xref: /aosp_15_r20/external/libvpx/vp9/decoder/vp9_decodeframe.c (revision fb1b10ab9aebc7c7068eedab379b749d7e3900be)
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <stdlib.h>  // qsort()
13 
14 #include "./vp9_rtcd.h"
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17 
18 #include "vpx_dsp/bitreader_buffer.h"
19 #include "vpx_dsp/bitreader.h"
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23 #include "vpx_ports/mem_ops.h"
24 #include "vpx_scale/vpx_scale.h"
25 #include "vpx_util/vpx_pthread.h"
26 #include "vpx_util/vpx_thread.h"
27 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
28 #include "vpx_util/vpx_debug_util.h"
29 #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
30 
31 #include "vp9/common/vp9_alloccommon.h"
32 #include "vp9/common/vp9_common.h"
33 #include "vp9/common/vp9_entropy.h"
34 #include "vp9/common/vp9_entropymode.h"
35 #include "vp9/common/vp9_idct.h"
36 #include "vp9/common/vp9_thread_common.h"
37 #include "vp9/common/vp9_pred_common.h"
38 #include "vp9/common/vp9_quant_common.h"
39 #include "vp9/common/vp9_reconintra.h"
40 #include "vp9/common/vp9_reconinter.h"
41 #include "vp9/common/vp9_seg_common.h"
42 #include "vp9/common/vp9_tile_common.h"
43 
44 #include "vp9/decoder/vp9_decodeframe.h"
45 #include "vp9/decoder/vp9_detokenize.h"
46 #include "vp9/decoder/vp9_decodemv.h"
47 #include "vp9/decoder/vp9_decoder.h"
48 #include "vp9/decoder/vp9_dsubexp.h"
49 #include "vp9/decoder/vp9_job_queue.h"
50 
51 #define MAX_VP9_HEADER_SIZE 80
52 
53 typedef int (*predict_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
54                                   int plane, int row, int col, TX_SIZE tx_size);
55 
56 typedef void (*intra_recon_func)(TileWorkerData *twd, MODE_INFO *const mi,
57                                  int plane, int row, int col, TX_SIZE tx_size);
58 
read_is_valid(const uint8_t * start,size_t len,const uint8_t * end)59 static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
60   return len != 0 && len <= (size_t)(end - start);
61 }
62 
decode_unsigned_max(struct vpx_read_bit_buffer * rb,int max)63 static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) {
64   const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max));
65   return data > max ? max : data;
66 }
67 
read_tx_mode(vpx_reader * r)68 static TX_MODE read_tx_mode(vpx_reader *r) {
69   TX_MODE tx_mode = vpx_read_literal(r, 2);
70   if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r);
71   assert(tx_mode < TX_MODES);
72   return tx_mode;
73 }
74 
read_tx_mode_probs(struct tx_probs * tx_probs,vpx_reader * r)75 static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) {
76   int i, j;
77 
78   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
79     for (j = 0; j < TX_SIZES - 3; ++j)
80       vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
81 
82   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
83     for (j = 0; j < TX_SIZES - 2; ++j)
84       vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
85 
86   for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
87     for (j = 0; j < TX_SIZES - 1; ++j)
88       vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
89 }
90 
read_switchable_interp_probs(FRAME_CONTEXT * fc,vpx_reader * r)91 static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
92   int i, j;
93   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
94     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
95       vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
96 }
97 
read_inter_mode_probs(FRAME_CONTEXT * fc,vpx_reader * r)98 static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) {
99   int i, j;
100   for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
101     for (j = 0; j < INTER_MODES - 1; ++j)
102       vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
103 }
104 
read_frame_reference_mode(const VP9_COMMON * cm,vpx_reader * r)105 static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
106                                                 vpx_reader *r) {
107   if (vp9_compound_reference_allowed(cm)) {
108     return vpx_read_bit(r)
109                ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE)
110                : SINGLE_REFERENCE;
111   } else {
112     return SINGLE_REFERENCE;
113   }
114 }
115 
read_frame_reference_mode_probs(VP9_COMMON * cm,vpx_reader * r)116 static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) {
117   FRAME_CONTEXT *const fc = cm->fc;
118   int i;
119 
120   if (cm->reference_mode == REFERENCE_MODE_SELECT)
121     for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
122       vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
123 
124   if (cm->reference_mode != COMPOUND_REFERENCE)
125     for (i = 0; i < REF_CONTEXTS; ++i) {
126       vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
127       vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
128     }
129 
130   if (cm->reference_mode != SINGLE_REFERENCE)
131     for (i = 0; i < REF_CONTEXTS; ++i)
132       vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
133 }
134 
update_mv_probs(vpx_prob * p,int n,vpx_reader * r)135 static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) {
136   int i;
137   for (i = 0; i < n; ++i)
138     if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1;
139 }
140 
read_mv_probs(nmv_context * ctx,int allow_hp,vpx_reader * r)141 static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) {
142   int i, j;
143 
144   update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
145 
146   for (i = 0; i < 2; ++i) {
147     nmv_component *const comp_ctx = &ctx->comps[i];
148     update_mv_probs(&comp_ctx->sign, 1, r);
149     update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
150     update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
151     update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
152   }
153 
154   for (i = 0; i < 2; ++i) {
155     nmv_component *const comp_ctx = &ctx->comps[i];
156     for (j = 0; j < CLASS0_SIZE; ++j)
157       update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
158     update_mv_probs(comp_ctx->fp, 3, r);
159   }
160 
161   if (allow_hp) {
162     for (i = 0; i < 2; ++i) {
163       nmv_component *const comp_ctx = &ctx->comps[i];
164       update_mv_probs(&comp_ctx->class0_hp, 1, r);
165       update_mv_probs(&comp_ctx->hp, 1, r);
166     }
167   }
168 }
169 
inverse_transform_block_inter(MACROBLOCKD * xd,int plane,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)170 static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane,
171                                           const TX_SIZE tx_size, uint8_t *dst,
172                                           int stride, int eob) {
173   struct macroblockd_plane *const pd = &xd->plane[plane];
174   tran_low_t *const dqcoeff = pd->dqcoeff;
175   assert(eob > 0);
176 #if CONFIG_VP9_HIGHBITDEPTH
177   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
178     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
179     if (xd->lossless) {
180       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
181     } else {
182       switch (tx_size) {
183         case TX_4X4:
184           vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
185           break;
186         case TX_8X8:
187           vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd);
188           break;
189         case TX_16X16:
190           vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd);
191           break;
192         case TX_32X32:
193           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
194           break;
195         default: assert(0 && "Invalid transform size");
196       }
197     }
198   } else {
199     if (xd->lossless) {
200       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
201     } else {
202       switch (tx_size) {
203         case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
204         case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
205         case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
206         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
207         default: assert(0 && "Invalid transform size"); return;
208       }
209     }
210   }
211 #else
212   if (xd->lossless) {
213     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
214   } else {
215     switch (tx_size) {
216       case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break;
217       case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break;
218       case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break;
219       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
220       default: assert(0 && "Invalid transform size"); return;
221     }
222   }
223 #endif  // CONFIG_VP9_HIGHBITDEPTH
224 
225   if (eob == 1) {
226     dqcoeff[0] = 0;
227   } else {
228     if (tx_size <= TX_16X16 && eob <= 10)
229       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
230     else if (tx_size == TX_32X32 && eob <= 34)
231       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
232     else
233       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
234   }
235 }
236 
inverse_transform_block_intra(MACROBLOCKD * xd,int plane,const TX_TYPE tx_type,const TX_SIZE tx_size,uint8_t * dst,int stride,int eob)237 static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane,
238                                           const TX_TYPE tx_type,
239                                           const TX_SIZE tx_size, uint8_t *dst,
240                                           int stride, int eob) {
241   struct macroblockd_plane *const pd = &xd->plane[plane];
242   tran_low_t *const dqcoeff = pd->dqcoeff;
243   assert(eob > 0);
244 #if CONFIG_VP9_HIGHBITDEPTH
245   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
246     uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst);
247     if (xd->lossless) {
248       vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd);
249     } else {
250       switch (tx_size) {
251         case TX_4X4:
252           vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
253           break;
254         case TX_8X8:
255           vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
256           break;
257         case TX_16X16:
258           vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd);
259           break;
260         case TX_32X32:
261           vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd);
262           break;
263         default: assert(0 && "Invalid transform size");
264       }
265     }
266   } else {
267     if (xd->lossless) {
268       vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
269     } else {
270       switch (tx_size) {
271         case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
272         case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
273         case TX_16X16:
274           vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
275           break;
276         case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
277         default: assert(0 && "Invalid transform size"); return;
278       }
279     }
280   }
281 #else
282   if (xd->lossless) {
283     vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
284   } else {
285     switch (tx_size) {
286       case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break;
287       case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break;
288       case TX_16X16:
289         vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
290         break;
291       case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break;
292       default: assert(0 && "Invalid transform size"); return;
293     }
294   }
295 #endif  // CONFIG_VP9_HIGHBITDEPTH
296 
297   if (eob == 1) {
298     dqcoeff[0] = 0;
299   } else {
300     if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
301       memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
302     else if (tx_size == TX_32X32 && eob <= 34)
303       memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
304     else
305       memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
306   }
307 }
308 
predict_and_reconstruct_intra_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)309 static void predict_and_reconstruct_intra_block(TileWorkerData *twd,
310                                                 MODE_INFO *const mi, int plane,
311                                                 int row, int col,
312                                                 TX_SIZE tx_size) {
313   MACROBLOCKD *const xd = &twd->xd;
314   struct macroblockd_plane *const pd = &xd->plane[plane];
315   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
316   uint8_t *dst;
317   dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
318 
319   if (mi->sb_type < BLOCK_8X8)
320     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
321 
322   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
323                           dst, pd->dst.stride, col, row, plane);
324 
325   if (!mi->skip) {
326     const TX_TYPE tx_type =
327         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
328     const ScanOrder *sc = (plane || xd->lossless)
329                               ? &vp9_default_scan_orders[tx_size]
330                               : &vp9_scan_orders[tx_size][tx_type];
331     const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
332                                             mi->segment_id);
333     if (eob > 0) {
334       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
335                                     pd->dst.stride, eob);
336     }
337   }
338 }
339 
parse_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)340 static void parse_intra_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
341                                      int plane, int row, int col,
342                                      TX_SIZE tx_size) {
343   MACROBLOCKD *const xd = &twd->xd;
344   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
345 
346   if (mi->sb_type < BLOCK_8X8)
347     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
348 
349   if (!mi->skip) {
350     struct macroblockd_plane *const pd = &xd->plane[plane];
351     const TX_TYPE tx_type =
352         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
353     const ScanOrder *sc = (plane || xd->lossless)
354                               ? &vp9_default_scan_orders[tx_size]
355                               : &vp9_scan_orders[tx_size][tx_type];
356     *pd->eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
357                                        mi->segment_id);
358     /* Keep the alignment to 16 */
359     pd->dqcoeff += (16 << (tx_size << 1));
360     pd->eob++;
361   }
362 }
363 
predict_and_reconstruct_intra_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)364 static void predict_and_reconstruct_intra_block_row_mt(TileWorkerData *twd,
365                                                        MODE_INFO *const mi,
366                                                        int plane, int row,
367                                                        int col,
368                                                        TX_SIZE tx_size) {
369   MACROBLOCKD *const xd = &twd->xd;
370   struct macroblockd_plane *const pd = &xd->plane[plane];
371   PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode;
372   uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
373 
374   if (mi->sb_type < BLOCK_8X8)
375     if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
376 
377   vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride,
378                           dst, pd->dst.stride, col, row, plane);
379 
380   if (!mi->skip) {
381     const TX_TYPE tx_type =
382         (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode];
383     if (*pd->eob > 0) {
384       inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst,
385                                     pd->dst.stride, *pd->eob);
386     }
387     /* Keep the alignment to 16 */
388     pd->dqcoeff += (16 << (tx_size << 1));
389     pd->eob++;
390   }
391 }
392 
reconstruct_inter_block(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size,int mi_row,int mi_col)393 static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi,
394                                    int plane, int row, int col, TX_SIZE tx_size,
395                                    int mi_row, int mi_col) {
396   MACROBLOCKD *const xd = &twd->xd;
397   struct macroblockd_plane *const pd = &xd->plane[plane];
398   const ScanOrder *sc = &vp9_default_scan_orders[tx_size];
399   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
400                                           mi->segment_id);
401   uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
402 
403   if (eob > 0) {
404     inverse_transform_block_inter(xd, plane, tx_size, dst, pd->dst.stride, eob);
405   }
406 #if CONFIG_MISMATCH_DEBUG
407   {
408     int pixel_c, pixel_r;
409     int blk_w = 1 << (tx_size + TX_UNIT_SIZE_LOG2);
410     int blk_h = 1 << (tx_size + TX_UNIT_SIZE_LOG2);
411     mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row,
412                     pd->subsampling_x, pd->subsampling_y);
413     mismatch_check_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r, blk_w,
414                             blk_h, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
415   }
416 #else
417   (void)mi_row;
418   (void)mi_col;
419 #endif
420   return eob;
421 }
422 
parse_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)423 static int parse_inter_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi,
424                                     int plane, int row, int col,
425                                     TX_SIZE tx_size) {
426   MACROBLOCKD *const xd = &twd->xd;
427   struct macroblockd_plane *const pd = &xd->plane[plane];
428   const ScanOrder *sc = &vp9_default_scan_orders[tx_size];
429   const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size,
430                                           mi->segment_id);
431 
432   *pd->eob = eob;
433   pd->dqcoeff += (16 << (tx_size << 1));
434   pd->eob++;
435 
436   return eob;
437 }
438 
reconstruct_inter_block_row_mt(TileWorkerData * twd,MODE_INFO * const mi,int plane,int row,int col,TX_SIZE tx_size)439 static int reconstruct_inter_block_row_mt(TileWorkerData *twd,
440                                           MODE_INFO *const mi, int plane,
441                                           int row, int col, TX_SIZE tx_size) {
442   MACROBLOCKD *const xd = &twd->xd;
443   struct macroblockd_plane *const pd = &xd->plane[plane];
444   const int eob = *pd->eob;
445 
446   (void)mi;
447   if (eob > 0) {
448     inverse_transform_block_inter(
449         xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
450         pd->dst.stride, eob);
451   }
452   pd->dqcoeff += (16 << (tx_size << 1));
453   pd->eob++;
454 
455   return eob;
456 }
457 
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)458 static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst,
459                             int dst_stride, int x, int y, int b_w, int b_h,
460                             int w, int h) {
461   // Get a pointer to the start of the real data for this row.
462   const uint8_t *ref_row = src - x - y * src_stride;
463 
464   if (y >= h)
465     ref_row += (h - 1) * src_stride;
466   else if (y > 0)
467     ref_row += y * src_stride;
468 
469   do {
470     int right = 0, copy;
471     int left = x < 0 ? -x : 0;
472 
473     if (left > b_w) left = b_w;
474 
475     if (x + b_w > w) right = x + b_w - w;
476 
477     if (right > b_w) right = b_w;
478 
479     copy = b_w - left - right;
480 
481     if (left) memset(dst, ref_row[0], left);
482 
483     if (copy) memcpy(dst + left, ref_row + x + left, copy);
484 
485     if (right) memset(dst + left + copy, ref_row[w - 1], right);
486 
487     dst += dst_stride;
488     ++y;
489 
490     if (y > 0 && y < h) ref_row += src_stride;
491   } while (--b_h);
492 }
493 
494 #if CONFIG_VP9_HIGHBITDEPTH
high_build_mc_border(const uint8_t * src8,int src_stride,uint16_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)495 static void high_build_mc_border(const uint8_t *src8, int src_stride,
496                                  uint16_t *dst, int dst_stride, int x, int y,
497                                  int b_w, int b_h, int w, int h) {
498   // Get a pointer to the start of the real data for this row.
499   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
500   const uint16_t *ref_row = src - x - y * src_stride;
501 
502   if (y >= h)
503     ref_row += (h - 1) * src_stride;
504   else if (y > 0)
505     ref_row += y * src_stride;
506 
507   do {
508     int right = 0, copy;
509     int left = x < 0 ? -x : 0;
510 
511     if (left > b_w) left = b_w;
512 
513     if (x + b_w > w) right = x + b_w - w;
514 
515     if (right > b_w) right = b_w;
516 
517     copy = b_w - left - right;
518 
519     if (left) vpx_memset16(dst, ref_row[0], left);
520 
521     if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
522 
523     if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right);
524 
525     dst += dst_stride;
526     ++y;
527 
528     if (y > 0 && y < h) ref_row += src_stride;
529   } while (--b_h);
530 }
531 #endif  // CONFIG_VP9_HIGHBITDEPTH
532 
533 #if CONFIG_VP9_HIGHBITDEPTH
extend_and_predict(TileWorkerData * twd,const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,MACROBLOCKD * xd,int w,int h,int ref,int xs,int ys)534 static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1,
535                                int pre_buf_stride, int x0, int y0, int b_w,
536                                int b_h, int frame_width, int frame_height,
537                                int border_offset, uint8_t *const dst,
538                                int dst_buf_stride, int subpel_x, int subpel_y,
539                                const InterpKernel *kernel,
540                                const struct scale_factors *sf, MACROBLOCKD *xd,
541                                int w, int h, int ref, int xs, int ys) {
542   uint16_t *mc_buf_high = twd->extend_and_predict_buf;
543   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
544     high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0,
545                          b_w, b_h, frame_width, frame_height);
546     highbd_inter_predictor(mc_buf_high + border_offset, b_w,
547                            CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x,
548                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
549   } else {
550     build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0,
551                     y0, b_w, b_h, frame_width, frame_height);
552     inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst,
553                     dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel,
554                     xs, ys);
555   }
556 }
557 #else
extend_and_predict(TileWorkerData * twd,const uint8_t * buf_ptr1,int pre_buf_stride,int x0,int y0,int b_w,int b_h,int frame_width,int frame_height,int border_offset,uint8_t * const dst,int dst_buf_stride,int subpel_x,int subpel_y,const InterpKernel * kernel,const struct scale_factors * sf,int w,int h,int ref,int xs,int ys)558 static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1,
559                                int pre_buf_stride, int x0, int y0, int b_w,
560                                int b_h, int frame_width, int frame_height,
561                                int border_offset, uint8_t *const dst,
562                                int dst_buf_stride, int subpel_x, int subpel_y,
563                                const InterpKernel *kernel,
564                                const struct scale_factors *sf, int w, int h,
565                                int ref, int xs, int ys) {
566   uint8_t *mc_buf = (uint8_t *)twd->extend_and_predict_buf;
567   const uint8_t *buf_ptr;
568 
569   build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h,
570                   frame_width, frame_height);
571   buf_ptr = mc_buf + border_offset;
572 
573   inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w,
574                   h, ref, kernel, xs, ys);
575 }
576 #endif  // CONFIG_VP9_HIGHBITDEPTH
577 
dec_build_inter_predictors(TileWorkerData * twd,MACROBLOCKD * xd,int plane,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y,const InterpKernel * kernel,const struct scale_factors * sf,struct buf_2d * pre_buf,struct buf_2d * dst_buf,const MV * mv,RefCntBuffer * ref_frame_buf,int is_scaled,int ref)578 static void dec_build_inter_predictors(
579     TileWorkerData *twd, MACROBLOCKD *xd, int plane, int bw, int bh, int x,
580     int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel,
581     const struct scale_factors *sf, struct buf_2d *pre_buf,
582     struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf,
583     int is_scaled, int ref) {
584   struct macroblockd_plane *const pd = &xd->plane[plane];
585   uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
586   MV32 scaled_mv;
587   int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
588       subpel_x, subpel_y;
589   uint8_t *ref_frame, *buf_ptr;
590 
591   // Get reference frame pointer, width and height.
592   if (plane == 0) {
593     frame_width = ref_frame_buf->buf.y_crop_width;
594     frame_height = ref_frame_buf->buf.y_crop_height;
595     ref_frame = ref_frame_buf->buf.y_buffer;
596   } else {
597     frame_width = ref_frame_buf->buf.uv_crop_width;
598     frame_height = ref_frame_buf->buf.uv_crop_height;
599     ref_frame =
600         plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer;
601   }
602 
603   if (is_scaled) {
604     const MV mv_q4 = clamp_mv_to_umv_border_sb(
605         xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
606     // Co-ordinate of containing block to pixel precision.
607     int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
608     int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
609 #if 0  // CONFIG_BETTER_HW_COMPATIBILITY
610     assert(xd->mi[0]->sb_type != BLOCK_4X8 &&
611            xd->mi[0]->sb_type != BLOCK_8X4);
612     assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) &&
613            mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x)));
614 #endif
615     // Co-ordinate of the block to 1/16th pixel precision.
616     x0_16 = (x_start + x) << SUBPEL_BITS;
617     y0_16 = (y_start + y) << SUBPEL_BITS;
618 
619     // Co-ordinate of current block in reference frame
620     // to 1/16th pixel precision.
621     x0_16 = sf->scale_value_x(x0_16, sf);
622     y0_16 = sf->scale_value_y(y0_16, sf);
623 
624     // Map the top left corner of the block into the reference frame.
625     x0 = sf->scale_value_x(x_start + x, sf);
626     y0 = sf->scale_value_y(y_start + y, sf);
627 
628     // Scale the MV and incorporate the sub-pixel offset of the block
629     // in the reference frame.
630     scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
631     xs = sf->x_step_q4;
632     ys = sf->y_step_q4;
633   } else {
634     // Co-ordinate of containing block to pixel precision.
635     x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
636     y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
637 
638     // Co-ordinate of the block to 1/16th pixel precision.
639     x0_16 = x0 << SUBPEL_BITS;
640     y0_16 = y0 << SUBPEL_BITS;
641 
642     scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y));
643     scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x));
644     xs = ys = 16;
645   }
646   subpel_x = scaled_mv.col & SUBPEL_MASK;
647   subpel_y = scaled_mv.row & SUBPEL_MASK;
648 
649   // Calculate the top left corner of the best matching block in the
650   // reference frame.
651   x0 += scaled_mv.col >> SUBPEL_BITS;
652   y0 += scaled_mv.row >> SUBPEL_BITS;
653   x0_16 += scaled_mv.col;
654   y0_16 += scaled_mv.row;
655 
656   // Get reference block pointer.
657   buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
658   buf_stride = pre_buf->stride;
659 
660   // Do border extension if there is motion or the
661   // width/height is not a multiple of 8 pixels.
662   if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
663       (frame_height & 0x7)) {
664     int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
665 
666     // Get reference block bottom right horizontal coordinate.
667     int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
668     int x_pad = 0, y_pad = 0;
669 
670     if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
671       x0 -= VP9_INTERP_EXTEND - 1;
672       x1 += VP9_INTERP_EXTEND;
673       x_pad = 1;
674     }
675 
676     if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
677       y0 -= VP9_INTERP_EXTEND - 1;
678       y1 += VP9_INTERP_EXTEND;
679       y_pad = 1;
680     }
681 
682     // Skip border extension if block is inside the frame.
683     if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
684         y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
685       // Extend the border.
686       const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0;
687       const int b_w = x1 - x0 + 1;
688       const int b_h = y1 - y0 + 1;
689       const int border_offset = y_pad * 3 * b_w + x_pad * 3;
690 
691       extend_and_predict(twd, buf_ptr1, buf_stride, x0, y0, b_w, b_h,
692                          frame_width, frame_height, border_offset, dst,
693                          dst_buf->stride, subpel_x, subpel_y, kernel, sf,
694 #if CONFIG_VP9_HIGHBITDEPTH
695                          xd,
696 #endif
697                          w, h, ref, xs, ys);
698       return;
699     }
700   }
701 #if CONFIG_VP9_HIGHBITDEPTH
702   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
703     highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride,
704                            CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x,
705                            subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd);
706   } else {
707     inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
708                     subpel_y, sf, w, h, ref, kernel, xs, ys);
709   }
710 #else
711   inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y,
712                   sf, w, h, ref, kernel, xs, ys);
713 #endif  // CONFIG_VP9_HIGHBITDEPTH
714 }
715 
dec_build_inter_predictors_sb(TileWorkerData * twd,VP9Decoder * const pbi,MACROBLOCKD * xd,int mi_row,int mi_col)716 static void dec_build_inter_predictors_sb(TileWorkerData *twd,
717                                           VP9Decoder *const pbi,
718                                           MACROBLOCKD *xd, int mi_row,
719                                           int mi_col) {
720   int plane;
721   const int mi_x = mi_col * MI_SIZE;
722   const int mi_y = mi_row * MI_SIZE;
723   const MODE_INFO *mi = xd->mi[0];
724   const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
725   const BLOCK_SIZE sb_type = mi->sb_type;
726   const int is_compound = has_second_ref(mi);
727   int ref;
728   int is_scaled;
729 
730   for (ref = 0; ref < 1 + is_compound; ++ref) {
731     const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
732     RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME];
733     const struct scale_factors *const sf = &ref_buf->sf;
734     const int idx = ref_buf->idx;
735     BufferPool *const pool = pbi->common.buffer_pool;
736     RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx];
737 
738     if (!vp9_is_valid_scale(sf))
739       vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
740                          "Reference frame has invalid dimensions");
741 
742     is_scaled = vp9_is_scaled(sf);
743     vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
744                          is_scaled ? sf : NULL);
745     xd->block_refs[ref] = ref_buf;
746 
747     if (sb_type < BLOCK_8X8) {
748       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
749         struct macroblockd_plane *const pd = &xd->plane[plane];
750         struct buf_2d *const dst_buf = &pd->dst;
751         const int num_4x4_w = pd->n4_w;
752         const int num_4x4_h = pd->n4_h;
753         const int n4w_x4 = 4 * num_4x4_w;
754         const int n4h_x4 = 4 * num_4x4_h;
755         struct buf_2d *const pre_buf = &pd->pre[ref];
756         int i = 0, x, y;
757         for (y = 0; y < num_4x4_h; ++y) {
758           for (x = 0; x < num_4x4_w; ++x) {
759             const MV mv = average_split_mvs(pd, mi, ref, i++);
760             dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 4 * x,
761                                        4 * y, 4, 4, mi_x, mi_y, kernel, sf,
762                                        pre_buf, dst_buf, &mv, ref_frame_buf,
763                                        is_scaled, ref);
764           }
765         }
766       }
767     } else {
768       const MV mv = mi->mv[ref].as_mv;
769       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
770         struct macroblockd_plane *const pd = &xd->plane[plane];
771         struct buf_2d *const dst_buf = &pd->dst;
772         const int num_4x4_w = pd->n4_w;
773         const int num_4x4_h = pd->n4_h;
774         const int n4w_x4 = 4 * num_4x4_w;
775         const int n4h_x4 = 4 * num_4x4_h;
776         struct buf_2d *const pre_buf = &pd->pre[ref];
777         dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4,
778                                    n4h_x4, mi_x, mi_y, kernel, sf, pre_buf,
779                                    dst_buf, &mv, ref_frame_buf, is_scaled, ref);
780       }
781     }
782   }
783 }
784 
dec_reset_skip_context(MACROBLOCKD * xd)785 static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
786   int i;
787   for (i = 0; i < MAX_MB_PLANE; i++) {
788     struct macroblockd_plane *const pd = &xd->plane[i];
789     memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
790     memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
791   }
792 }
793 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,int bwl,int bhl)794 static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
795                          int bhl) {
796   int i;
797   for (i = 0; i < MAX_MB_PLANE; i++) {
798     xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
799     xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
800     xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
801     xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
802   }
803 }
804 
set_offsets_recon(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col,int bw,int bh,int bwl,int bhl)805 static MODE_INFO *set_offsets_recon(VP9_COMMON *const cm, MACROBLOCKD *const xd,
806                                     int mi_row, int mi_col, int bw, int bh,
807                                     int bwl, int bhl) {
808   const int offset = mi_row * cm->mi_stride + mi_col;
809   const TileInfo *const tile = &xd->tile;
810   xd->mi = cm->mi_grid_visible + offset;
811 
812   set_plane_n4(xd, bw, bh, bwl, bhl);
813 
814   set_skip_context(xd, mi_row, mi_col);
815 
816   // Distance of Mb to the various image edges. These are specified to 8th pel
817   // as they are always compared to values that are in 1/8th pel units
818   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
819 
820   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
821   return xd->mi[0];
822 }
823 
set_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int bw,int bh,int x_mis,int y_mis,int bwl,int bhl)824 static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
825                               BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
826                               int bh, int x_mis, int y_mis, int bwl, int bhl) {
827   const int offset = mi_row * cm->mi_stride + mi_col;
828   int x, y;
829   const TileInfo *const tile = &xd->tile;
830 
831   xd->mi = cm->mi_grid_visible + offset;
832   xd->mi[0] = &cm->mi[offset];
833   // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
834   // passing bsize from decode_partition().
835   xd->mi[0]->sb_type = bsize;
836   for (y = 0; y < y_mis; ++y)
837     for (x = !y; x < x_mis; ++x) {
838       xd->mi[y * cm->mi_stride + x] = xd->mi[0];
839     }
840 
841   set_plane_n4(xd, bw, bh, bwl, bhl);
842 
843   set_skip_context(xd, mi_row, mi_col);
844 
845   // Distance of Mb to the various image edges. These are specified to 8th pel
846   // as they are always compared to values that are in 1/8th pel units
847   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
848 
849   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
850   return xd->mi[0];
851 }
852 
predict_recon_inter(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,predict_recon_func func)853 static INLINE int predict_recon_inter(MACROBLOCKD *xd, MODE_INFO *mi,
854                                       TileWorkerData *twd,
855                                       predict_recon_func func) {
856   int eobtotal = 0;
857   int plane;
858   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
859     const struct macroblockd_plane *const pd = &xd->plane[plane];
860     const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
861     const int num_4x4_w = pd->n4_w;
862     const int num_4x4_h = pd->n4_h;
863     const int step = (1 << tx_size);
864     int row, col;
865     const int max_blocks_wide =
866         num_4x4_w + (xd->mb_to_right_edge >= 0
867                          ? 0
868                          : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
869     const int max_blocks_high =
870         num_4x4_h + (xd->mb_to_bottom_edge >= 0
871                          ? 0
872                          : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
873 
874     xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
875     xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
876 
877     for (row = 0; row < max_blocks_high; row += step)
878       for (col = 0; col < max_blocks_wide; col += step)
879         eobtotal += func(twd, mi, plane, row, col, tx_size);
880   }
881   return eobtotal;
882 }
883 
predict_recon_intra(MACROBLOCKD * xd,MODE_INFO * mi,TileWorkerData * twd,intra_recon_func func)884 static INLINE void predict_recon_intra(MACROBLOCKD *xd, MODE_INFO *mi,
885                                        TileWorkerData *twd,
886                                        intra_recon_func func) {
887   int plane;
888   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
889     const struct macroblockd_plane *const pd = &xd->plane[plane];
890     const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
891     const int num_4x4_w = pd->n4_w;
892     const int num_4x4_h = pd->n4_h;
893     const int step = (1 << tx_size);
894     int row, col;
895     const int max_blocks_wide =
896         num_4x4_w + (xd->mb_to_right_edge >= 0
897                          ? 0
898                          : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
899     const int max_blocks_high =
900         num_4x4_h + (xd->mb_to_bottom_edge >= 0
901                          ? 0
902                          : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
903 
904     xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
905     xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
906 
907     for (row = 0; row < max_blocks_high; row += step)
908       for (col = 0; col < max_blocks_wide; col += step)
909         func(twd, mi, plane, row, col, tx_size);
910   }
911 }
912 
decode_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)913 static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
914                          int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
915   VP9_COMMON *const cm = &pbi->common;
916   const int less8x8 = bsize < BLOCK_8X8;
917   const int bw = 1 << (bwl - 1);
918   const int bh = 1 << (bhl - 1);
919   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
920   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
921   vpx_reader *r = &twd->bit_reader;
922   MACROBLOCKD *const xd = &twd->xd;
923 
924   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
925                               y_mis, bwl, bhl);
926 
927   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
928     const BLOCK_SIZE uv_subsize =
929         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
930     if (uv_subsize == BLOCK_INVALID)
931       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
932                          "Invalid block size.");
933   }
934 
935   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
936 
937   if (mi->skip) {
938     dec_reset_skip_context(xd);
939   }
940 
941   if (!is_inter_block(mi)) {
942     int plane;
943     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
944       const struct macroblockd_plane *const pd = &xd->plane[plane];
945       const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
946       const int num_4x4_w = pd->n4_w;
947       const int num_4x4_h = pd->n4_h;
948       const int step = (1 << tx_size);
949       int row, col;
950       const int max_blocks_wide =
951           num_4x4_w + (xd->mb_to_right_edge >= 0
952                            ? 0
953                            : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
954       const int max_blocks_high =
955           num_4x4_h + (xd->mb_to_bottom_edge >= 0
956                            ? 0
957                            : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
958 
959       xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
960       xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
961 
962       for (row = 0; row < max_blocks_high; row += step)
963         for (col = 0; col < max_blocks_wide; col += step)
964           predict_and_reconstruct_intra_block(twd, mi, plane, row, col,
965                                               tx_size);
966     }
967   } else {
968     // Prediction
969     dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col);
970 #if CONFIG_MISMATCH_DEBUG
971     {
972       int plane;
973       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
974         const struct macroblockd_plane *pd = &xd->plane[plane];
975         int pixel_c, pixel_r;
976         const BLOCK_SIZE plane_bsize =
977             get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
978         const int bw = get_block_width(plane_bsize);
979         const int bh = get_block_height(plane_bsize);
980         mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
981                         pd->subsampling_x, pd->subsampling_y);
982         mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
983                                  pixel_r, bw, bh,
984                                  xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
985       }
986     }
987 #endif
988 
989     // Reconstruction
990     if (!mi->skip) {
991       int eobtotal = 0;
992       int plane;
993 
994       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
995         const struct macroblockd_plane *const pd = &xd->plane[plane];
996         const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size;
997         const int num_4x4_w = pd->n4_w;
998         const int num_4x4_h = pd->n4_h;
999         const int step = (1 << tx_size);
1000         int row, col;
1001         const int max_blocks_wide =
1002             num_4x4_w + (xd->mb_to_right_edge >= 0
1003                              ? 0
1004                              : xd->mb_to_right_edge >> (5 + pd->subsampling_x));
1005         const int max_blocks_high =
1006             num_4x4_h +
1007             (xd->mb_to_bottom_edge >= 0
1008                  ? 0
1009                  : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
1010 
1011         xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide;
1012         xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high;
1013 
1014         for (row = 0; row < max_blocks_high; row += step)
1015           for (col = 0; col < max_blocks_wide; col += step)
1016             eobtotal += reconstruct_inter_block(twd, mi, plane, row, col,
1017                                                 tx_size, mi_row, mi_col);
1018       }
1019 
1020       if (!less8x8 && eobtotal == 0) mi->skip = 1;  // skip loopfilter
1021     }
1022   }
1023 
1024   xd->corrupted |= vpx_reader_has_error(r);
1025 
1026   if (cm->lf.filter_level) {
1027     vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
1028   }
1029 }
1030 
recon_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)1031 static void recon_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
1032                         int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
1033   VP9_COMMON *const cm = &pbi->common;
1034   const int bw = 1 << (bwl - 1);
1035   const int bh = 1 << (bhl - 1);
1036   MACROBLOCKD *const xd = &twd->xd;
1037 
1038   MODE_INFO *mi = set_offsets_recon(cm, xd, mi_row, mi_col, bw, bh, bwl, bhl);
1039 
1040   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1041     const BLOCK_SIZE uv_subsize =
1042         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1043     if (uv_subsize == BLOCK_INVALID)
1044       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1045                          "Invalid block size.");
1046   }
1047 
1048   if (!is_inter_block(mi)) {
1049     predict_recon_intra(xd, mi, twd,
1050                         predict_and_reconstruct_intra_block_row_mt);
1051   } else {
1052     // Prediction
1053     dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col);
1054 
1055     // Reconstruction
1056     if (!mi->skip) {
1057       predict_recon_inter(xd, mi, twd, reconstruct_inter_block_row_mt);
1058     }
1059   }
1060 
1061   vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh);
1062 }
1063 
parse_block(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int bwl,int bhl)1064 static void parse_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row,
1065                         int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) {
1066   VP9_COMMON *const cm = &pbi->common;
1067   const int bw = 1 << (bwl - 1);
1068   const int bh = 1 << (bhl - 1);
1069   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1070   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1071   vpx_reader *r = &twd->bit_reader;
1072   MACROBLOCKD *const xd = &twd->xd;
1073 
1074   MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis,
1075                               y_mis, bwl, bhl);
1076 
1077   if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
1078     const BLOCK_SIZE uv_subsize =
1079         ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
1080     if (uv_subsize == BLOCK_INVALID)
1081       vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME,
1082                          "Invalid block size.");
1083   }
1084 
1085   vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis);
1086 
1087   if (mi->skip) {
1088     dec_reset_skip_context(xd);
1089   }
1090 
1091   if (!is_inter_block(mi)) {
1092     predict_recon_intra(xd, mi, twd, parse_intra_block_row_mt);
1093   } else {
1094     if (!mi->skip) {
1095       tran_low_t *dqcoeff[MAX_MB_PLANE];
1096       int *eob[MAX_MB_PLANE];
1097       int plane;
1098       int eobtotal;
1099       // Based on eobtotal and bsize, this may be mi->skip may be set to true
1100       // In that case dqcoeff and eob need to be backed up and restored as
1101       // recon_block will not increment these pointers for skip cases
1102       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1103         const struct macroblockd_plane *const pd = &xd->plane[plane];
1104         dqcoeff[plane] = pd->dqcoeff;
1105         eob[plane] = pd->eob;
1106       }
1107       eobtotal = predict_recon_inter(xd, mi, twd, parse_inter_block_row_mt);
1108 
1109       if (bsize >= BLOCK_8X8 && eobtotal == 0) {
1110         mi->skip = 1;  // skip loopfilter
1111         for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1112           struct macroblockd_plane *pd = &xd->plane[plane];
1113           pd->dqcoeff = dqcoeff[plane];
1114           pd->eob = eob[plane];
1115         }
1116       }
1117     }
1118   }
1119 
1120   xd->corrupted |= vpx_reader_has_error(r);
1121 }
1122 
dec_partition_plane_context(TileWorkerData * twd,int mi_row,int mi_col,int bsl)1123 static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row,
1124                                               int mi_col, int bsl) {
1125   const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col;
1126   const PARTITION_CONTEXT *left_ctx =
1127       twd->xd.left_seg_context + (mi_row & MI_MASK);
1128   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1129 
1130   //  assert(bsl >= 0);
1131 
1132   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1133 }
1134 
dec_update_partition_context(TileWorkerData * twd,int mi_row,int mi_col,BLOCK_SIZE subsize,int bw)1135 static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row,
1136                                                 int mi_col, BLOCK_SIZE subsize,
1137                                                 int bw) {
1138   PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col;
1139   PARTITION_CONTEXT *const left_ctx =
1140       twd->xd.left_seg_context + (mi_row & MI_MASK);
1141 
1142   // update the partition context at the end notes. set partition bits
1143   // of block sizes larger than the current one to be one, and partition
1144   // bits of smaller block sizes to be zero.
1145   memset(above_ctx, partition_context_lookup[subsize].above, bw);
1146   memset(left_ctx, partition_context_lookup[subsize].left, bw);
1147 }
1148 
read_partition(TileWorkerData * twd,int mi_row,int mi_col,int has_rows,int has_cols,int bsl)1149 static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row,
1150                                      int mi_col, int has_rows, int has_cols,
1151                                      int bsl) {
1152   const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl);
1153   const vpx_prob *const probs = twd->xd.partition_probs[ctx];
1154   FRAME_COUNTS *counts = twd->xd.counts;
1155   PARTITION_TYPE p;
1156   vpx_reader *r = &twd->bit_reader;
1157 
1158   if (has_rows && has_cols)
1159     p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs);
1160   else if (!has_rows && has_cols)
1161     p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
1162   else if (has_rows && !has_cols)
1163     p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
1164   else
1165     p = PARTITION_SPLIT;
1166 
1167   if (counts) ++counts->partition[ctx][p];
1168 
1169   return p;
1170 }
1171 
1172 // TODO(slavarnway): eliminate bsize and subsize in future commits
decode_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2)1173 static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1174                              int mi_row, int mi_col, BLOCK_SIZE bsize,
1175                              int n4x4_l2) {
1176   VP9_COMMON *const cm = &pbi->common;
1177   const int n8x8_l2 = n4x4_l2 - 1;
1178   const int num_8x8_wh = 1 << n8x8_l2;
1179   const int hbs = num_8x8_wh >> 1;
1180   PARTITION_TYPE partition;
1181   BLOCK_SIZE subsize;
1182   const int has_rows = (mi_row + hbs) < cm->mi_rows;
1183   const int has_cols = (mi_col + hbs) < cm->mi_cols;
1184   MACROBLOCKD *const xd = &twd->xd;
1185 
1186   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1187 
1188   partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1189   subsize = subsize_lookup[partition][bsize];  // get_subsize(bsize, partition);
1190   if (!hbs) {
1191     // calculate bmode block dimensions (log 2)
1192     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1193     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1194     decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1195   } else {
1196     switch (partition) {
1197       case PARTITION_NONE:
1198         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1199         break;
1200       case PARTITION_HORZ:
1201         decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1202         if (has_rows)
1203           decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1204                        n8x8_l2);
1205         break;
1206       case PARTITION_VERT:
1207         decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1208         if (has_cols)
1209           decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1210                        n4x4_l2);
1211         break;
1212       case PARTITION_SPLIT:
1213         decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2);
1214         decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2);
1215         decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2);
1216         decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
1217                          n8x8_l2);
1218         break;
1219       default: assert(0 && "Invalid partition type");
1220     }
1221   }
1222 
1223   // update partition context
1224   if (bsize >= BLOCK_8X8 &&
1225       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
1226     dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1227 }
1228 
process_partition(TileWorkerData * twd,VP9Decoder * const pbi,int mi_row,int mi_col,BLOCK_SIZE bsize,int n4x4_l2,int parse_recon_flag,process_block_fn_t process_block)1229 static void process_partition(TileWorkerData *twd, VP9Decoder *const pbi,
1230                               int mi_row, int mi_col, BLOCK_SIZE bsize,
1231                               int n4x4_l2, int parse_recon_flag,
1232                               process_block_fn_t process_block) {
1233   VP9_COMMON *const cm = &pbi->common;
1234   const int n8x8_l2 = n4x4_l2 - 1;
1235   const int num_8x8_wh = 1 << n8x8_l2;
1236   const int hbs = num_8x8_wh >> 1;
1237   PARTITION_TYPE partition;
1238   BLOCK_SIZE subsize;
1239   const int has_rows = (mi_row + hbs) < cm->mi_rows;
1240   const int has_cols = (mi_col + hbs) < cm->mi_cols;
1241   MACROBLOCKD *const xd = &twd->xd;
1242 
1243   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1244 
1245   if (parse_recon_flag & PARSE) {
1246     *xd->partition =
1247         read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2);
1248   }
1249 
1250   partition = *xd->partition;
1251   xd->partition++;
1252 
1253   subsize = get_subsize(bsize, partition);
1254   if (!hbs) {
1255     // calculate bmode block dimensions (log 2)
1256     xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
1257     xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
1258     process_block(twd, pbi, mi_row, mi_col, subsize, 1, 1);
1259   } else {
1260     switch (partition) {
1261       case PARTITION_NONE:
1262         process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2);
1263         break;
1264       case PARTITION_HORZ:
1265         process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2);
1266         if (has_rows)
1267           process_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2,
1268                         n8x8_l2);
1269         break;
1270       case PARTITION_VERT:
1271         process_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2);
1272         if (has_cols)
1273           process_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1274                         n4x4_l2);
1275         break;
1276       case PARTITION_SPLIT:
1277         process_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2,
1278                           parse_recon_flag, process_block);
1279         process_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2,
1280                           parse_recon_flag, process_block);
1281         process_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2,
1282                           parse_recon_flag, process_block);
1283         process_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize,
1284                           n8x8_l2, parse_recon_flag, process_block);
1285         break;
1286       default: assert(0 && "Invalid partition type");
1287     }
1288   }
1289 
1290   if (parse_recon_flag & PARSE) {
1291     // update partition context
1292     if ((bsize == BLOCK_8X8 || partition != PARTITION_SPLIT) &&
1293         bsize >= BLOCK_8X8)
1294       dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh);
1295   }
1296 }
1297 
setup_token_decoder(const uint8_t * data,const uint8_t * data_end,size_t read_size,struct vpx_internal_error_info * error_info,vpx_reader * r,vpx_decrypt_cb decrypt_cb,void * decrypt_state)1298 static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
1299                                 size_t read_size,
1300                                 struct vpx_internal_error_info *error_info,
1301                                 vpx_reader *r, vpx_decrypt_cb decrypt_cb,
1302                                 void *decrypt_state) {
1303   // Validate the calculated partition length. If the buffer described by the
1304   // partition can't be fully read then throw an error.
1305   if (!read_is_valid(data, read_size, data_end))
1306     vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1307                        "Truncated packet or corrupt tile length");
1308 
1309   if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
1310     vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
1311                        "Failed to allocate bool decoder %d", 1);
1312 }
1313 
read_coef_probs_common(vp9_coeff_probs_model * coef_probs,vpx_reader * r)1314 static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
1315                                    vpx_reader *r) {
1316   int i, j, k, l, m;
1317 
1318   if (vpx_read_bit(r))
1319     for (i = 0; i < PLANE_TYPES; ++i)
1320       for (j = 0; j < REF_TYPES; ++j)
1321         for (k = 0; k < COEF_BANDS; ++k)
1322           for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
1323             for (m = 0; m < UNCONSTRAINED_NODES; ++m)
1324               vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
1325 }
1326 
read_coef_probs(FRAME_CONTEXT * fc,TX_MODE tx_mode,vpx_reader * r)1327 static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) {
1328   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1329   TX_SIZE tx_size;
1330   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
1331     read_coef_probs_common(fc->coef_probs[tx_size], r);
1332 }
1333 
setup_segmentation(struct segmentation * seg,struct vpx_read_bit_buffer * rb)1334 static void setup_segmentation(struct segmentation *seg,
1335                                struct vpx_read_bit_buffer *rb) {
1336   int i, j;
1337 
1338   seg->update_map = 0;
1339   seg->update_data = 0;
1340 
1341   seg->enabled = vpx_rb_read_bit(rb);
1342   if (!seg->enabled) return;
1343 
1344   // Segmentation map update
1345   seg->update_map = vpx_rb_read_bit(rb);
1346   if (seg->update_map) {
1347     for (i = 0; i < SEG_TREE_PROBS; i++)
1348       seg->tree_probs[i] =
1349           vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1350 
1351     seg->temporal_update = vpx_rb_read_bit(rb);
1352     if (seg->temporal_update) {
1353       for (i = 0; i < PREDICTION_PROBS; i++)
1354         seg->pred_probs[i] =
1355             vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB;
1356     } else {
1357       for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB;
1358     }
1359   }
1360 
1361   // Segmentation data update
1362   seg->update_data = vpx_rb_read_bit(rb);
1363   if (seg->update_data) {
1364     seg->abs_delta = vpx_rb_read_bit(rb);
1365 
1366     vp9_clearall_segfeatures(seg);
1367 
1368     for (i = 0; i < MAX_SEGMENTS; i++) {
1369       for (j = 0; j < SEG_LVL_MAX; j++) {
1370         int data = 0;
1371         const int feature_enabled = vpx_rb_read_bit(rb);
1372         if (feature_enabled) {
1373           vp9_enable_segfeature(seg, i, j);
1374           data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
1375           if (vp9_is_segfeature_signed(j))
1376             data = vpx_rb_read_bit(rb) ? -data : data;
1377         }
1378         vp9_set_segdata(seg, i, j, data);
1379       }
1380     }
1381   }
1382 }
1383 
setup_loopfilter(struct loopfilter * lf,struct vpx_read_bit_buffer * rb)1384 static void setup_loopfilter(struct loopfilter *lf,
1385                              struct vpx_read_bit_buffer *rb) {
1386   lf->filter_level = vpx_rb_read_literal(rb, 6);
1387   lf->sharpness_level = vpx_rb_read_literal(rb, 3);
1388 
1389   // Read in loop filter deltas applied at the MB level based on mode or ref
1390   // frame.
1391   lf->mode_ref_delta_update = 0;
1392 
1393   lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb);
1394   if (lf->mode_ref_delta_enabled) {
1395     lf->mode_ref_delta_update = vpx_rb_read_bit(rb);
1396     if (lf->mode_ref_delta_update) {
1397       int i;
1398 
1399       for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1400         if (vpx_rb_read_bit(rb))
1401           lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1402 
1403       for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1404         if (vpx_rb_read_bit(rb))
1405           lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6);
1406     }
1407   }
1408 }
1409 
read_delta_q(struct vpx_read_bit_buffer * rb)1410 static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) {
1411   return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0;
1412 }
1413 
setup_quantization(VP9_COMMON * const cm,MACROBLOCKD * const xd,struct vpx_read_bit_buffer * rb)1414 static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
1415                                struct vpx_read_bit_buffer *rb) {
1416   cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS);
1417   cm->y_dc_delta_q = read_delta_q(rb);
1418   cm->uv_dc_delta_q = read_delta_q(rb);
1419   cm->uv_ac_delta_q = read_delta_q(rb);
1420   cm->dequant_bit_depth = cm->bit_depth;
1421   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
1422                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
1423 
1424 #if CONFIG_VP9_HIGHBITDEPTH
1425   xd->bd = (int)cm->bit_depth;
1426 #endif
1427 }
1428 
setup_segmentation_dequant(VP9_COMMON * const cm)1429 static void setup_segmentation_dequant(VP9_COMMON *const cm) {
1430   // Build y/uv dequant values based on segmentation.
1431   if (cm->seg.enabled) {
1432     int i;
1433     for (i = 0; i < MAX_SEGMENTS; ++i) {
1434       const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex);
1435       cm->y_dequant[i][0] =
1436           vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1437       cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1438       cm->uv_dequant[i][0] =
1439           vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1440       cm->uv_dequant[i][1] =
1441           vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1442     }
1443   } else {
1444     const int qindex = cm->base_qindex;
1445     // When segmentation is disabled, only the first value is used.  The
1446     // remaining are don't cares.
1447     cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
1448     cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth);
1449     cm->uv_dequant[0][0] =
1450         vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
1451     cm->uv_dequant[0][1] =
1452         vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
1453   }
1454 }
1455 
read_interp_filter(struct vpx_read_bit_buffer * rb)1456 static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) {
1457   const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP,
1458                                               EIGHTTAP_SHARP, BILINEAR };
1459   return vpx_rb_read_bit(rb) ? SWITCHABLE
1460                              : literal_to_filter[vpx_rb_read_literal(rb, 2)];
1461 }
1462 
setup_render_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1463 static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1464   cm->render_width = cm->width;
1465   cm->render_height = cm->height;
1466   if (vpx_rb_read_bit(rb))
1467     vp9_read_frame_size(rb, &cm->render_width, &cm->render_height);
1468 }
1469 
resize_mv_buffer(VP9_COMMON * cm)1470 static void resize_mv_buffer(VP9_COMMON *cm) {
1471   vpx_free(cm->cur_frame->mvs);
1472   cm->cur_frame->mi_rows = cm->mi_rows;
1473   cm->cur_frame->mi_cols = cm->mi_cols;
1474   CHECK_MEM_ERROR(&cm->error, cm->cur_frame->mvs,
1475                   (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
1476                                        sizeof(*cm->cur_frame->mvs)));
1477 }
1478 
resize_context_buffers(VP9_COMMON * cm,int width,int height)1479 static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
1480 #if CONFIG_SIZE_LIMIT
1481   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
1482     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1483                        "Dimensions of %dx%d beyond allowed size of %dx%d.",
1484                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
1485 #endif
1486   if (cm->width != width || cm->height != height) {
1487     const int new_mi_rows =
1488         ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1489     const int new_mi_cols =
1490         ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
1491 
1492     // Allocations in vp9_alloc_context_buffers() depend on individual
1493     // dimensions as well as the overall size.
1494     if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
1495       if (vp9_alloc_context_buffers(cm, width, height)) {
1496         // The cm->mi_* values have been cleared and any existing context
1497         // buffers have been freed. Clear cm->width and cm->height to be
1498         // consistent and to force a realloc next time.
1499         cm->width = 0;
1500         cm->height = 0;
1501         vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1502                            "Failed to allocate context buffers");
1503       }
1504     } else {
1505       vp9_set_mb_mi(cm, width, height);
1506     }
1507     vp9_init_context_buffers(cm);
1508     cm->width = width;
1509     cm->height = height;
1510   }
1511   if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows ||
1512       cm->mi_cols > cm->cur_frame->mi_cols) {
1513     resize_mv_buffer(cm);
1514   }
1515 }
1516 
setup_frame_size(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1517 static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1518   int width, height;
1519   BufferPool *const pool = cm->buffer_pool;
1520   vp9_read_frame_size(rb, &width, &height);
1521   resize_context_buffers(cm, width, height);
1522   setup_render_size(cm, rb);
1523 
1524   if (vpx_realloc_frame_buffer(
1525           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1526           cm->subsampling_y,
1527 #if CONFIG_VP9_HIGHBITDEPTH
1528           cm->use_highbitdepth,
1529 #endif
1530           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1531           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1532           pool->cb_priv)) {
1533     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1534                        "Failed to allocate frame buffer");
1535   }
1536 
1537   pool->frame_bufs[cm->new_fb_idx].released = 0;
1538   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1539   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1540   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1541   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1542   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1543   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1544   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1545 }
1546 
valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,int ref_xss,int ref_yss,vpx_bit_depth_t this_bit_depth,int this_xss,int this_yss)1547 static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
1548                                           int ref_xss, int ref_yss,
1549                                           vpx_bit_depth_t this_bit_depth,
1550                                           int this_xss, int this_yss) {
1551   return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
1552          ref_yss == this_yss;
1553 }
1554 
setup_frame_size_with_refs(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1555 static void setup_frame_size_with_refs(VP9_COMMON *cm,
1556                                        struct vpx_read_bit_buffer *rb) {
1557   int width, height;
1558   int found = 0, i;
1559   int has_valid_ref_frame = 0;
1560   BufferPool *const pool = cm->buffer_pool;
1561   for (i = 0; i < REFS_PER_FRAME; ++i) {
1562     if (vpx_rb_read_bit(rb)) {
1563       if (cm->frame_refs[i].idx != INVALID_IDX) {
1564         YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
1565         width = buf->y_crop_width;
1566         height = buf->y_crop_height;
1567         found = 1;
1568         break;
1569       } else {
1570         vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1571                            "Failed to decode frame size");
1572       }
1573     }
1574   }
1575 
1576   if (!found) vp9_read_frame_size(rb, &width, &height);
1577 
1578   if (width <= 0 || height <= 0)
1579     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1580                        "Invalid frame size");
1581 
1582   // Check to make sure at least one of frames that this frame references
1583   // has valid dimensions.
1584   for (i = 0; i < REFS_PER_FRAME; ++i) {
1585     RefBuffer *const ref_frame = &cm->frame_refs[i];
1586     has_valid_ref_frame |=
1587         (ref_frame->idx != INVALID_IDX &&
1588          valid_ref_frame_size(ref_frame->buf->y_crop_width,
1589                               ref_frame->buf->y_crop_height, width, height));
1590   }
1591   if (!has_valid_ref_frame)
1592     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1593                        "Referenced frame has invalid size");
1594   for (i = 0; i < REFS_PER_FRAME; ++i) {
1595     RefBuffer *const ref_frame = &cm->frame_refs[i];
1596     if (ref_frame->idx == INVALID_IDX ||
1597         !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
1598                                  ref_frame->buf->subsampling_x,
1599                                  ref_frame->buf->subsampling_y, cm->bit_depth,
1600                                  cm->subsampling_x, cm->subsampling_y))
1601       vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1602                          "Referenced frame has incompatible color format");
1603   }
1604 
1605   resize_context_buffers(cm, width, height);
1606   setup_render_size(cm, rb);
1607 
1608   if (vpx_realloc_frame_buffer(
1609           get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
1610           cm->subsampling_y,
1611 #if CONFIG_VP9_HIGHBITDEPTH
1612           cm->use_highbitdepth,
1613 #endif
1614           VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment,
1615           &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
1616           pool->cb_priv)) {
1617     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
1618                        "Failed to allocate frame buffer");
1619   }
1620 
1621   pool->frame_bufs[cm->new_fb_idx].released = 0;
1622   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
1623   pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
1624   pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
1625   pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space;
1626   pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
1627   pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
1628   pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
1629 }
1630 
setup_tile_info(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)1631 static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) {
1632   int min_log2_tile_cols, max_log2_tile_cols, max_ones;
1633   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1634 
1635   // columns
1636   max_ones = max_log2_tile_cols - min_log2_tile_cols;
1637   cm->log2_tile_cols = min_log2_tile_cols;
1638   while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++;
1639 
1640   if (cm->log2_tile_cols > 6)
1641     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
1642                        "Invalid number of tile columns");
1643 
1644   // rows
1645   cm->log2_tile_rows = vpx_rb_read_bit(rb);
1646   if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb);
1647 }
1648 
1649 // Reads the next tile returning its size and adjusting '*data' accordingly
1650 // based on 'is_last'.
get_tile_buffer(const uint8_t * const data_end,int is_last,struct vpx_internal_error_info * error_info,const uint8_t ** data,vpx_decrypt_cb decrypt_cb,void * decrypt_state,TileBuffer * buf)1651 static void get_tile_buffer(const uint8_t *const data_end, int is_last,
1652                             struct vpx_internal_error_info *error_info,
1653                             const uint8_t **data, vpx_decrypt_cb decrypt_cb,
1654                             void *decrypt_state, TileBuffer *buf) {
1655   size_t size;
1656 
1657   if (!is_last) {
1658     if (!read_is_valid(*data, 4, data_end))
1659       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1660                          "Truncated packet or corrupt tile length");
1661 
1662     if (decrypt_cb) {
1663       uint8_t be_data[4];
1664       decrypt_cb(decrypt_state, *data, be_data, 4);
1665       size = mem_get_be32(be_data);
1666     } else {
1667       size = mem_get_be32(*data);
1668     }
1669     *data += 4;
1670 
1671     if (size > (size_t)(data_end - *data))
1672       vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
1673                          "Truncated packet or corrupt tile size");
1674   } else {
1675     size = data_end - *data;
1676   }
1677 
1678   buf->data = *data;
1679   buf->size = size;
1680 
1681   *data += size;
1682 }
1683 
get_tile_buffers(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,int tile_cols,int tile_rows,TileBuffer (* tile_buffers)[1<<6])1684 static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data,
1685                              const uint8_t *data_end, int tile_cols,
1686                              int tile_rows,
1687                              TileBuffer (*tile_buffers)[1 << 6]) {
1688   int r, c;
1689 
1690   for (r = 0; r < tile_rows; ++r) {
1691     for (c = 0; c < tile_cols; ++c) {
1692       const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
1693       TileBuffer *const buf = &tile_buffers[r][c];
1694       buf->col = c;
1695       get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
1696                       pbi->decrypt_cb, pbi->decrypt_state, buf);
1697     }
1698   }
1699 }
1700 
map_write(RowMTWorkerData * const row_mt_worker_data,int map_idx,int sync_idx)1701 static void map_write(RowMTWorkerData *const row_mt_worker_data, int map_idx,
1702                       int sync_idx) {
1703 #if CONFIG_MULTITHREAD
1704   pthread_mutex_lock(&row_mt_worker_data->recon_sync_mutex[sync_idx]);
1705   row_mt_worker_data->recon_map[map_idx] = 1;
1706   pthread_cond_signal(&row_mt_worker_data->recon_sync_cond[sync_idx]);
1707   pthread_mutex_unlock(&row_mt_worker_data->recon_sync_mutex[sync_idx]);
1708 #else
1709   (void)row_mt_worker_data;
1710   (void)map_idx;
1711   (void)sync_idx;
1712 #endif  // CONFIG_MULTITHREAD
1713 }
1714 
map_read(RowMTWorkerData * const row_mt_worker_data,int map_idx,int sync_idx)1715 static void map_read(RowMTWorkerData *const row_mt_worker_data, int map_idx,
1716                      int sync_idx) {
1717 #if CONFIG_MULTITHREAD
1718   volatile int8_t *map = row_mt_worker_data->recon_map + map_idx;
1719   pthread_mutex_t *const mutex =
1720       &row_mt_worker_data->recon_sync_mutex[sync_idx];
1721   pthread_mutex_lock(mutex);
1722   while (!(*map)) {
1723     pthread_cond_wait(&row_mt_worker_data->recon_sync_cond[sync_idx], mutex);
1724   }
1725   pthread_mutex_unlock(mutex);
1726 #else
1727   (void)row_mt_worker_data;
1728   (void)map_idx;
1729   (void)sync_idx;
1730 #endif  // CONFIG_MULTITHREAD
1731 }
1732 
lpf_map_write_check(VP9LfSync * lf_sync,int row,int num_tile_cols)1733 static int lpf_map_write_check(VP9LfSync *lf_sync, int row, int num_tile_cols) {
1734   int return_val = 0;
1735 #if CONFIG_MULTITHREAD
1736   int corrupted;
1737   pthread_mutex_lock(lf_sync->lf_mutex);
1738   corrupted = lf_sync->corrupted;
1739   pthread_mutex_unlock(lf_sync->lf_mutex);
1740   if (!corrupted) {
1741     pthread_mutex_lock(&lf_sync->recon_done_mutex[row]);
1742     lf_sync->num_tiles_done[row] += 1;
1743     if (num_tile_cols == lf_sync->num_tiles_done[row]) return_val = 1;
1744     pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]);
1745   }
1746 #else
1747   (void)lf_sync;
1748   (void)row;
1749   (void)num_tile_cols;
1750 #endif
1751   return return_val;
1752 }
1753 
vp9_tile_done(VP9Decoder * pbi)1754 static void vp9_tile_done(VP9Decoder *pbi) {
1755 #if CONFIG_MULTITHREAD
1756   int terminate;
1757   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1758   const int all_parse_done = 1 << pbi->common.log2_tile_cols;
1759   pthread_mutex_lock(&row_mt_worker_data->recon_done_mutex);
1760   row_mt_worker_data->num_tiles_done++;
1761   terminate = all_parse_done == row_mt_worker_data->num_tiles_done;
1762   pthread_mutex_unlock(&row_mt_worker_data->recon_done_mutex);
1763   if (terminate) {
1764     vp9_jobq_terminate(&row_mt_worker_data->jobq);
1765   }
1766 #else
1767   (void)pbi;
1768 #endif
1769 }
1770 
vp9_jobq_alloc(VP9Decoder * pbi)1771 static void vp9_jobq_alloc(VP9Decoder *pbi) {
1772   VP9_COMMON *const cm = &pbi->common;
1773   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1774   const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
1775   const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
1776   const int tile_cols = 1 << cm->log2_tile_cols;
1777   const size_t jobq_size = (tile_cols * sb_rows * 2 + sb_rows) * sizeof(Job);
1778 
1779   if (jobq_size > row_mt_worker_data->jobq_size) {
1780     vpx_free(row_mt_worker_data->jobq_buf);
1781     CHECK_MEM_ERROR(&cm->error, row_mt_worker_data->jobq_buf,
1782                     vpx_calloc(1, jobq_size));
1783     vp9_jobq_init(&row_mt_worker_data->jobq, row_mt_worker_data->jobq_buf,
1784                   jobq_size);
1785     row_mt_worker_data->jobq_size = jobq_size;
1786   }
1787 }
1788 
recon_tile_row(TileWorkerData * tile_data,VP9Decoder * pbi,int mi_row,int is_last_row,VP9LfSync * lf_sync,int cur_tile_col)1789 static void recon_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi,
1790                            int mi_row, int is_last_row, VP9LfSync *lf_sync,
1791                            int cur_tile_col) {
1792   VP9_COMMON *const cm = &pbi->common;
1793   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1794   const int tile_cols = 1 << cm->log2_tile_cols;
1795   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1796   const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
1797   const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1798   int mi_col_start = tile_data->xd.tile.mi_col_start;
1799   int mi_col_end = tile_data->xd.tile.mi_col_end;
1800   int mi_col;
1801 
1802   vp9_zero(tile_data->xd.left_context);
1803   vp9_zero(tile_data->xd.left_seg_context);
1804   for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE) {
1805     const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1806     int plane;
1807     const int sb_num = (cur_sb_row * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c);
1808 
1809     // Top Dependency
1810     if (cur_sb_row) {
1811       map_read(row_mt_worker_data, ((cur_sb_row - 1) * sb_cols) + c,
1812                ((cur_sb_row - 1) * tile_cols) + cur_tile_col);
1813     }
1814 
1815     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1816       tile_data->xd.plane[plane].eob =
1817           row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2);
1818       tile_data->xd.plane[plane].dqcoeff =
1819           row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2);
1820     }
1821     tile_data->xd.partition =
1822         row_mt_worker_data->partition + (sb_num * PARTITIONS_PER_SB);
1823     process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, RECON,
1824                       recon_block);
1825     if (cm->lf.filter_level && !cm->skip_loop_filter) {
1826       // Queue LPF_JOB
1827       int is_lpf_job_ready = 0;
1828 
1829       if (mi_col + MI_BLOCK_SIZE >= mi_col_end) {
1830         // Checks if this row has been decoded in all tiles
1831         is_lpf_job_ready = lpf_map_write_check(lf_sync, cur_sb_row, tile_cols);
1832 
1833         if (is_lpf_job_ready) {
1834           Job lpf_job;
1835           lpf_job.job_type = LPF_JOB;
1836           if (cur_sb_row > 0) {
1837             lpf_job.row_num = mi_row - MI_BLOCK_SIZE;
1838             vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job,
1839                            sizeof(lpf_job));
1840           }
1841           if (is_last_row) {
1842             lpf_job.row_num = mi_row;
1843             vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job,
1844                            sizeof(lpf_job));
1845           }
1846         }
1847       }
1848     }
1849     map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c,
1850               (cur_sb_row * tile_cols) + cur_tile_col);
1851   }
1852 }
1853 
parse_tile_row(TileWorkerData * tile_data,VP9Decoder * pbi,int mi_row,int cur_tile_col,uint8_t ** data_end)1854 static void parse_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi,
1855                            int mi_row, int cur_tile_col, uint8_t **data_end) {
1856   int mi_col;
1857   VP9_COMMON *const cm = &pbi->common;
1858   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1859   TileInfo *tile = &tile_data->xd.tile;
1860   TileBuffer *const buf = &pbi->tile_buffers[cur_tile_col];
1861   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1862 
1863   vp9_zero(tile_data->dqcoeff);
1864   vp9_tile_init(tile, cm, 0, cur_tile_col);
1865 
1866   /* Update reader only at the beginning of each row in a tile */
1867   if (mi_row == 0) {
1868     setup_token_decoder(buf->data, *data_end, buf->size, &tile_data->error_info,
1869                         &tile_data->bit_reader, pbi->decrypt_cb,
1870                         pbi->decrypt_state);
1871   }
1872   vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
1873   tile_data->xd.error_info = &tile_data->error_info;
1874 
1875   vp9_zero(tile_data->xd.left_context);
1876   vp9_zero(tile_data->xd.left_seg_context);
1877   for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
1878        mi_col += MI_BLOCK_SIZE) {
1879     const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
1880     const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1881     int plane;
1882     const int sb_num = (r * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c);
1883     for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
1884       tile_data->xd.plane[plane].eob =
1885           row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2);
1886       tile_data->xd.plane[plane].dqcoeff =
1887           row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2);
1888     }
1889     tile_data->xd.partition =
1890         row_mt_worker_data->partition + sb_num * PARTITIONS_PER_SB;
1891     process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, PARSE,
1892                       parse_block);
1893   }
1894 }
1895 
row_decode_worker_hook(void * arg1,void * arg2)1896 static int row_decode_worker_hook(void *arg1, void *arg2) {
1897   ThreadData *const thread_data = (ThreadData *)arg1;
1898   uint8_t **data_end = (uint8_t **)arg2;
1899   VP9Decoder *const pbi = thread_data->pbi;
1900   VP9_COMMON *const cm = &pbi->common;
1901   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
1902   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
1903   const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
1904   const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
1905   const int tile_cols = 1 << cm->log2_tile_cols;
1906   Job job;
1907   LFWorkerData *lf_data = thread_data->lf_data;
1908   VP9LfSync *lf_sync = thread_data->lf_sync;
1909   volatile int corrupted = 0;
1910   TileWorkerData *volatile tile_data_recon = NULL;
1911 
1912   while (!vp9_jobq_dequeue(&row_mt_worker_data->jobq, &job, sizeof(job), 1)) {
1913     int mi_col;
1914     const int mi_row = job.row_num;
1915 
1916     if (job.job_type == LPF_JOB) {
1917       lf_data->start = mi_row;
1918       lf_data->stop = lf_data->start + MI_BLOCK_SIZE;
1919 
1920       if (cm->lf.filter_level && !cm->skip_loop_filter &&
1921           mi_row < cm->mi_rows) {
1922         vp9_loopfilter_job(lf_data, lf_sync);
1923       }
1924     } else if (job.job_type == RECON_JOB) {
1925       const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
1926       const int is_last_row = sb_rows - 1 == cur_sb_row;
1927       int mi_col_start, mi_col_end;
1928       if (!tile_data_recon)
1929         CHECK_MEM_ERROR(&cm->error, tile_data_recon,
1930                         vpx_memalign(32, sizeof(TileWorkerData)));
1931 
1932       tile_data_recon->xd = pbi->mb;
1933       vp9_tile_init(&tile_data_recon->xd.tile, cm, 0, job.tile_col);
1934       vp9_init_macroblockd(cm, &tile_data_recon->xd, tile_data_recon->dqcoeff);
1935       mi_col_start = tile_data_recon->xd.tile.mi_col_start;
1936       mi_col_end = tile_data_recon->xd.tile.mi_col_end;
1937 
1938       if (setjmp(tile_data_recon->error_info.jmp)) {
1939         const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
1940         tile_data_recon->error_info.setjmp = 0;
1941         corrupted = 1;
1942         for (mi_col = mi_col_start; mi_col < mi_col_end;
1943              mi_col += MI_BLOCK_SIZE) {
1944           const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
1945           map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c,
1946                     (cur_sb_row * tile_cols) + job.tile_col);
1947         }
1948         if (is_last_row) {
1949           vp9_tile_done(pbi);
1950         }
1951         continue;
1952       }
1953 
1954       tile_data_recon->error_info.setjmp = 1;
1955       tile_data_recon->xd.error_info = &tile_data_recon->error_info;
1956 
1957       recon_tile_row(tile_data_recon, pbi, mi_row, is_last_row, lf_sync,
1958                      job.tile_col);
1959 
1960       if (corrupted)
1961         vpx_internal_error(&tile_data_recon->error_info,
1962                            VPX_CODEC_CORRUPT_FRAME,
1963                            "Failed to decode tile data");
1964 
1965       if (is_last_row) {
1966         vp9_tile_done(pbi);
1967       }
1968     } else if (job.job_type == PARSE_JOB) {
1969       TileWorkerData *const tile_data = &pbi->tile_worker_data[job.tile_col];
1970 
1971       if (setjmp(tile_data->error_info.jmp)) {
1972         tile_data->error_info.setjmp = 0;
1973         corrupted = 1;
1974         vp9_tile_done(pbi);
1975         continue;
1976       }
1977 
1978       tile_data->xd = pbi->mb;
1979       tile_data->xd.counts =
1980           cm->frame_parallel_decoding_mode ? 0 : &tile_data->counts;
1981 
1982       tile_data->error_info.setjmp = 1;
1983 
1984       parse_tile_row(tile_data, pbi, mi_row, job.tile_col, data_end);
1985 
1986       corrupted |= tile_data->xd.corrupted;
1987       if (corrupted)
1988         vpx_internal_error(&tile_data->error_info, VPX_CODEC_CORRUPT_FRAME,
1989                            "Failed to decode tile data");
1990 
1991       /* Queue in the recon_job for this row */
1992       {
1993         Job recon_job;
1994         recon_job.row_num = mi_row;
1995         recon_job.tile_col = job.tile_col;
1996         recon_job.job_type = RECON_JOB;
1997         vp9_jobq_queue(&row_mt_worker_data->jobq, &recon_job,
1998                        sizeof(recon_job));
1999       }
2000 
2001       /* Queue next parse job */
2002       if (mi_row + MI_BLOCK_SIZE < cm->mi_rows) {
2003         Job parse_job;
2004         parse_job.row_num = mi_row + MI_BLOCK_SIZE;
2005         parse_job.tile_col = job.tile_col;
2006         parse_job.job_type = PARSE_JOB;
2007         vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job,
2008                        sizeof(parse_job));
2009       }
2010     }
2011   }
2012 
2013   vpx_free(tile_data_recon);
2014   return !corrupted;
2015 }
2016 
decode_tiles(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2017 static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data,
2018                                    const uint8_t *data_end) {
2019   VP9_COMMON *const cm = &pbi->common;
2020   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2021   const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2022   const int tile_cols = 1 << cm->log2_tile_cols;
2023   const int tile_rows = 1 << cm->log2_tile_rows;
2024   TileBuffer tile_buffers[4][1 << 6];
2025   int tile_row, tile_col;
2026   int mi_row, mi_col;
2027   TileWorkerData *tile_data = NULL;
2028 
2029   if (cm->lf.filter_level && !cm->skip_loop_filter &&
2030       pbi->lf_worker.data1 == NULL) {
2031     CHECK_MEM_ERROR(&cm->error, pbi->lf_worker.data1,
2032                     vpx_memalign(32, sizeof(LFWorkerData)));
2033     pbi->lf_worker.hook = vp9_loop_filter_worker;
2034     if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
2035       vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
2036                          "Loop filter thread creation failed");
2037     }
2038   }
2039 
2040   if (cm->lf.filter_level && !cm->skip_loop_filter) {
2041     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2042     // Be sure to sync as we might be resuming after a failed frame decode.
2043     winterface->sync(&pbi->lf_worker);
2044     vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm,
2045                                pbi->mb.plane);
2046   }
2047 
2048   assert(tile_rows <= 4);
2049   assert(tile_cols <= (1 << 6));
2050 
2051   // Note: this memset assumes above_context[0], [1] and [2]
2052   // are allocated as part of the same buffer.
2053   memset(cm->above_context, 0,
2054          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
2055 
2056   memset(cm->above_seg_context, 0,
2057          sizeof(*cm->above_seg_context) * aligned_cols);
2058 
2059   vp9_reset_lfm(cm);
2060 
2061   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
2062 
2063   // Load all tile information into tile_data.
2064   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
2065     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
2066       const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
2067       tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col;
2068       tile_data->xd = pbi->mb;
2069       tile_data->xd.corrupted = 0;
2070       tile_data->xd.counts =
2071           cm->frame_parallel_decoding_mode ? NULL : &cm->counts;
2072       vp9_zero(tile_data->dqcoeff);
2073       vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col);
2074       setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
2075                           &tile_data->bit_reader, pbi->decrypt_cb,
2076                           pbi->decrypt_state);
2077       vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff);
2078     }
2079   }
2080 
2081   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
2082     TileInfo tile;
2083     vp9_tile_set_row(&tile, cm, tile_row);
2084     for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
2085          mi_row += MI_BLOCK_SIZE) {
2086       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
2087         const int col =
2088             pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col;
2089         tile_data = pbi->tile_worker_data + tile_cols * tile_row + col;
2090         vp9_tile_set_col(&tile, cm, col);
2091         vp9_zero(tile_data->xd.left_context);
2092         vp9_zero(tile_data->xd.left_seg_context);
2093         for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
2094              mi_col += MI_BLOCK_SIZE) {
2095           if (pbi->row_mt == 1) {
2096             int plane;
2097             RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
2098             for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
2099               tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
2100               tile_data->xd.plane[plane].dqcoeff =
2101                   row_mt_worker_data->dqcoeff[plane];
2102             }
2103             tile_data->xd.partition = row_mt_worker_data->partition;
2104             process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4,
2105                               PARSE, parse_block);
2106 
2107             for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
2108               tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane];
2109               tile_data->xd.plane[plane].dqcoeff =
2110                   row_mt_worker_data->dqcoeff[plane];
2111             }
2112             tile_data->xd.partition = row_mt_worker_data->partition;
2113             process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4,
2114                               RECON, recon_block);
2115           } else {
2116             decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
2117           }
2118         }
2119         pbi->mb.corrupted |= tile_data->xd.corrupted;
2120         if (pbi->mb.corrupted)
2121           vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2122                              "Failed to decode tile data");
2123       }
2124       // Loopfilter one row.
2125       if (cm->lf.filter_level && !cm->skip_loop_filter) {
2126         const int lf_start = mi_row - MI_BLOCK_SIZE;
2127         LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2128 
2129         // delay the loopfilter by 1 macroblock row.
2130         if (lf_start < 0) continue;
2131 
2132         // decoding has completed: finish up the loop filter in this thread.
2133         if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
2134 
2135         winterface->sync(&pbi->lf_worker);
2136         lf_data->start = lf_start;
2137         lf_data->stop = mi_row;
2138         if (pbi->max_threads > 1) {
2139           winterface->launch(&pbi->lf_worker);
2140         } else {
2141           winterface->execute(&pbi->lf_worker);
2142         }
2143       }
2144     }
2145   }
2146 
2147   // Loopfilter remaining rows in the frame.
2148   if (cm->lf.filter_level && !cm->skip_loop_filter) {
2149     LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1;
2150     winterface->sync(&pbi->lf_worker);
2151     lf_data->start = lf_data->stop;
2152     lf_data->stop = cm->mi_rows;
2153     winterface->execute(&pbi->lf_worker);
2154   }
2155 
2156   // Get last tile data.
2157   tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1;
2158 
2159   return vpx_reader_find_end(&tile_data->bit_reader);
2160 }
2161 
set_rows_after_error(VP9LfSync * lf_sync,int start_row,int mi_rows,int num_tiles_left,int total_num_tiles)2162 static void set_rows_after_error(VP9LfSync *lf_sync, int start_row, int mi_rows,
2163                                  int num_tiles_left, int total_num_tiles) {
2164   do {
2165     int mi_row;
2166     const int aligned_rows = mi_cols_aligned_to_sb(mi_rows);
2167     const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
2168     const int corrupted = 1;
2169     for (mi_row = start_row; mi_row < mi_rows; mi_row += MI_BLOCK_SIZE) {
2170       const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
2171       vp9_set_row(lf_sync, total_num_tiles, mi_row >> MI_BLOCK_SIZE_LOG2,
2172                   is_last_row, corrupted);
2173     }
2174     /* If there are multiple tiles, the second tile should start marking row
2175      * progress from row 0.
2176      */
2177     start_row = 0;
2178   } while (num_tiles_left--);
2179 }
2180 
2181 // On entry 'tile_data->data_end' points to the end of the input frame, on exit
2182 // it is updated to reflect the bitreader position of the final tile column if
2183 // present in the tile buffer group or NULL otherwise.
tile_worker_hook(void * arg1,void * arg2)2184 static int tile_worker_hook(void *arg1, void *arg2) {
2185   TileWorkerData *const tile_data = (TileWorkerData *)arg1;
2186   VP9Decoder *const pbi = (VP9Decoder *)arg2;
2187 
2188   TileInfo *volatile tile = &tile_data->xd.tile;
2189   const int final_col = (1 << pbi->common.log2_tile_cols) - 1;
2190   const uint8_t *volatile bit_reader_end = NULL;
2191   VP9_COMMON *cm = &pbi->common;
2192 
2193   LFWorkerData *lf_data = tile_data->lf_data;
2194   VP9LfSync *lf_sync = tile_data->lf_sync;
2195 
2196   volatile int mi_row = 0;
2197   volatile int n = tile_data->buf_start;
2198   if (setjmp(tile_data->error_info.jmp)) {
2199     tile_data->error_info.setjmp = 0;
2200     tile_data->xd.corrupted = 1;
2201     tile_data->data_end = NULL;
2202     if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2203       const int num_tiles_left = tile_data->buf_end - n;
2204       const int mi_row_start = mi_row;
2205       set_rows_after_error(lf_sync, mi_row_start, cm->mi_rows, num_tiles_left,
2206                            1 << cm->log2_tile_cols);
2207     }
2208     return 0;
2209   }
2210   tile_data->error_info.setjmp = 1;
2211 
2212   tile_data->xd.corrupted = 0;
2213 
2214   do {
2215     int mi_col;
2216     const TileBuffer *const buf = pbi->tile_buffers + n;
2217 
2218     /* Initialize to 0 is safe since we do not deal with streams that have
2219      * more than one row of tiles. (So tile->mi_row_start will be 0)
2220      */
2221     assert(cm->log2_tile_rows == 0);
2222     mi_row = 0;
2223     vp9_zero(tile_data->dqcoeff);
2224     vp9_tile_init(tile, &pbi->common, 0, buf->col);
2225     setup_token_decoder(buf->data, tile_data->data_end, buf->size,
2226                         &tile_data->error_info, &tile_data->bit_reader,
2227                         pbi->decrypt_cb, pbi->decrypt_state);
2228     vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff);
2229     // init resets xd.error_info
2230     tile_data->xd.error_info = &tile_data->error_info;
2231 
2232     for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
2233          mi_row += MI_BLOCK_SIZE) {
2234       vp9_zero(tile_data->xd.left_context);
2235       vp9_zero(tile_data->xd.left_seg_context);
2236       for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
2237            mi_col += MI_BLOCK_SIZE) {
2238         decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4);
2239       }
2240       if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2241         const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
2242         const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2);
2243         const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2);
2244         vp9_set_row(lf_sync, 1 << cm->log2_tile_cols,
2245                     mi_row >> MI_BLOCK_SIZE_LOG2, is_last_row,
2246                     tile_data->xd.corrupted);
2247       }
2248     }
2249 
2250     if (buf->col == final_col) {
2251       bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader);
2252     }
2253   } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end);
2254 
2255   if (pbi->lpf_mt_opt && n < tile_data->buf_end && cm->lf.filter_level &&
2256       !cm->skip_loop_filter) {
2257     /* This was not incremented in the tile loop, so increment before tiles left
2258      * calculation
2259      */
2260     ++n;
2261     set_rows_after_error(lf_sync, 0, cm->mi_rows, tile_data->buf_end - n,
2262                          1 << cm->log2_tile_cols);
2263   }
2264 
2265   if (pbi->lpf_mt_opt && !tile_data->xd.corrupted && cm->lf.filter_level &&
2266       !cm->skip_loop_filter) {
2267     vp9_loopfilter_rows(lf_data, lf_sync);
2268   }
2269 
2270   tile_data->data_end = bit_reader_end;
2271   return !tile_data->xd.corrupted;
2272 }
2273 
2274 // sorts in descending order
compare_tile_buffers(const void * a,const void * b)2275 static int compare_tile_buffers(const void *a, const void *b) {
2276   const TileBuffer *const buf_a = (const TileBuffer *)a;
2277   const TileBuffer *const buf_b = (const TileBuffer *)b;
2278   return (buf_a->size < buf_b->size) - (buf_a->size > buf_b->size);
2279 }
2280 
init_mt(VP9Decoder * pbi)2281 static INLINE void init_mt(VP9Decoder *pbi) {
2282   int n;
2283   VP9_COMMON *const cm = &pbi->common;
2284   VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2285   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2286   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2287 
2288   if (pbi->num_tile_workers == 0) {
2289     const int num_threads = pbi->max_threads;
2290     CHECK_MEM_ERROR(&cm->error, pbi->tile_workers,
2291                     vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
2292     for (n = 0; n < num_threads; ++n) {
2293       VPxWorker *const worker = &pbi->tile_workers[n];
2294       ++pbi->num_tile_workers;
2295 
2296       winterface->init(worker);
2297       worker->thread_name = "vpx tile worker";
2298       if (n < num_threads - 1 && !winterface->reset(worker)) {
2299         do {
2300           winterface->end(&pbi->tile_workers[pbi->num_tile_workers - 1]);
2301         } while (--pbi->num_tile_workers != 0);
2302         vpx_free(pbi->tile_workers);
2303         pbi->tile_workers = NULL;
2304         vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
2305                            "Tile decoder thread creation failed");
2306       }
2307     }
2308   }
2309 
2310   // Initialize LPF
2311   if ((pbi->lpf_mt_opt || pbi->row_mt) && cm->lf.filter_level &&
2312       !cm->skip_loop_filter) {
2313     vp9_lpf_mt_init(lf_row_sync, cm, cm->lf.filter_level,
2314                     pbi->num_tile_workers);
2315   }
2316 
2317   // Note: this memset assumes above_context[0], [1] and [2]
2318   // are allocated as part of the same buffer.
2319   memset(cm->above_context, 0,
2320          sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
2321 
2322   memset(cm->above_seg_context, 0,
2323          sizeof(*cm->above_seg_context) * aligned_mi_cols);
2324 
2325   vp9_reset_lfm(cm);
2326 }
2327 
decode_tiles_row_wise_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2328 static const uint8_t *decode_tiles_row_wise_mt(VP9Decoder *pbi,
2329                                                const uint8_t *data,
2330                                                const uint8_t *data_end) {
2331   VP9_COMMON *const cm = &pbi->common;
2332   RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data;
2333   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2334   const int tile_cols = 1 << cm->log2_tile_cols;
2335   const int tile_rows = 1 << cm->log2_tile_rows;
2336   const int num_workers = pbi->max_threads;
2337   int i, n;
2338   int col;
2339   int corrupted = 0;
2340   const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
2341   const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
2342   VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2343   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2344 
2345   assert(tile_cols <= (1 << 6));
2346   assert(tile_rows == 1);
2347   (void)tile_rows;
2348 
2349   memset(row_mt_worker_data->recon_map, 0,
2350          sb_rows * sb_cols * sizeof(*row_mt_worker_data->recon_map));
2351 
2352   init_mt(pbi);
2353 
2354   // Reset tile decoding hook
2355   for (n = 0; n < num_workers; ++n) {
2356     VPxWorker *const worker = &pbi->tile_workers[n];
2357     ThreadData *const thread_data = &pbi->row_mt_worker_data->thread_data[n];
2358     winterface->sync(worker);
2359 
2360     if (cm->lf.filter_level && !cm->skip_loop_filter) {
2361       thread_data->lf_sync = lf_row_sync;
2362       thread_data->lf_data = &thread_data->lf_sync->lfdata[n];
2363       vp9_loop_filter_data_reset(thread_data->lf_data, new_fb, cm,
2364                                  pbi->mb.plane);
2365     }
2366 
2367     thread_data->pbi = pbi;
2368 
2369     worker->hook = row_decode_worker_hook;
2370     worker->data1 = thread_data;
2371     worker->data2 = (void *)&row_mt_worker_data->data_end;
2372   }
2373 
2374   for (col = 0; col < tile_cols; ++col) {
2375     TileWorkerData *const tile_data = &pbi->tile_worker_data[col];
2376     tile_data->xd = pbi->mb;
2377     tile_data->xd.counts =
2378         cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
2379   }
2380 
2381   /* Reset the jobq to start of the jobq buffer */
2382   vp9_jobq_reset(&row_mt_worker_data->jobq);
2383   row_mt_worker_data->num_tiles_done = 0;
2384   row_mt_worker_data->data_end = NULL;
2385 
2386   // Load tile data into tile_buffers
2387   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
2388                    &pbi->tile_buffers);
2389 
2390   // Initialize thread frame counts.
2391   if (!cm->frame_parallel_decoding_mode) {
2392     for (col = 0; col < tile_cols; ++col) {
2393       TileWorkerData *const tile_data = &pbi->tile_worker_data[col];
2394       vp9_zero(tile_data->counts);
2395     }
2396   }
2397 
2398   // queue parse jobs for 0th row of every tile
2399   for (col = 0; col < tile_cols; ++col) {
2400     Job parse_job;
2401     parse_job.row_num = 0;
2402     parse_job.tile_col = col;
2403     parse_job.job_type = PARSE_JOB;
2404     vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job, sizeof(parse_job));
2405   }
2406 
2407   for (i = 0; i < num_workers; ++i) {
2408     VPxWorker *const worker = &pbi->tile_workers[i];
2409     worker->had_error = 0;
2410     if (i == num_workers - 1) {
2411       winterface->execute(worker);
2412     } else {
2413       winterface->launch(worker);
2414     }
2415   }
2416 
2417   for (; n > 0; --n) {
2418     VPxWorker *const worker = &pbi->tile_workers[n - 1];
2419     // TODO(jzern): The tile may have specific error data associated with
2420     // its vpx_internal_error_info which could be propagated to the main info
2421     // in cm. Additionally once the threads have been synced and an error is
2422     // detected, there's no point in continuing to decode tiles.
2423     corrupted |= !winterface->sync(worker);
2424   }
2425 
2426   pbi->mb.corrupted = corrupted;
2427 
2428   {
2429     /* Set data end */
2430     TileWorkerData *const tile_data = &pbi->tile_worker_data[tile_cols - 1];
2431     row_mt_worker_data->data_end = vpx_reader_find_end(&tile_data->bit_reader);
2432   }
2433 
2434   // Accumulate thread frame counts.
2435   if (!cm->frame_parallel_decoding_mode) {
2436     for (i = 0; i < tile_cols; ++i) {
2437       TileWorkerData *const tile_data = &pbi->tile_worker_data[i];
2438       vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
2439     }
2440   }
2441 
2442   return row_mt_worker_data->data_end;
2443 }
2444 
decode_tiles_mt(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end)2445 static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data,
2446                                       const uint8_t *data_end) {
2447   VP9_COMMON *const cm = &pbi->common;
2448   const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
2449   const uint8_t *bit_reader_end = NULL;
2450   VP9LfSync *lf_row_sync = &pbi->lf_row_sync;
2451   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2452   const int tile_cols = 1 << cm->log2_tile_cols;
2453   const int tile_rows = 1 << cm->log2_tile_rows;
2454   const int num_workers = VPXMIN(pbi->max_threads, tile_cols);
2455   int n;
2456 
2457   assert(tile_cols <= (1 << 6));
2458   assert(tile_rows == 1);
2459   (void)tile_rows;
2460 
2461   init_mt(pbi);
2462 
2463   // Reset tile decoding hook
2464   for (n = 0; n < num_workers; ++n) {
2465     VPxWorker *const worker = &pbi->tile_workers[n];
2466     TileWorkerData *const tile_data =
2467         &pbi->tile_worker_data[n + pbi->total_tiles];
2468     winterface->sync(worker);
2469 
2470     if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) {
2471       tile_data->lf_sync = lf_row_sync;
2472       tile_data->lf_data = &tile_data->lf_sync->lfdata[n];
2473       vp9_loop_filter_data_reset(tile_data->lf_data, new_fb, cm, pbi->mb.plane);
2474       tile_data->lf_data->y_only = 0;
2475     }
2476 
2477     tile_data->xd = pbi->mb;
2478     tile_data->xd.counts =
2479         cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts;
2480     worker->hook = tile_worker_hook;
2481     worker->data1 = tile_data;
2482     worker->data2 = pbi;
2483   }
2484 
2485   // Load tile data into tile_buffers
2486   get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows,
2487                    &pbi->tile_buffers);
2488 
2489   // Sort the buffers based on size in descending order.
2490   qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]),
2491         compare_tile_buffers);
2492 
2493   if (num_workers == tile_cols) {
2494     // Rearrange the tile buffers such that the largest, and
2495     // presumably the most difficult, tile will be decoded in the main thread.
2496     // This should help minimize the number of instances where the main thread
2497     // is waiting for a worker to complete.
2498     const TileBuffer largest = pbi->tile_buffers[0];
2499     memmove(pbi->tile_buffers, pbi->tile_buffers + 1,
2500             (tile_cols - 1) * sizeof(pbi->tile_buffers[0]));
2501     pbi->tile_buffers[tile_cols - 1] = largest;
2502   } else {
2503     int start = 0, end = tile_cols - 2;
2504     TileBuffer tmp;
2505 
2506     // Interleave the tiles to distribute the load between threads, assuming a
2507     // larger tile implies it is more difficult to decode.
2508     while (start < end) {
2509       tmp = pbi->tile_buffers[start];
2510       pbi->tile_buffers[start] = pbi->tile_buffers[end];
2511       pbi->tile_buffers[end] = tmp;
2512       start += 2;
2513       end -= 2;
2514     }
2515   }
2516 
2517   // Initialize thread frame counts.
2518   if (!cm->frame_parallel_decoding_mode) {
2519     for (n = 0; n < num_workers; ++n) {
2520       TileWorkerData *const tile_data =
2521           (TileWorkerData *)pbi->tile_workers[n].data1;
2522       vp9_zero(tile_data->counts);
2523     }
2524   }
2525 
2526   {
2527     const int base = tile_cols / num_workers;
2528     const int remain = tile_cols % num_workers;
2529     int buf_start = 0;
2530 
2531     for (n = 0; n < num_workers; ++n) {
2532       const int count = base + (remain + n) / num_workers;
2533       VPxWorker *const worker = &pbi->tile_workers[n];
2534       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2535 
2536       tile_data->buf_start = buf_start;
2537       tile_data->buf_end = buf_start + count - 1;
2538       tile_data->data_end = data_end;
2539       buf_start += count;
2540 
2541       worker->had_error = 0;
2542       if (n == num_workers - 1) {
2543         assert(tile_data->buf_end == tile_cols - 1);
2544         winterface->execute(worker);
2545       } else {
2546         winterface->launch(worker);
2547       }
2548     }
2549 
2550     for (; n > 0; --n) {
2551       VPxWorker *const worker = &pbi->tile_workers[n - 1];
2552       TileWorkerData *const tile_data = (TileWorkerData *)worker->data1;
2553       // TODO(jzern): The tile may have specific error data associated with
2554       // its vpx_internal_error_info which could be propagated to the main info
2555       // in cm. Additionally once the threads have been synced and an error is
2556       // detected, there's no point in continuing to decode tiles.
2557       pbi->mb.corrupted |= !winterface->sync(worker);
2558       if (!bit_reader_end) bit_reader_end = tile_data->data_end;
2559     }
2560   }
2561 
2562   // Accumulate thread frame counts.
2563   if (!cm->frame_parallel_decoding_mode) {
2564     for (n = 0; n < num_workers; ++n) {
2565       TileWorkerData *const tile_data =
2566           (TileWorkerData *)pbi->tile_workers[n].data1;
2567       vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1);
2568     }
2569   }
2570 
2571   assert(bit_reader_end || pbi->mb.corrupted);
2572   return bit_reader_end;
2573 }
2574 
error_handler(void * data)2575 static void error_handler(void *data) {
2576   VP9_COMMON *const cm = (VP9_COMMON *)data;
2577   vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
2578 }
2579 
read_bitdepth_colorspace_sampling(VP9_COMMON * cm,struct vpx_read_bit_buffer * rb)2580 static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm,
2581                                               struct vpx_read_bit_buffer *rb) {
2582   if (cm->profile >= PROFILE_2) {
2583     cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
2584 #if CONFIG_VP9_HIGHBITDEPTH
2585     cm->use_highbitdepth = 1;
2586 #endif
2587   } else {
2588     cm->bit_depth = VPX_BITS_8;
2589 #if CONFIG_VP9_HIGHBITDEPTH
2590     cm->use_highbitdepth = 0;
2591 #endif
2592   }
2593   cm->color_space = vpx_rb_read_literal(rb, 3);
2594   if (cm->color_space != VPX_CS_SRGB) {
2595     cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb);
2596     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2597       cm->subsampling_x = vpx_rb_read_bit(rb);
2598       cm->subsampling_y = vpx_rb_read_bit(rb);
2599       if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
2600         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2601                            "4:2:0 color not supported in profile 1 or 3");
2602       if (vpx_rb_read_bit(rb))
2603         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2604                            "Reserved bit set");
2605     } else {
2606       cm->subsampling_y = cm->subsampling_x = 1;
2607     }
2608   } else {
2609     cm->color_range = VPX_CR_FULL_RANGE;
2610     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
2611       // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
2612       // 4:2:2 or 4:4:0 chroma sampling is not allowed.
2613       cm->subsampling_y = cm->subsampling_x = 0;
2614       if (vpx_rb_read_bit(rb))
2615         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2616                            "Reserved bit set");
2617     } else {
2618       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2619                          "4:4:4 color not supported in profile 0 or 2");
2620     }
2621   }
2622 }
2623 
flush_all_fb_on_key(VP9_COMMON * cm)2624 static INLINE void flush_all_fb_on_key(VP9_COMMON *cm) {
2625   if (cm->frame_type == KEY_FRAME && cm->current_video_frame > 0) {
2626     RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
2627     BufferPool *const pool = cm->buffer_pool;
2628     int i;
2629     for (i = 0; i < FRAME_BUFFERS; ++i) {
2630       if (i == cm->new_fb_idx) continue;
2631       frame_bufs[i].ref_count = 0;
2632       if (!frame_bufs[i].released) {
2633         pool->release_fb_cb(pool->cb_priv, &frame_bufs[i].raw_frame_buffer);
2634         frame_bufs[i].released = 1;
2635       }
2636     }
2637   }
2638 }
2639 
read_uncompressed_header(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb)2640 static size_t read_uncompressed_header(VP9Decoder *pbi,
2641                                        struct vpx_read_bit_buffer *rb) {
2642   VP9_COMMON *const cm = &pbi->common;
2643   BufferPool *const pool = cm->buffer_pool;
2644   RefCntBuffer *const frame_bufs = pool->frame_bufs;
2645   int i, mask, ref_index = 0;
2646   size_t sz;
2647 
2648   cm->last_frame_type = cm->frame_type;
2649   cm->last_intra_only = cm->intra_only;
2650 
2651   if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
2652     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2653                        "Invalid frame marker");
2654 
2655   cm->profile = vp9_read_profile(rb);
2656 #if CONFIG_VP9_HIGHBITDEPTH
2657   if (cm->profile >= MAX_PROFILES)
2658     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2659                        "Unsupported bitstream profile");
2660 #else
2661   if (cm->profile >= PROFILE_2)
2662     vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2663                        "Unsupported bitstream profile");
2664 #endif
2665 
2666   cm->show_existing_frame = vpx_rb_read_bit(rb);
2667   if (cm->show_existing_frame) {
2668     // Show an existing frame directly.
2669     const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)];
2670     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
2671       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2672                          "Buffer %d does not contain a decoded frame",
2673                          frame_to_show);
2674     }
2675 
2676     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
2677     pbi->refresh_frame_flags = 0;
2678     cm->lf.filter_level = 0;
2679     cm->show_frame = 1;
2680 
2681     return 0;
2682   }
2683 
2684   cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb);
2685   cm->show_frame = vpx_rb_read_bit(rb);
2686   cm->error_resilient_mode = vpx_rb_read_bit(rb);
2687 
2688   if (cm->frame_type == KEY_FRAME) {
2689     if (!vp9_read_sync_code(rb))
2690       vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2691                          "Invalid frame sync code");
2692 
2693     read_bitdepth_colorspace_sampling(cm, rb);
2694     pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
2695 
2696     for (i = 0; i < REFS_PER_FRAME; ++i) {
2697       cm->frame_refs[i].idx = INVALID_IDX;
2698       cm->frame_refs[i].buf = NULL;
2699     }
2700 
2701     setup_frame_size(cm, rb);
2702     if (pbi->need_resync) {
2703       memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2704       flush_all_fb_on_key(cm);
2705       pbi->need_resync = 0;
2706     }
2707   } else {
2708     cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb);
2709 
2710     cm->reset_frame_context =
2711         cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2);
2712 
2713     if (cm->intra_only) {
2714       if (!vp9_read_sync_code(rb))
2715         vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
2716                            "Invalid frame sync code");
2717       if (cm->profile > PROFILE_0) {
2718         read_bitdepth_colorspace_sampling(cm, rb);
2719       } else {
2720         // NOTE: The intra-only frame header does not include the specification
2721         // of either the color format or color sub-sampling in profile 0. VP9
2722         // specifies that the default color format should be YUV 4:2:0 in this
2723         // case (normative).
2724         cm->color_space = VPX_CS_BT_601;
2725         cm->color_range = VPX_CR_STUDIO_RANGE;
2726         cm->subsampling_y = cm->subsampling_x = 1;
2727         cm->bit_depth = VPX_BITS_8;
2728 #if CONFIG_VP9_HIGHBITDEPTH
2729         cm->use_highbitdepth = 0;
2730 #endif
2731       }
2732 
2733       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2734       setup_frame_size(cm, rb);
2735       if (pbi->need_resync) {
2736         memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
2737         pbi->need_resync = 0;
2738       }
2739     } else if (pbi->need_resync != 1) { /* Skip if need resync */
2740       pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES);
2741       for (i = 0; i < REFS_PER_FRAME; ++i) {
2742         const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2);
2743         const int idx = cm->ref_frame_map[ref];
2744         RefBuffer *const ref_frame = &cm->frame_refs[i];
2745         ref_frame->idx = idx;
2746         ref_frame->buf = &frame_bufs[idx].buf;
2747         cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb);
2748       }
2749 
2750       setup_frame_size_with_refs(cm, rb);
2751 
2752       cm->allow_high_precision_mv = vpx_rb_read_bit(rb);
2753       cm->interp_filter = read_interp_filter(rb);
2754 
2755       for (i = 0; i < REFS_PER_FRAME; ++i) {
2756         RefBuffer *const ref_buf = &cm->frame_refs[i];
2757 #if CONFIG_VP9_HIGHBITDEPTH
2758         vp9_setup_scale_factors_for_frame(
2759             &ref_buf->sf, ref_buf->buf->y_crop_width,
2760             ref_buf->buf->y_crop_height, cm->width, cm->height,
2761             cm->use_highbitdepth);
2762 #else
2763         vp9_setup_scale_factors_for_frame(
2764             &ref_buf->sf, ref_buf->buf->y_crop_width,
2765             ref_buf->buf->y_crop_height, cm->width, cm->height);
2766 #endif
2767       }
2768     }
2769   }
2770 #if CONFIG_VP9_HIGHBITDEPTH
2771   get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
2772 #endif
2773   get_frame_new_buffer(cm)->color_space = cm->color_space;
2774   get_frame_new_buffer(cm)->color_range = cm->color_range;
2775   get_frame_new_buffer(cm)->render_width = cm->render_width;
2776   get_frame_new_buffer(cm)->render_height = cm->render_height;
2777 
2778   if (pbi->need_resync) {
2779     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2780                        "Keyframe / intra-only frame required to reset decoder"
2781                        " state");
2782   }
2783 
2784   if (!cm->error_resilient_mode) {
2785     cm->refresh_frame_context = vpx_rb_read_bit(rb);
2786     cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb);
2787     if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts);
2788   } else {
2789     cm->refresh_frame_context = 0;
2790     cm->frame_parallel_decoding_mode = 1;
2791   }
2792 
2793   // This flag will be overridden by the call to vp9_setup_past_independence
2794   // below, forcing the use of context 0 for those frame types.
2795   cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
2796 
2797   // Generate next_ref_frame_map.
2798   for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
2799     if (mask & 1) {
2800       cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
2801       ++frame_bufs[cm->new_fb_idx].ref_count;
2802     } else {
2803       cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2804     }
2805     // Current thread holds the reference frame.
2806     if (cm->ref_frame_map[ref_index] >= 0)
2807       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2808     ++ref_index;
2809   }
2810 
2811   for (; ref_index < REF_FRAMES; ++ref_index) {
2812     cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
2813     // Current thread holds the reference frame.
2814     if (cm->ref_frame_map[ref_index] >= 0)
2815       ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
2816   }
2817   pbi->hold_ref_buf = 1;
2818 
2819   if (frame_is_intra_only(cm) || cm->error_resilient_mode)
2820     vp9_setup_past_independence(cm);
2821 
2822   setup_loopfilter(&cm->lf, rb);
2823   setup_quantization(cm, &pbi->mb, rb);
2824   setup_segmentation(&cm->seg, rb);
2825   setup_segmentation_dequant(cm);
2826 
2827   setup_tile_info(cm, rb);
2828   if (pbi->row_mt == 1) {
2829     int num_sbs = 1;
2830     const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows);
2831     const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2;
2832     const int num_jobs = sb_rows << cm->log2_tile_cols;
2833 
2834     if (pbi->row_mt_worker_data == NULL) {
2835       CHECK_MEM_ERROR(&cm->error, pbi->row_mt_worker_data,
2836                       vpx_calloc(1, sizeof(*pbi->row_mt_worker_data)));
2837 #if CONFIG_MULTITHREAD
2838       pthread_mutex_init(&pbi->row_mt_worker_data->recon_done_mutex, NULL);
2839 #endif
2840     }
2841 
2842     if (pbi->max_threads > 1) {
2843       const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2844       const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2;
2845 
2846       num_sbs = sb_cols * sb_rows;
2847     }
2848 
2849     if (num_sbs > pbi->row_mt_worker_data->num_sbs ||
2850         num_jobs > pbi->row_mt_worker_data->num_jobs) {
2851       vp9_dec_free_row_mt_mem(pbi->row_mt_worker_data);
2852       vp9_dec_alloc_row_mt_mem(pbi->row_mt_worker_data, cm, num_sbs,
2853                                pbi->max_threads, num_jobs);
2854     }
2855     vp9_jobq_alloc(pbi);
2856   }
2857   sz = vpx_rb_read_literal(rb, 16);
2858 
2859   if (sz == 0)
2860     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2861                        "Invalid header size");
2862 
2863   return sz;
2864 }
2865 
read_compressed_header(VP9Decoder * pbi,const uint8_t * data,size_t partition_size)2866 static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
2867                                   size_t partition_size) {
2868   VP9_COMMON *const cm = &pbi->common;
2869   MACROBLOCKD *const xd = &pbi->mb;
2870   FRAME_CONTEXT *const fc = cm->fc;
2871   vpx_reader r;
2872   int k;
2873 
2874   if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb,
2875                       pbi->decrypt_state))
2876     vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
2877                        "Failed to allocate bool decoder 0");
2878 
2879   cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
2880   if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r);
2881   read_coef_probs(fc, cm->tx_mode, &r);
2882 
2883   for (k = 0; k < SKIP_CONTEXTS; ++k)
2884     vp9_diff_update_prob(&r, &fc->skip_probs[k]);
2885 
2886   if (!frame_is_intra_only(cm)) {
2887     nmv_context *const nmvc = &fc->nmvc;
2888     int i, j;
2889 
2890     read_inter_mode_probs(fc, &r);
2891 
2892     if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r);
2893 
2894     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
2895       vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
2896 
2897     cm->reference_mode = read_frame_reference_mode(cm, &r);
2898     if (cm->reference_mode != SINGLE_REFERENCE)
2899       vp9_setup_compound_reference_mode(cm);
2900     read_frame_reference_mode_probs(cm, &r);
2901 
2902     for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
2903       for (i = 0; i < INTRA_MODES - 1; ++i)
2904         vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
2905 
2906     for (j = 0; j < PARTITION_CONTEXTS; ++j)
2907       for (i = 0; i < PARTITION_TYPES - 1; ++i)
2908         vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
2909 
2910     read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
2911   }
2912 
2913   return vpx_reader_has_error(&r);
2914 }
2915 
init_read_bit_buffer(VP9Decoder * pbi,struct vpx_read_bit_buffer * rb,const uint8_t * data,const uint8_t * data_end,uint8_t clear_data[MAX_VP9_HEADER_SIZE])2916 static struct vpx_read_bit_buffer *init_read_bit_buffer(
2917     VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data,
2918     const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) {
2919   rb->bit_offset = 0;
2920   rb->error_handler = error_handler;
2921   rb->error_handler_data = &pbi->common;
2922   if (pbi->decrypt_cb) {
2923     const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data);
2924     pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
2925     rb->bit_buffer = clear_data;
2926     rb->bit_buffer_end = clear_data + n;
2927   } else {
2928     rb->bit_buffer = data;
2929     rb->bit_buffer_end = data_end;
2930   }
2931   return rb;
2932 }
2933 
2934 //------------------------------------------------------------------------------
2935 
vp9_read_sync_code(struct vpx_read_bit_buffer * const rb)2936 int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) {
2937   return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
2938          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
2939          vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
2940 }
2941 
vp9_read_frame_size(struct vpx_read_bit_buffer * rb,int * width,int * height)2942 void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width,
2943                          int *height) {
2944   *width = vpx_rb_read_literal(rb, 16) + 1;
2945   *height = vpx_rb_read_literal(rb, 16) + 1;
2946 }
2947 
vp9_read_profile(struct vpx_read_bit_buffer * rb)2948 BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) {
2949   int profile = vpx_rb_read_bit(rb);
2950   profile |= vpx_rb_read_bit(rb) << 1;
2951   if (profile > 2) profile += vpx_rb_read_bit(rb);
2952   return (BITSTREAM_PROFILE)profile;
2953 }
2954 
vp9_decode_frame(VP9Decoder * pbi,const uint8_t * data,const uint8_t * data_end,const uint8_t ** p_data_end)2955 void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data,
2956                       const uint8_t *data_end, const uint8_t **p_data_end) {
2957   VP9_COMMON *const cm = &pbi->common;
2958   MACROBLOCKD *const xd = &pbi->mb;
2959   struct vpx_read_bit_buffer rb;
2960   int context_updated = 0;
2961   uint8_t clear_data[MAX_VP9_HEADER_SIZE];
2962   const size_t first_partition_size = read_uncompressed_header(
2963       pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
2964   const int tile_rows = 1 << cm->log2_tile_rows;
2965   const int tile_cols = 1 << cm->log2_tile_cols;
2966   YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
2967 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
2968   bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame);
2969 #endif
2970 #if CONFIG_MISMATCH_DEBUG
2971   mismatch_move_frame_idx_r();
2972 #endif
2973   xd->cur_buf = new_fb;
2974 
2975   if (!first_partition_size) {
2976     // showing a frame directly
2977     *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
2978     return;
2979   }
2980 
2981   data += vpx_rb_bytes_read(&rb);
2982   if (!read_is_valid(data, first_partition_size, data_end))
2983     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2984                        "Truncated packet or corrupt header length");
2985 
2986   cm->use_prev_frame_mvs =
2987       !cm->error_resilient_mode && cm->width == cm->last_width &&
2988       cm->height == cm->last_height && !cm->last_intra_only &&
2989       cm->last_show_frame && (cm->last_frame_type != KEY_FRAME);
2990 
2991   vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
2992 
2993   *cm->fc = cm->frame_contexts[cm->frame_context_idx];
2994   if (!cm->fc->initialized)
2995     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
2996                        "Uninitialized entropy context.");
2997 
2998   xd->corrupted = 0;
2999   new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
3000   if (new_fb->corrupted)
3001     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
3002                        "Decode failed. Frame data header is corrupted.");
3003 
3004   if (cm->lf.filter_level && !cm->skip_loop_filter) {
3005     vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
3006   }
3007 
3008   if (pbi->tile_worker_data == NULL ||
3009       (tile_cols * tile_rows) != pbi->total_tiles) {
3010     const int num_tile_workers =
3011         tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0);
3012     const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data);
3013     // Ensure tile data offsets will be properly aligned. This may fail on
3014     // platforms without DECLARE_ALIGNED().
3015     assert((sizeof(*pbi->tile_worker_data) % 16) == 0);
3016     vpx_free(pbi->tile_worker_data);
3017     CHECK_MEM_ERROR(&cm->error, pbi->tile_worker_data,
3018                     vpx_memalign(32, twd_size));
3019     pbi->total_tiles = tile_rows * tile_cols;
3020   }
3021 
3022   if (pbi->max_threads > 1 && tile_rows == 1 &&
3023       (tile_cols > 1 || pbi->row_mt == 1)) {
3024     if (pbi->row_mt == 1) {
3025       *p_data_end =
3026           decode_tiles_row_wise_mt(pbi, data + first_partition_size, data_end);
3027     } else {
3028       // Multi-threaded tile decoder
3029       *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
3030       if (!pbi->lpf_mt_opt) {
3031         if (!xd->corrupted) {
3032           if (!cm->skip_loop_filter) {
3033             // If multiple threads are used to decode tiles, then we use those
3034             // threads to do parallel loopfiltering.
3035             vp9_loop_filter_frame_mt(
3036                 new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0,
3037                 pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync);
3038           }
3039         } else {
3040           vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
3041                              "Decode failed. Frame data is corrupted.");
3042         }
3043       }
3044     }
3045   } else {
3046     *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
3047   }
3048 
3049   if (!xd->corrupted) {
3050     if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
3051       vp9_adapt_coef_probs(cm);
3052 
3053       if (!frame_is_intra_only(cm)) {
3054         vp9_adapt_mode_probs(cm);
3055         vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
3056       }
3057     }
3058   } else {
3059     vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
3060                        "Decode failed. Frame data is corrupted.");
3061   }
3062 
3063   // Non frame parallel update frame context here.
3064   if (cm->refresh_frame_context && !context_updated)
3065     cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
3066 }
3067