xref: /aosp_15_r20/external/pytorch/torch/jit/_serialization.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2"""Serialization.
3
4This module contains functionality for serializing TorchScript modules, notably:
5    * torch.jit.save
6    * torch.jit.load
7
8This is not intended to be imported directly; please use the exposed
9functionalities in `torch.jit`.
10"""
11
12import os
13
14import torch
15from torch._jit_internal import _get_model_id
16from torch._utils_internal import log_torchscript_usage
17from torch.jit._recursive import wrap_cpp_module
18from torch.serialization import validate_cuda_device
19
20
21def save(m, f, _extra_files=None):
22    r"""
23    Save an offline version of this module for use in a separate process.
24
25    The saved module serializes all of the methods, submodules, parameters, and
26    attributes of this module. It can be loaded into the C++ API using
27    ``torch::jit::load(filename)`` or into the Python API with
28    :func:`torch.jit.load <torch.jit.load>`.
29
30    To be able to save a module, it must not make any calls to native Python
31    functions.  This means that all submodules must be subclasses of
32    :class:`ScriptModule` as well.
33
34    .. DANGER::
35        All modules, no matter their device, are always loaded onto the CPU
36        during loading.  This is different from :func:`torch.load`'s semantics
37        and may change in the future.
38
39    Args:
40        m: A :class:`ScriptModule` to save.
41        f: A file-like object (has to implement write and flush) or a string
42           containing a file name.
43        _extra_files: Map from filename to contents which will be stored as part of `f`.
44
45    .. note::
46        torch.jit.save attempts to preserve the behavior of some operators
47        across versions. For example, dividing two integer tensors in
48        PyTorch 1.5 performed floor division, and if the module
49        containing that code is saved in PyTorch 1.5 and loaded in PyTorch 1.6
50        its division behavior will be preserved. The same module saved in
51        PyTorch 1.6 will fail to load in PyTorch 1.5, however, since the
52        behavior of division changed in 1.6, and 1.5 does not know how to
53        replicate the 1.6 behavior.
54
55    Example:
56    .. testcode::
57
58        import torch
59        import io
60
61        class MyModule(torch.nn.Module):
62            def forward(self, x):
63                return x + 10
64
65        m = torch.jit.script(MyModule())
66
67        # Save to file
68        torch.jit.save(m, 'scriptmodule.pt')
69        # This line is equivalent to the previous
70        m.save("scriptmodule.pt")
71
72        # Save to io.BytesIO buffer
73        buffer = io.BytesIO()
74        torch.jit.save(m, buffer)
75
76        # Save with extra files
77        extra_files = {'foo.txt': b'bar'}
78        torch.jit.save(m, 'scriptmodule.pt', _extra_files=extra_files)
79    """
80    log_torchscript_usage("save", model_id=_get_model_id(m))
81    if _extra_files is None:
82        _extra_files = {}
83    if isinstance(f, (str, os.PathLike)):
84        m.save(f, _extra_files=_extra_files)
85    else:
86        ret = m.save_to_buffer(_extra_files=_extra_files)
87        f.write(ret)
88
89
90def load(f, map_location=None, _extra_files=None, _restore_shapes=False):
91    r"""
92    Load a :class:`ScriptModule` or :class:`ScriptFunction` previously saved with :func:`torch.jit.save <torch.jit.save>`.
93
94    All previously saved modules, no matter their device, are first loaded onto CPU,
95    and then are moved to the devices they were saved from. If this fails (e.g.
96    because the run time system doesn't have certain devices), an exception is
97    raised.
98
99    Args:
100        f: a file-like object (has to implement read, readline, tell, and seek),
101            or a string containing a file name
102        map_location (string or torch.device): A simplified version of
103            ``map_location`` in `torch.jit.save` used to dynamically remap
104            storages to an alternative set of devices.
105        _extra_files (dictionary of filename to content): The extra
106            filenames given in the map would be loaded and their content
107            would be stored in the provided map.
108        _restore_shapes (bool): Whether or not to retrace the module on load using stored inputs
109
110    Returns:
111        A :class:`ScriptModule` object.
112
113    Example:
114    .. testcode::
115
116        import torch
117        import io
118
119        torch.jit.load('scriptmodule.pt')
120
121        # Load ScriptModule from io.BytesIO object
122        with open('scriptmodule.pt', 'rb') as f:
123            buffer = io.BytesIO(f.read())
124
125        # Load all tensors to the original device
126        torch.jit.load(buffer)
127
128        # Load all tensors onto CPU, using a device
129        buffer.seek(0)
130        torch.jit.load(buffer, map_location=torch.device('cpu'))
131
132        # Load all tensors onto CPU, using a string
133        buffer.seek(0)
134        torch.jit.load(buffer, map_location='cpu')
135
136        # Load with extra files.
137        extra_files = {'foo.txt': ''}  # values will be replaced with data
138        torch.jit.load('scriptmodule.pt', _extra_files=extra_files)
139        print(extra_files['foo.txt'])
140
141    .. testoutput::
142        :hide:
143
144        ...
145
146    .. testcleanup::
147
148        import os
149        os.remove("scriptmodule.pt")
150    """
151    if isinstance(f, (str, os.PathLike)):
152        if not os.path.exists(f):  # type: ignore[type-var]
153            raise ValueError(f"The provided filename {f} does not exist")  # type: ignore[str-bytes-safe]
154        if os.path.isdir(f):
155            raise ValueError(f"The provided filename {f} is a directory")  # type: ignore[str-bytes-safe]
156
157    map_location = validate_map_location(map_location)
158    if _extra_files is None:
159        _extra_files = {}
160
161    cu = torch._C.CompilationUnit()
162    if isinstance(f, (str, os.PathLike)):
163        cpp_module = torch._C.import_ir_module(cu, os.fspath(f), map_location, _extra_files, _restore_shapes)  # type: ignore[call-arg]
164    else:
165        cpp_module = torch._C.import_ir_module_from_buffer(
166            cu, f.read(), map_location, _extra_files, _restore_shapes
167        )  # type: ignore[call-arg]
168
169    # TODO: Pretty sure this approach loses ConstSequential status and such
170    ret = wrap_cpp_module(cpp_module)
171    log_torchscript_usage("load", model_id=_get_model_id(ret))
172    return ret
173
174
175def validate_map_location(map_location=None):
176    if isinstance(map_location, str):
177        map_location = torch.device(map_location)
178    elif not (map_location is None or isinstance(map_location, torch.device)):
179        raise ValueError(
180            "map_location should be either None, string or torch.device, "
181            "but got type: " + str(type(map_location))
182        )
183
184    if str(map_location).startswith("cuda"):
185        validate_cuda_device(map_location)
186
187    return map_location
188
189
190def jit_module_from_flatbuffer(f):
191    if isinstance(f, (str, os.PathLike)):
192        f = os.fspath(f)
193        return wrap_cpp_module(torch._C._load_jit_module_from_file(f))
194    else:
195        return wrap_cpp_module(torch._C._load_jit_module_from_bytes(f.read()))
196
197
198def save_jit_module_to_flatbuffer(m, f, _extra_files=None):
199    r"""
200    Save an offline version of this module for use in a separate process.
201
202    The saved module serializes all of the methods, submodules, parameters, and
203    attributes of this module. It can be loaded into the C++ API using
204    ``torch::jit::load_jit_module_from_file(filename)`` or into the Python API with
205    :func:`torch.jit.jit_module_from_flatbuffer<torch.jit.jit_module_from_flatbuffer>`.
206
207    To be able to save a module, it must not make any calls to native Python
208    functions.  This means that all submodules must be subclasses of
209    :class:`ScriptModule` as well.
210
211    .. DANGER::
212        All modules, no matter their device, are always loaded onto the CPU
213        during loading.  This is different from :func:`torch.load`'s semantics
214        and may change in the future.
215
216    Args:
217        m: A :class:`ScriptModule` to save.
218        f: A string for file path
219
220
221    Example:
222    .. testcode::
223
224        import torch
225        import io
226
227        class MyModule(torch.nn.Module):
228            def forward(self, x):
229                return x + 10
230
231        m = torch.jit.script(MyModule())
232
233        # Save to file
234        torch.jit.save_jit_module_to_flatbuffer(m, 'scriptmodule.ff')
235    """
236    extra_files = _extra_files
237    if extra_files is None:
238        extra_files = {}
239
240    if isinstance(f, (str, os.PathLike)):
241        f = os.fspath(f)
242        torch._C._save_jit_module(m._c, f, extra_files)
243    else:
244        s = torch._C._save_jit_module_to_bytes(m._c, extra_files)
245        f.write(s)
246
247
248def get_flatbuffer_module_info(path_or_file):
249    r"""Get some information regarding a model file in flatbuffer format.
250
251    Args:
252        path_or_file: Either str, Path or file like object (BytesIO OK).
253            If it's str or Path, we will read the file referenced by that
254            path as Bytes.
255
256    Returns:
257        A dict with metadata on what that file contains, currently looks like
258        this:
259        {
260            'bytecode_version': 4,  # int
261            'operator_version': 4,  # int
262            'function_names': {
263                '__torch__.___torch_mangle_0.Foo.forward'}, # set
264            'type_names': set(),  # set
265            'opname_to_num_args': {'aten::linear': 3} # Dict[str, int]
266        }
267    """
268    if isinstance(path_or_file, (str, os.PathLike)):
269        with open(path_or_file, "rb") as f:
270            all_bytes = f.read()
271    else:
272        all_bytes = path_or_file.read()
273    return torch._C._get_module_info_from_flatbuffer(all_bytes)
274