False,
1048        cache_key=None,
1049    )
1050    fake_mode, shape_env = construct_fake_mode(full_args, aot_config)
1051    fake_flat_args = process_inputs(full_args, aot_config, fake_mode, shape_env)
1052
1053    def dispatch_and_compile():
1054        functional_call = create_functional_call(mod, params_spec, params_len)
1055        with compiled_autograd.disable():
1056            compiled_fn, _ = create_aot_dispatcher_function(
1057                functional_call,
1058                fake_flat_args,
1059                aot_config,
1060                fake_mode,
1061                shape_env,
1062            )
1063        return compiled_fn
1064
1065    # Autograd cache stuff
1066    if config.enable_autograd_cache:
1067        compiled_fn = AOTAutogradCache.load(
1068            dispatch_and_compile, mod, fake_flat_args, aot_config, cudagraphs
1069        )
1070    else:
1071        compiled_fn = dispatch_and_compile()
1072
1073    if isinstance(mod, torch._dynamo.utils.GmWrapper):
1074        # This function is called by the flatten_graph_inputs wrapper, which boxes
1075        # the inputs so that they can be freed before the end of this scope.
1076        # For overhead reasons, this is not the default wrapper, see comment:
1077        # https://github.com/pytorch/pytorch/pull/122535/files#r1560096481
1078        def boxed_forward(runtime_args: List[Any]):
1079            flat_args = []
1080            flat_args.extend(params_flat)
1081            flat_args.extend(runtime_args)
1082            runtime_args.clear()
1083            return compiled_fn(flat_args)
1084
1085        # Just for convenience
1086        boxed_forward.zero_grad = mod.zero_grad
1087        boxed_forward.named_parameters = mod.named_parameters
1088        boxed_forward.named_buffers = mod.named_buffers
1089        return boxed_forward
1090
1091    # TODO: There is something deeply wrong here; compiled_fn running with
1092    # the boxed calling convention, but aot_module_simplified somehow
1093    # historically returned a function that was not the boxed calling
1094    # convention.  This should get fixed...
1095    # NB: GraphModule/nn.Module rely on the non-boxed calling convention here
1096    def forward(*runtime_args: Tuple[Any]):
1097        full_args = []
1098        full_args.extend(params_flat)
1099        full_args.extend(runtime_args)
1100        return compiled_fn(full_args)
1101
1102    # Just for convenience
1103    forward.zero_grad = mod.zero_grad
1104    forward.named_parameters = mod.named_parameters
1105    forward.named_buffers = mod.named_buffers
1106
1107    return forward
1108
1109
1110def aot_export_module(
1111    mod: nn.Module,
1112    args,
1113    *,
1114    decompositions: Optional[Dict] = None,
1115    # If true, we'll return a joint forward-backward graph,
1116    # As well as metadata on the loss + gradients in the backward.
1117    trace_joint: bool,
1118    # If trace_joint is True, we expect your module to return a scalar loss.
1119    # Your module can return multiple outputs, so you must specify which output the loss is.
1120    output_loss_index: Optional[int] = None,
1121    pre_dispatch: bool = False,
1122    # If None, will be infered from inputs and mod.graph.nodes if mod is a graph module, but the inferred result might be wrong.
1123    dynamic_shapes: Optional[bool] = None,
1124    kwargs=None,
1125) -> Tuple[torch.fx.GraphModule, GraphSignature]:
1126    """
1127    This function takes in a module, and returns:
1128    (1) an FX graph that can be exported
1129    (2) some metadata about the graph
1130
1131    If `trace_joint=True` we will return a joint graph of the forward + backward.
1132
1133    The traced FX graph will have the following properties compared to the original module:
1134    (1) Inputs and outputs to the module will be pytree-flattened
1135    (2) Parameters and buffers on the module will be lifted into graph inputs,
1136        graph_inputs = (*parameters, *buffers, *user_inputs)
1137    (3) The graph will be fully functionalized
1138    (4) Any input mutations will be converted into additional outputs in the graph,
1139        meaning whoever calls this graph is responsible for applying the mutations
1140        back to the original inputs.
1141    (5) If is_joint is provided the graph will return parameter gradients in addition to user outputs.
1142        The graph output will look like:
1143        graph_outputs = (*updated_inputs, *user_outputs, *param_gradients)
1144
1145    There are also several restrictions on what modules can use this API. In particular:
1146    (1) If trace_joint is specified, we expect the loss function to be **fused**
1147        into the module forward. One of the outputs to the forward must be a scalar loss,
1148        which is specified with `output_loss_index`.
1149        All other outputs to the forward are presumed to not require gradients.
1150    (2) This API cannot capture optimizers (although in theory we could build an API for this).
1151    (3) Metadata mutations on params/buffers/inputs are banned.
1152    (4) Data mutations on anything that requires gradients are banned (parameters)
1153    (5) If an input is mutated, it is not allowed to alias any other inputs.
1154    (6) Parameters must not be duplicated.
1155    """
1156    if pre_dispatch and trace_joint:
1157        raise RuntimeError("pre_dispatch is not supported when trace_joint is True.")
1158    named_parameters = dict(mod.named_parameters(remove_duplicate=False))
1159    named_buffers = dict(mod.named_buffers(remove_duplicate=False))
1160
1161    params_and_buffers = {
1162        **dict(named_parameters),
1163        **dict(named_buffers),
1164    }
1165    params_and_buffers_flat, params_spec = pytree.tree_flatten(params_and_buffers)
1166    params_and_buffers_flat = tuple(params_and_buffers_flat)
1167    params_len = len(params_and_buffers_flat)
1168
1169    kwargs = kwargs or {}
1170
1171    functional_call = create_functional_call(
1172        mod, params_spec, params_len, store_orig_mod=True
1173    )
1174
1175    num_fw_outs = None
1176
1177    if trace_joint:
1178        # This helper effectively just adds some extra asserts about what the backward will look like:
1179        # Outputs must include a scalar loss, that we compute gradients w.r.t.
1180        # We don't compute gradients w.r.t. anything else: so just in case we detach()
1181        # and other output tensors.
1182        def fn_to_trace(*args):
1183            nonlocal num_fw_outs
1184            out = functional_call(*args)
1185            if output_loss_index is None:
1186                raise RuntimeError(
1187                    """\
1188If trace_joint=Trueit is required that one of your forward outputs must be a scalar loss.
1189You must specify the which (index) output is the loss with output_loss_index."""
1190                )
1191            if isinstance(out, (torch.Tensor)):
1192                out = (out,)
1193            if not isinstance(out, (tuple, list)):
1194                raise RuntimeError(
1195                    f"Expected forward output to be either a tensor or a list/tuple of tensors. found {type(out)}"
1196                )
1197
1198            for i, o in enumerate(out):
1199                # We only want to create a backward graph w.r.t. the loss that the user passed in.
1200                # This implies that every other output should not require gradients.
1201                # Instead of making this an error (and forcing the user to detach all other outputs
1202                # of their forward),
1203                # we'll automatically detach them here.
1204                if o.requires_grad and i != output_loss_index:
1205                    raise RuntimeError(
1206                        f"""\
1207Found an output of the forward that requires gradients, that was not the scalar loss.
1208We require all outputs to the forward that are not the scalar loss to not require gradient,
1209because we will only compute a backward graph against the scalar loss.
1210You can fix this by calling .detach() on each of your forward outputs that is not the loss.
1211You specified that output index {output_loss_index} is the loss, but we found that
1212the output at index {i} requires gradients."""
1213                    )
1214            out_loss = out[output_loss_index]
1215            num_fw_outs = len(out)
1216            if not out_loss.requires_grad:
1217                raise RuntimeError(
1218                    f"""\
1219The output at index {output_loss_index} was marked as the loss, but it does not require gradients"""
1220                )
1221            if out_loss.numel() != 1:
1222                raise RuntimeError(
1223                    f"""\
1224We require the output marked as the loss (at index {output_loss_index}) to be a scalar, but it has shape {out_loss.shape}"""
1225                )
1226            return out
1227
1228        ctx = nullcontext
1229    else:
1230        # Run under no_grad, so our tracing machinery only traces an inference graph.
1231        # However if pre_dispatch=True, we want to correctly trace set_grad_enabled calls for training.
1232        ctx = nullcontext if pre_dispatch else torch.no_grad
1233        fn_to_trace = functional_call
1234
1235    full_args = []
1236    # First, the params
1237    # NB: It is REQUIRED that parameters come first, Inductor infers "fixed"
1238    # parameters by looking at the difference in parameter count outside
1239    # and inside AOTAutograd, and assumes the prefix of arguments are fixed
1240    # arguments
1241    full_args.extend(params_and_buffers_flat)
1242    # Next, the input args
1243    full_args.extend(args)
1244
1245    with ctx():
1246        fx_g, metadata, in_spec, out_spec = _aot_export_function(
1247            fn_to_trace,
1248            full_args,
1249            decompositions=decompositions,
1250            num_params_buffers=params_len,
1251            no_tangents=True,
1252            pre_dispatch=pre_dispatch,
1253            dynamic_shapes=dynamic_shapes,
1254            kwargs=kwargs,
1255        )
1256    if trace_joint:
1257
1258        def flattened_joint(*args):
1259            # The idea here is that the joint graph that AOTAutograd creates has some strict properties:
1260            # (1) It accepts two arguments (primals, tangents), and pytree_flattens them
1261            # (2) It returns a tuple of (fw_outs, gradients)
1262            # This is a very useful convention for anyone who wants to partition the joint graph
1263            # into a separate forward and backward graph.
1264            # However,
1265            # (1) for people exporting a single joint graph, it would be preferable not to have
1266            #     any pytrees in the graph.
1267            # (2) We are guaranteed in the aot_export_module case that the forward outputs a loss,
1268            #     and there are therefore no tangents that are needed to run the joint graph.
1269            # (3) AOTAutograd creates a grad_input for every input in the forward,
1270            #     including None's for inputs that are not grad-requiring tensors.
1271            #     we don't want these in our export graph.
1272            #     and there are therefore no tangents that are needed to run the joint graph.
1273            # This function "fixes" both of the above by removing any tangent inputs,
1274            # and removing pytrees from the original FX graph.
1275            fake_tangents = [
1276                None
1277                for _ in range(
1278                    metadata.num_outputs + metadata.num_mutated_inp_runtime_indices
1279                )
1280            ]
1281            fw_outs, gradients = fx_g(args, fake_tangents)
1282            assert len(gradients) == len(args)
1283            output_gradients = []
1284            for i, (a, grad) in enumerate(zip(args, gradients)):
1285                if isinstance(a, torch.Tensor) and a.requires_grad:
1286                    assert (
1287                        grad is not None
1288                    ), """\
1289Found a parameter that did not receive a gradient.
1290"This is most likely a bug, but if this needs to be supported please comment on this Github issue:
1291https://github.com/pytorch/pytorch/issues/101192
1292"""
1293                    output_gradients.append(grad)
1294                else:
1295                    assert grad is None
1296            return *fw_outs, *output_gradients
1297
1298        fx_g = make_fx(flattened_joint)(*full_args)
1299
1300    user_args_flat = pytree.arg_tree_leaves(*args, **kwargs)
1301    return fx_g, create_graph_signature(
1302        fx_g,
1303        metadata,
1304        in_spec,
1305        out_spec,
1306        user_args_flat=user_args_flat,
1307        params_and_buffers_flat=params_and_buffers_flat,
1308        param_names=list(named_parameters.keys()),
1309        buffer_names=list(named_buffers.keys()),
1310        trace_joint=trace_joint,
1311        num_user_fw_outs=num_fw_outs,
1312        loss_index=output_loss_index,
1313    )
1314
1315
1316def aot_export_joint_simple(
1317    func: Callable,
1318    args,
1319    *,
1320    trace_joint: bool,
1321    # It looks like the main consequence of this API is that for dynamic shapes,
1322    # it will assume that parms/buffers are static.
1323    # With the new inferred dynamic shapes API, maybe this doesn't matter?
1324    num_params_buffers: int = 0,
1325    decompositions: Optional[Dict] = None,
1326) -> torch.fx.GraphModule:
1327    """
1328    A simplified version of export. Used by higher order operators.
1329
1330    This function makes a high-level "no calling convention changes" guarantee:
1331    - If no inputs require grad (so we export an inference graph),
1332      there are *no* calling convention change between the exported graph, and "func".
1333    - If at least one input requires grad (so we trace out and export a joint fw-bw graph),
1334      Then if you were partition the graph into a separate forward and backward graph,
1335      The forward graph will have no calling convention changes compared to "func".
1336
1337    The above also relies on some strong restrictions around which functions this API accepts:
1338    (1) `args` cannot contain any pytrees (they must have been pytree_flattened already)
1339    (2) `func` cannot mutate any inputs
1340    (3) The outputs of `func` cannot alias any inputs.
1341
1342    Note: this function is only lightly tested today. It will probably be tested more heavily by higher order ops.
1343    """
1344    if trace_joint:
1345        ctx = nullcontext
1346    else:
1347        # Run under no_grad, so our tracing machinery only traces an inference graph.
1348        ctx = torch.no_grad
1349
1350    with ctx():
1351        fx_g, metadata, in_spec, out_spec = _aot_export_function(
1352            func,
1353            args,
1354            decompositions=decompositions,
1355        )
1356        in_spec, _kw_in_spec = in_spec.children_specs
1357    # At this point, we can just directly return the (joint or inference graph) that we traced.
1358    # First though: a bunch of assertions to make sure that our graph doesn't require
1359    # any calling convention changes compared to the original function.
1360    # These restrictions are *in addition to* the general restrictions on export.
1361
1362    # No input mutations
1363    if (
1364        len([x for x in metadata.input_info if x.mutates_data or x.mutates_metadata])
1365        != 0
1366    ):
1367        raise RuntimeError(
1368            f"aot_export_joint_simple does not support input mutations. {str(metadata)}"
1369        )
1370    # No output aliasing
1371    if (
1372        len([x for x in metadata.output_info if x.output_type != OutputType.non_alias])
1373        != 0
1374    ):
1375        raise RuntimeError(
1376            f"aot_export_joint_simple does not support outputs that alias inputs. {str(metadata)}"
1377        )
1378    # No pytrees
1379    if in_spec.is_leaf():
1380        raise RuntimeError(
1381            f"aot_export_joint_simple requires inputs to be a single list/tuple. in_spec={str(in_spec)}"
1382        )
1383    if not all(child.is_leaf() for child in in_spec.children_specs):
1384        raise RuntimeError(
1385            f"aot_export_joint_simple requires individual inputs not to be pytrees. in_spec={str(in_spec)}"
1386        )
1387    if out_spec.is_leaf():
1388        raise RuntimeError(
1389            f"aot_export_joint_simple requires outputs to be a single list/tuple. out_spec={str(out_spec)}"
1390        )
1391    if not all(child.is_leaf() for child in out_spec.children_specs):
1392        raise RuntimeError(
1393            f"aot_export_joint_simple requires individual outputs not to be pytrees. out_spec={str(out_spec)}"
1394        )
1395    # TODO: we might have to temporarily patch config.functionalize_rng
1396    # so that it doesn't run when we're exporting a higher order op.
1397
1398    if config.debug_assert:
1399        # Smoke test that after partitioning, we can run the forward without any calling convention changes.
1400        fw_module, bw_module = aot_config.default_partition(  # noqa: F821
1401            fx_g, args, num_fwd_outputs=len(fw_metadata.output_infos)  # noqa: F821
1402        )
1403        # Attempt to run the fw_module with the original user inputs
1404        fake_mode = detect_fake_mode(args)
1405        if fake_mode is None:
1406            fake_mode = FakeTensorMode()
1407        with fake_mode:
1408            fw_module(*args)
1409    return fx_g
1410
1411
1412# Private for now because we aren't providing a contract on what to return
1413# for joint graphs (we could when there's a clearer use case)
1414# In the future, we may need to add more export API's that provide their own strong guarantees.
1415# This is meant as a general helper function for handling various export-y use cases.
1416def _aot_export_function(
1417    func: Callable,
1418    args,
1419    *,
1420    num_params_buffers: int = 0,
1421    decompositions: Optional[Dict] = None,
1422    # If we're exporting a joint graph and we don't want any tangent inputs in the graph
1423    # (because we are backpropping through a scalar 1 loss),
1424    # we need to explicitly specify not to include tangents in the graph.
1425    # It's not enough just to check that our tangent is a scalar, since we also
1426    # need to know if it is a 1 (no need to make it a graph input), or something else
1427    # (requiring it to be a graph input).
1428    # We don't know this info at trace time though, so we need to make it an explicit config.
1429    no_tangents: bool = False,
1430    pre_dispatch: bool = False,
1431    # If None, `dynamic_shapes` will be infered from inputs, but the inferred result might be wrong.
1432    dynamic_shapes: Optional[bool] = None,
1433    kwargs=None,
1434) -> Tuple[torch.fx.GraphModule, ViewAndMutationMeta, pytree.TreeSpec, pytree.TreeSpec]:
1435    kwargs = kwargs or {}
1436
1437    flat_fn, out_spec = create_tree_flattened_fn(func, args, kwargs)
1438    flat_args, in_spec = pytree.tree_flatten((args, kwargs))
1439
1440    if dynamic_shapes is None:
1441        # Try to infer `dynamic_shapes from inputs and graph nodes
1442        fake_mode = detect_fake_mode(flat_args)
1443        if (
1444            fake_mode is None
1445            and hasattr(func, "_orig_mod")
1446            and isinstance(func._orig_mod, torch.fx.GraphModule)
1447        ):
1448            vals = [
1449                node.meta["val"]
1450                for node in func._orig_mod.graph.nodes
1451                if "val" in node.meta
1452            ]
1453            fake_mode = detect_fake_mode(vals)
1454        dynamic_shapes = fake_mode is not None and fake_mode.shape_env is not None
1455
1456    # The export use case doesn't care about several bits of AOTConfig
1457    # (1) compilers (we just export the graph)
1458    # (2) partitioners (export is only full graph, user can partition themselves)
1459    aot_config = AOTConfig(
1460        fw_compiler=None,
1461        bw_compiler=None,
1462        inference_compiler=None,
1463        partition_fn=None,
1464        decompositions=decompositions,
1465        num_params_buffers=num_params_buffers,
1466        aot_id=next(AOT_COUNTER),
1467        # For now there's no use case involving keeping input mutations in the graph
1468        # (which we can only do in the inference case anyway).
1469        # We can add this later if we need to.
1470        keep_inference_input_mutations=False,
1471        dynamic_shapes=dynamic_shapes,
1472        aot_autograd_arg_pos_to_source=None,
1473        is_export=True,
1474        no_tangents=no_tangents,
1475        pre_dispatch=pre_dispatch,
1476    )
1477    fake_mode, shape_env = construct_fake_mode(flat_args, aot_config)
1478    fake_flat_args = process_inputs(flat_args, aot_config, fake_mode, shape_env)
1479
1480    fx_g, meta = create_aot_dispatcher_function(
1481        flat_fn,
1482        fake_flat_args,
1483        aot_config,
1484        fake_mode,
1485        shape_env,
1486    )
1487    return fx_g, meta, in_spec, out_spec.spec
1488
1489
1490@contextmanager
1491def _detect_attribute_assignment(mod: torch.nn.Module):
1492    # Do not allow assignment of tensor attributes during export unless
1493    # the attribute is registered as a buffer.
1494
1495    STD_ATTRS = {
1496        "_backward_hooks",
1497        "_backward_pre_hooks",
1498        "_buffers",
1499        "_forward_hooks",
1500        "_forward_hooks_always_called",
1501        "_forward_hooks_with_kwargs",
1502        "_forward_pre_hooks",
1503        "_forward_pre_hooks_with_kwargs",
1504        "_is_full_backward_hook",
1505        "_load_state_dict_post_hooks",
1506        "_load_state_dict_pre_hooks",
1507        "_modules",
1508        "_non_persistent_buffers_set",
1509        "_parameters",
1510        "_state_dict_hooks",
1511        "_state_dict_pre_hooks",
1512        "training",
1513    }
1514
1515    def _get_attributes(mod):
1516        # return any attributes of a module that are not standard attributes
1517        return {k: v for k, v in mod.__dict__.items() if k not in STD_ATTRS}
1518
1519    # save state of attributes before enter
1520    snapshot = pytree.tree_map(lambda x: x, _get_attributes(mod))
1521    try:
1522        yield
1523    finally:
1524        # after exit, compare state of attributes with snapshot
1525        # to detect which tensor attributes were assigned
1526        assigned_tensor_attributes = []
1527
1528        def _collect_assigned_tensor_attributes(kp, v, _v):
1529            if _v is not v:
1530                attr, *rest = kp
1531                if isinstance(v, torch.Tensor):
1532                    assigned_tensor_attributes.append(
1533                        f"self.{attr.key}{pytree.keystr(rest)}"
1534                    )
1535                # TODO(avik): Assigning all other types are allowed right now.
1536                # Maybe in the future we want to limit this to primitive types?
1537
1538        pytree.tree_map_with_path(
1539            _collect_assigned_tensor_attributes, snapshot, _get_attributes(mod)
1540        )
1541        # restore state of all attributes (including, e.g., of primitive types)
1542        mod.__dict__.update(snapshot)
1543
1544        if assigned_tensor_attributes:
1545            if len(assigned_tensor_attributes) > 1:
1546                noun, verb = "attributes", "were"
1547            else:
1548                noun, verb = "attribute", "was"
1549            raise ValueError(
1550                f"The tensor {noun} {', '.join(assigned_tensor_attributes)} {verb} assigned during export. "
1551                "Such attributes must be registered as buffers using the `register_buffer` API "
1552                "(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
1553            )
1554
1555
1556compiled_function = aot_function
1557compiled_module = aot_module
1558