xref: /aosp_15_r20/external/cronet/base/time/time_unittest.cc (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/time/time.h"
6 
7 #include <stdint.h>
8 #include <time.h>
9 
10 #include <limits>
11 #include <optional>
12 #include <string>
13 
14 #include "base/build_time.h"
15 #include "base/check_op.h"
16 #include "base/compiler_specific.h"
17 #include "base/environment.h"
18 #include "base/strings/string_number_conversions.h"
19 #include "base/strings/to_string.h"
20 #include "base/test/gtest_util.h"
21 #include "base/threading/platform_thread.h"
22 #include "base/time/time_override.h"
23 #include "build/build_config.h"
24 #include "testing/gmock/include/gmock/gmock.h"
25 #include "testing/gtest/include/gtest/gtest.h"
26 #include "third_party/icu/source/common/unicode/utypes.h"
27 #include "third_party/icu/source/i18n/unicode/timezone.h"
28 
29 #if BUILDFLAG(IS_ANDROID)
30 #include "base/android/jni_android.h"
31 #elif BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
32 #include "base/test/icu_test_util.h"
33 #elif BUILDFLAG(IS_WIN)
34 #include <windows.h>
35 #endif
36 
37 namespace base {
38 
39 namespace {
40 
41 #if BUILDFLAG(IS_FUCHSIA)
42 // Hawaii does not observe daylight saving time, which is useful for having a
43 // constant offset when faking the time zone.
44 const char kHonoluluTimeZoneId[] = "Pacific/Honolulu";
45 const int kHonoluluOffsetHours = -10;
46 const int kHonoluluOffsetSeconds = kHonoluluOffsetHours * 60 * 60;
47 #endif
48 
49 #if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
50 
51 const char kThaiLocale[] = "th-TH";
52 const char kBangkokTimeZoneId[] = "Asia/Bangkok";
53 
54 // Returns the total offset (including Daylight Saving Time) of the timezone
55 // with |timezone_id| at |time|, or std::nullopt in case of failure.
GetTimeZoneOffsetAtTime(const char * timezone_id,Time time)56 std::optional<base::TimeDelta> GetTimeZoneOffsetAtTime(const char* timezone_id,
57                                                        Time time) {
58   std::unique_ptr<icu::TimeZone> tz(icu::TimeZone::createTimeZone(timezone_id));
59   if (*tz == icu::TimeZone::getUnknown()) {
60     return {};
61   }
62   int32_t raw_offset = 0;
63   int32_t dst_offset = 0;
64   UErrorCode ec = U_ZERO_ERROR;
65   tz->getOffset(time.InSecondsFSinceUnixEpoch(), false, raw_offset, dst_offset,
66                 ec);
67   if (!U_SUCCESS(ec)) {
68     return {};
69   }
70   return base::Milliseconds(raw_offset + dst_offset);
71 }
72 
TimePassedAfterMidnight(const Time::Exploded & time)73 TimeDelta TimePassedAfterMidnight(const Time::Exploded& time) {
74   return base::Hours(time.hour) + base::Minutes(time.minute) +
75          base::Seconds(time.second) + base::Milliseconds(time.millisecond);
76 }
77 
78 // Timezone environment variable
79 
80 class ScopedLibcTZ {
81  public:
ScopedLibcTZ(const std::string & timezone)82   explicit ScopedLibcTZ(const std::string& timezone) {
83     auto env = base::Environment::Create();
84     std::string old_timezone_value;
85     if (env->GetVar(kTZ, &old_timezone_value)) {
86       old_timezone_ = old_timezone_value;
87     }
88     if (!env->SetVar(kTZ, timezone)) {
89       success_ = false;
90     }
91     tzset();
92   }
93 
~ScopedLibcTZ()94   ~ScopedLibcTZ() {
95     auto env = base::Environment::Create();
96     if (old_timezone_.has_value()) {
97       CHECK(env->SetVar(kTZ, old_timezone_.value()));
98     } else {
99       CHECK(env->UnSetVar(kTZ));
100     }
101   }
102 
103   ScopedLibcTZ(const ScopedLibcTZ& other) = delete;
104   ScopedLibcTZ& operator=(const ScopedLibcTZ& other) = delete;
105 
is_success() const106   bool is_success() const { return success_; }
107 
108  private:
109   static constexpr char kTZ[] = "TZ";
110 
111   bool success_ = true;
112   std::optional<std::string> old_timezone_;
113 };
114 
115 constexpr char ScopedLibcTZ::kTZ[];
116 
117 #endif  //  BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
118 
TEST(TimeTestOutOfBounds,FromExplodedOutOfBoundsTime)119 TEST(TimeTestOutOfBounds, FromExplodedOutOfBoundsTime) {
120   // FromUTCExploded must set time to Time(0) and failure, if the day is set to
121   // 31 on a 28-30 day month. Test |exploded| returns Time(0) on 31st of
122   // February and 31st of April. New implementation handles this.
123 
124   const struct DateTestData {
125     Time::Exploded explode;
126     bool is_valid;
127   } kDateTestData[] = {
128       // 31st of February
129       {{2016, 2, 0, 31, 12, 30, 0, 0}, true},
130       // 31st of April
131       {{2016, 4, 0, 31, 8, 43, 0, 0}, true},
132       // Negative month
133       {{2016, -5, 0, 2, 4, 10, 0, 0}, false},
134       // Negative date of month
135       {{2016, 6, 0, -15, 2, 50, 0, 0}, false},
136       // Negative hours
137       {{2016, 7, 0, 10, -11, 29, 0, 0}, false},
138       // Negative minutes
139       {{2016, 3, 0, 14, 10, -29, 0, 0}, false},
140       // Negative seconds
141       {{2016, 10, 0, 25, 7, 47, -30, 0}, false},
142       // Negative milliseconds
143       {{2016, 10, 0, 25, 7, 47, 20, -500}, false},
144       // Hours are too large
145       {{2016, 7, 0, 10, 26, 29, 0, 0}, false},
146       // Minutes are too large
147       {{2016, 3, 0, 14, 10, 78, 0, 0}, false},
148       // Seconds are too large
149       {{2016, 10, 0, 25, 7, 47, 234, 0}, false},
150       // Milliseconds are too large
151       {{2016, 10, 0, 25, 6, 31, 23, 1643}, false},
152       // Test overflow. Time is valid, but overflow case
153       // results in Time(0).
154       {{9840633, 1, 0, 1, 1, 1, 0, 0}, true},
155       // Underflow will fail as well.
156       {{-9840633, 1, 0, 1, 1, 1, 0, 0}, true},
157       // Test integer overflow and underflow cases for the values themselves.
158       {{std::numeric_limits<int>::min(), 1, 0, 1, 1, 1, 0, 0}, true},
159       {{std::numeric_limits<int>::max(), 1, 0, 1, 1, 1, 0, 0}, true},
160       {{2016, std::numeric_limits<int>::min(), 0, 1, 1, 1, 0, 0}, false},
161       {{2016, std::numeric_limits<int>::max(), 0, 1, 1, 1, 0, 0}, false},
162   };
163 
164   for (const auto& test : kDateTestData) {
165     EXPECT_EQ(test.explode.HasValidValues(), test.is_valid);
166 
167     base::Time result;
168     EXPECT_FALSE(base::Time::FromUTCExploded(test.explode, &result));
169     EXPECT_TRUE(result.is_null());
170     EXPECT_FALSE(base::Time::FromLocalExploded(test.explode, &result));
171     EXPECT_TRUE(result.is_null());
172   }
173 }
174 
175 // Specialized test fixture allowing time strings without timezones to be
176 // tested by comparing them to a known time in the local zone.
177 // See also pr_time_unittests.cc
178 class TimeTest : public testing::Test {
179  protected:
180 #if BUILDFLAG(IS_FUCHSIA)
181   // POSIX local time functions always use UTC on Fuchsia. As this is not very
182   // interesting for any "local" tests, set a different default ICU timezone for
183   // the test. This only affects code that uses ICU, such as Exploded time.
184   // Chicago is a non-Pacific time zone known to observe daylight saving time.
TimeTest()185   TimeTest() : chicago_time_("America/Chicago") {}
186   test::ScopedRestoreDefaultTimezone chicago_time_;
187 #endif
188 
SetUp()189   void SetUp() override {
190     // Use mktime to get a time_t, and turn it into a PRTime by converting
191     // seconds to microseconds.  Use 15th Oct 2007 12:45:00 local.  This
192     // must be a time guaranteed to be outside of a DST fallback hour in
193     // any timezone.
194     struct tm local_comparison_tm = {
195       0,            // second
196       45,           // minute
197       12,           // hour
198       15,           // day of month
199       10 - 1,       // month
200       2007 - 1900,  // year
201       0,            // day of week (ignored, output only)
202       0,            // day of year (ignored, output only)
203       -1            // DST in effect, -1 tells mktime to figure it out
204     };
205 
206     time_t converted_time = mktime(&local_comparison_tm);
207     ASSERT_GT(converted_time, 0);
208     comparison_time_local_ = Time::FromTimeT(converted_time);
209 
210     // time_t representation of 15th Oct 2007 12:45:00 PDT
211     comparison_time_pdt_ = Time::FromTimeT(1192477500);
212   }
213 
214   Time comparison_time_local_;
215   Time comparison_time_pdt_;
216 };
217 
218 // Test conversion to/from TimeDeltas elapsed since the Windows epoch.
219 // Conversions should be idempotent and non-lossy.
TEST_F(TimeTest,DeltaSinceWindowsEpoch)220 TEST_F(TimeTest, DeltaSinceWindowsEpoch) {
221   constexpr TimeDelta delta = Microseconds(123);
222   EXPECT_EQ(delta,
223             Time::FromDeltaSinceWindowsEpoch(delta).ToDeltaSinceWindowsEpoch());
224 
225   const Time now = Time::Now();
226   const Time actual =
227       Time::FromDeltaSinceWindowsEpoch(now.ToDeltaSinceWindowsEpoch());
228   EXPECT_EQ(now, actual);
229 
230   // Null times should remain null after a round-trip conversion. This is an
231   // important invariant for the common use case of serialization +
232   // deserialization.
233   const Time should_be_null =
234       Time::FromDeltaSinceWindowsEpoch(Time().ToDeltaSinceWindowsEpoch());
235   EXPECT_TRUE(should_be_null.is_null());
236 
237   {
238     constexpr Time constexpr_time =
239         Time::FromDeltaSinceWindowsEpoch(Microseconds(123));
240     constexpr TimeDelta constexpr_delta =
241         constexpr_time.ToDeltaSinceWindowsEpoch();
242     static_assert(constexpr_delta == delta);
243   }
244 }
245 
246 // Test conversion to/from time_t.
TEST_F(TimeTest,TimeT)247 TEST_F(TimeTest, TimeT) {
248   EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT());
249   EXPECT_EQ(10.0, Time().FromTimeT(10).InSecondsFSinceUnixEpoch());
250 
251   // Conversions of 0 should stay 0.
252   EXPECT_EQ(0, Time().ToTimeT());
253   EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue());
254 }
255 
256 // Test conversions to/from time_t and exploding/unexploding (utc time).
TEST_F(TimeTest,UTCTimeT)257 TEST_F(TimeTest, UTCTimeT) {
258   // C library time and exploded time.
259   time_t now_t_1 = time(nullptr);
260   struct tm tms;
261 #if BUILDFLAG(IS_WIN)
262   gmtime_s(&tms, &now_t_1);
263 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
264   gmtime_r(&now_t_1, &tms);
265 #endif
266 
267   // Convert to ours.
268   Time our_time_1 = Time::FromTimeT(now_t_1);
269   Time::Exploded exploded;
270   our_time_1.UTCExplode(&exploded);
271 
272   // This will test both our exploding and our time_t -> Time conversion.
273   EXPECT_EQ(tms.tm_year + 1900, exploded.year);
274   EXPECT_EQ(tms.tm_mon + 1, exploded.month);
275   EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
276   EXPECT_EQ(tms.tm_hour, exploded.hour);
277   EXPECT_EQ(tms.tm_min, exploded.minute);
278   EXPECT_EQ(tms.tm_sec, exploded.second);
279 
280   // Convert exploded back to the time struct.
281   Time our_time_2;
282   EXPECT_TRUE(Time::FromUTCExploded(exploded, &our_time_2));
283   EXPECT_TRUE(our_time_1 == our_time_2);
284 
285   time_t now_t_2 = our_time_2.ToTimeT();
286   EXPECT_EQ(now_t_1, now_t_2);
287 }
288 
289 // Test conversions to/from time_t and exploding/unexploding (local time).
TEST_F(TimeTest,LocalTimeT)290 TEST_F(TimeTest, LocalTimeT) {
291   // C library time and exploded time.
292   time_t now_t_1 = time(nullptr);
293   struct tm tms;
294 
295 #if BUILDFLAG(IS_WIN)
296   localtime_s(&tms, &now_t_1);
297 #elif BUILDFLAG(IS_POSIX)
298   localtime_r(&now_t_1, &tms);
299 #elif BUILDFLAG(IS_FUCHSIA)
300   // POSIX local time functions always use UTC on Fuchsia, so set a known time
301   // zone and manually obtain the local |tms| values by using an adjusted input.
302   test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
303   time_t adjusted_now_t_1 = now_t_1 + kHonoluluOffsetSeconds;
304   localtime_r(&adjusted_now_t_1, &tms);
305 #endif
306 
307   // Convert to ours.
308   Time our_time_1 = Time::FromTimeT(now_t_1);
309   Time::Exploded exploded;
310   our_time_1.LocalExplode(&exploded);
311 
312   // This will test both our exploding and our time_t -> Time conversion.
313   EXPECT_EQ(tms.tm_year + 1900, exploded.year);
314   EXPECT_EQ(tms.tm_mon + 1, exploded.month);
315   EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
316   EXPECT_EQ(tms.tm_hour, exploded.hour);
317   EXPECT_EQ(tms.tm_min, exploded.minute);
318   EXPECT_EQ(tms.tm_sec, exploded.second);
319 
320   // Convert exploded back to the time struct.
321   Time our_time_2;
322   EXPECT_TRUE(Time::FromLocalExploded(exploded, &our_time_2));
323   EXPECT_TRUE(our_time_1 == our_time_2);
324 
325   time_t now_t_2 = our_time_2.ToTimeT();
326   EXPECT_EQ(now_t_1, now_t_2);
327 }
328 
329 // Test conversions to/from javascript time.
TEST_F(TimeTest,JsTime)330 TEST_F(TimeTest, JsTime) {
331   Time epoch = Time::FromMillisecondsSinceUnixEpoch(0.0);
332   EXPECT_EQ(epoch, Time::UnixEpoch());
333   Time t = Time::FromMillisecondsSinceUnixEpoch(700000.3);
334   EXPECT_EQ(700.0003, t.InSecondsFSinceUnixEpoch());
335   t = Time::FromSecondsSinceUnixEpoch(800.73);
336   EXPECT_EQ(800730.0, t.InMillisecondsFSinceUnixEpoch());
337 
338   // 1601-01-01 isn't round-trip with InMillisecondsFSinceUnixEpoch().
339   const double kWindowsEpoch = -11644473600000.0;
340   Time time = Time::FromMillisecondsSinceUnixEpoch(kWindowsEpoch);
341   EXPECT_TRUE(time.is_null());
342   EXPECT_NE(kWindowsEpoch, time.InMillisecondsFSinceUnixEpoch());
343   EXPECT_EQ(kWindowsEpoch, time.InMillisecondsFSinceUnixEpochIgnoringNull());
344 }
345 
346 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest,FromTimeVal)347 TEST_F(TimeTest, FromTimeVal) {
348   Time now = Time::Now();
349   Time also_now = Time::FromTimeVal(now.ToTimeVal());
350   EXPECT_EQ(now, also_now);
351 }
352 #endif  // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
353 
TEST_F(TimeTest,FromExplodedWithMilliseconds)354 TEST_F(TimeTest, FromExplodedWithMilliseconds) {
355   // Some platform implementations of FromExploded are liable to drop
356   // milliseconds if we aren't careful.
357   Time now = Time::NowFromSystemTime();
358   Time::Exploded exploded1 = {0};
359   now.UTCExplode(&exploded1);
360   exploded1.millisecond = 500;
361   Time time;
362   EXPECT_TRUE(Time::FromUTCExploded(exploded1, &time));
363   Time::Exploded exploded2 = {0};
364   time.UTCExplode(&exploded2);
365   EXPECT_EQ(exploded1.millisecond, exploded2.millisecond);
366 }
367 
TEST_F(TimeTest,ZeroIsSymmetric)368 TEST_F(TimeTest, ZeroIsSymmetric) {
369   Time zero_time(Time::FromTimeT(0));
370   EXPECT_EQ(0, zero_time.ToTimeT());
371 
372   EXPECT_EQ(0.0, zero_time.InSecondsFSinceUnixEpoch());
373 }
374 
375 // Note that this test does not check whether the implementation correctly
376 // accounts for the local time zone.
TEST_F(TimeTest,LocalExplode)377 TEST_F(TimeTest, LocalExplode) {
378   Time a = Time::Now();
379   Time::Exploded exploded;
380   a.LocalExplode(&exploded);
381 
382   Time b;
383   EXPECT_TRUE(Time::FromLocalExploded(exploded, &b));
384 
385   // The exploded structure doesn't have microseconds, and on Mac & Linux, the
386   // internal OS conversion uses seconds, which will cause truncation. So we
387   // can only make sure that the delta is within one second.
388   EXPECT_LT(a - b, Seconds(1));
389 }
390 
TEST_F(TimeTest,UTCExplode)391 TEST_F(TimeTest, UTCExplode) {
392   Time a = Time::Now();
393   Time::Exploded exploded;
394   a.UTCExplode(&exploded);
395 
396   Time b;
397   EXPECT_TRUE(Time::FromUTCExploded(exploded, &b));
398 
399   // The exploded structure doesn't have microseconds, and on Mac & Linux, the
400   // internal OS conversion uses seconds, which will cause truncation. So we
401   // can only make sure that the delta is within one second.
402   EXPECT_LT(a - b, Seconds(1));
403 }
404 
TEST_F(TimeTest,UTCMidnight)405 TEST_F(TimeTest, UTCMidnight) {
406   Time::Exploded exploded;
407   Time::Now().UTCMidnight().UTCExplode(&exploded);
408   EXPECT_EQ(0, exploded.hour);
409   EXPECT_EQ(0, exploded.minute);
410   EXPECT_EQ(0, exploded.second);
411   EXPECT_EQ(0, exploded.millisecond);
412 }
413 
414 // Note that this test does not check whether the implementation correctly
415 // accounts for the local time zone.
TEST_F(TimeTest,LocalMidnight)416 TEST_F(TimeTest, LocalMidnight) {
417   Time::Exploded exploded;
418   Time::Now().LocalMidnight().LocalExplode(&exploded);
419   EXPECT_EQ(0, exploded.hour);
420   EXPECT_EQ(0, exploded.minute);
421   EXPECT_EQ(0, exploded.second);
422   EXPECT_EQ(0, exploded.millisecond);
423 }
424 
425 // These tests require the ability to fake the local time zone.
426 #if BUILDFLAG(IS_FUCHSIA)
TEST_F(TimeTest,LocalExplodeIsLocal)427 TEST_F(TimeTest, LocalExplodeIsLocal) {
428   // Set the default time zone to a zone with an offset different from UTC.
429   test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
430 
431   // The member contains useful values for this test, which uses it as UTC.
432   Time comparison_time_utc(comparison_time_local_);
433 
434   Time::Exploded utc_exploded;
435   comparison_time_utc.UTCExplode(&utc_exploded);
436 
437   Time::Exploded local_exploded;
438   comparison_time_utc.LocalExplode(&local_exploded);
439 
440   // The year, month, and day are the same because the (negative) offset is
441   // smaller than the hour in the test time. Similarly, there is no underflow
442   // for hour.
443   EXPECT_EQ(utc_exploded.year, local_exploded.year);
444   EXPECT_EQ(utc_exploded.month, local_exploded.month);
445   EXPECT_EQ(utc_exploded.day_of_week, local_exploded.day_of_week);
446   EXPECT_EQ(utc_exploded.day_of_month, local_exploded.day_of_month);
447   EXPECT_EQ(utc_exploded.hour + kHonoluluOffsetHours, local_exploded.hour);
448   EXPECT_EQ(utc_exploded.minute, local_exploded.minute);
449   EXPECT_EQ(utc_exploded.second, local_exploded.second);
450   EXPECT_EQ(utc_exploded.millisecond, local_exploded.millisecond);
451 
452   Time time_from_local_exploded;
453   EXPECT_TRUE(
454       Time::FromLocalExploded(local_exploded, &time_from_local_exploded));
455 
456   EXPECT_EQ(comparison_time_utc, time_from_local_exploded);
457 
458   // Unexplode the local time using the non-local method.
459   // The resulting time should be offset hours earlier.
460   Time time_from_utc_exploded;
461   EXPECT_TRUE(Time::FromUTCExploded(local_exploded, &time_from_utc_exploded));
462   EXPECT_EQ(comparison_time_utc + Hours(kHonoluluOffsetHours),
463             time_from_utc_exploded);
464 }
465 
TEST_F(TimeTest,LocalMidnightIsLocal)466 TEST_F(TimeTest, LocalMidnightIsLocal) {
467   // Set the default time zone to a zone with an offset different from UTC.
468   test::ScopedRestoreDefaultTimezone honolulu_time(kHonoluluTimeZoneId);
469 
470   // The member contains useful values for this test, which uses it as UTC.
471   Time comparison_time_utc(comparison_time_local_);
472 
473   Time::Exploded utc_midnight_exploded;
474   comparison_time_utc.UTCMidnight().UTCExplode(&utc_midnight_exploded);
475 
476   // Local midnight exploded in UTC will have an offset hour instead of 0.
477   Time::Exploded local_midnight_utc_exploded;
478   comparison_time_utc.LocalMidnight().UTCExplode(&local_midnight_utc_exploded);
479 
480   // The year, month, and day are the same because the (negative) offset is
481   // smaller than the hour in the test time and thus both midnights round down
482   // on the same day.
483   EXPECT_EQ(utc_midnight_exploded.year, local_midnight_utc_exploded.year);
484   EXPECT_EQ(utc_midnight_exploded.month, local_midnight_utc_exploded.month);
485   EXPECT_EQ(utc_midnight_exploded.day_of_week,
486             local_midnight_utc_exploded.day_of_week);
487   EXPECT_EQ(utc_midnight_exploded.day_of_month,
488             local_midnight_utc_exploded.day_of_month);
489   EXPECT_EQ(0, utc_midnight_exploded.hour);
490   EXPECT_EQ(0 - kHonoluluOffsetHours, local_midnight_utc_exploded.hour);
491   EXPECT_EQ(0, local_midnight_utc_exploded.minute);
492   EXPECT_EQ(0, local_midnight_utc_exploded.second);
493   EXPECT_EQ(0, local_midnight_utc_exploded.millisecond);
494 
495   // Local midnight exploded in local time will have no offset.
496   Time::Exploded local_midnight_exploded;
497   comparison_time_utc.LocalMidnight().LocalExplode(&local_midnight_exploded);
498 
499   EXPECT_EQ(utc_midnight_exploded.year, local_midnight_exploded.year);
500   EXPECT_EQ(utc_midnight_exploded.month, local_midnight_exploded.month);
501   EXPECT_EQ(utc_midnight_exploded.day_of_week,
502             local_midnight_exploded.day_of_week);
503   EXPECT_EQ(utc_midnight_exploded.day_of_month,
504             local_midnight_exploded.day_of_month);
505   EXPECT_EQ(0, local_midnight_exploded.hour);
506   EXPECT_EQ(0, local_midnight_exploded.minute);
507   EXPECT_EQ(0, local_midnight_exploded.second);
508   EXPECT_EQ(0, local_midnight_exploded.millisecond);
509 }
510 #endif  // BUILDFLAG(IS_FUCHSIA)
511 
TEST_F(TimeTest,ParseTimeTest1)512 TEST_F(TimeTest, ParseTimeTest1) {
513   time_t current_time = 0;
514   time(&current_time);
515 
516   struct tm local_time = {};
517   char time_buf[64] = {};
518 #if BUILDFLAG(IS_WIN)
519   localtime_s(&local_time, &current_time);
520   asctime_s(time_buf, std::size(time_buf), &local_time);
521 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
522   localtime_r(&current_time, &local_time);
523   asctime_r(&local_time, time_buf);
524 #endif
525 
526   Time parsed_time;
527   EXPECT_TRUE(Time::FromString(time_buf, &parsed_time));
528   EXPECT_EQ(current_time, parsed_time.ToTimeT());
529 }
530 
TEST_F(TimeTest,DayOfWeekSunday)531 TEST_F(TimeTest, DayOfWeekSunday) {
532   Time time;
533   EXPECT_TRUE(Time::FromString("Sun, 06 May 2012 12:00:00 GMT", &time));
534   Time::Exploded exploded;
535   time.UTCExplode(&exploded);
536   EXPECT_EQ(0, exploded.day_of_week);
537 }
538 
TEST_F(TimeTest,DayOfWeekWednesday)539 TEST_F(TimeTest, DayOfWeekWednesday) {
540   Time time;
541   EXPECT_TRUE(Time::FromString("Wed, 09 May 2012 12:00:00 GMT", &time));
542   Time::Exploded exploded;
543   time.UTCExplode(&exploded);
544   EXPECT_EQ(3, exploded.day_of_week);
545 }
546 
TEST_F(TimeTest,DayOfWeekSaturday)547 TEST_F(TimeTest, DayOfWeekSaturday) {
548   Time time;
549   EXPECT_TRUE(Time::FromString("Sat, 12 May 2012 12:00:00 GMT", &time));
550   Time::Exploded exploded;
551   time.UTCExplode(&exploded);
552   EXPECT_EQ(6, exploded.day_of_week);
553 }
554 
TEST_F(TimeTest,ParseTimeTest2)555 TEST_F(TimeTest, ParseTimeTest2) {
556   Time parsed_time;
557   EXPECT_TRUE(Time::FromString("Mon, 15 Oct 2007 19:45:00 GMT", &parsed_time));
558   EXPECT_EQ(comparison_time_pdt_, parsed_time);
559 }
560 
TEST_F(TimeTest,ParseTimeTest3)561 TEST_F(TimeTest, ParseTimeTest3) {
562   Time parsed_time;
563   EXPECT_TRUE(Time::FromString("15 Oct 07 12:45:00", &parsed_time));
564   EXPECT_EQ(comparison_time_local_, parsed_time);
565 }
566 
TEST_F(TimeTest,ParseTimeTest4)567 TEST_F(TimeTest, ParseTimeTest4) {
568   Time parsed_time;
569   EXPECT_TRUE(Time::FromString("15 Oct 07 19:45 GMT", &parsed_time));
570   EXPECT_EQ(comparison_time_pdt_, parsed_time);
571 }
572 
TEST_F(TimeTest,ParseTimeTest5)573 TEST_F(TimeTest, ParseTimeTest5) {
574   Time parsed_time;
575   EXPECT_TRUE(Time::FromString("Mon Oct 15 12:45 PDT 2007", &parsed_time));
576   EXPECT_EQ(comparison_time_pdt_, parsed_time);
577 }
578 
TEST_F(TimeTest,ParseTimeTest6)579 TEST_F(TimeTest, ParseTimeTest6) {
580   Time parsed_time;
581   EXPECT_TRUE(Time::FromString("Monday, Oct 15, 2007 12:45 PM", &parsed_time));
582   EXPECT_EQ(comparison_time_local_, parsed_time);
583 }
584 
TEST_F(TimeTest,ParseTimeTest7)585 TEST_F(TimeTest, ParseTimeTest7) {
586   Time parsed_time;
587   EXPECT_TRUE(Time::FromString("10/15/07 12:45:00 PM", &parsed_time));
588   EXPECT_EQ(comparison_time_local_, parsed_time);
589 }
590 
TEST_F(TimeTest,ParseTimeTest8)591 TEST_F(TimeTest, ParseTimeTest8) {
592   Time parsed_time;
593   EXPECT_TRUE(Time::FromString("15-OCT-2007 12:45pm", &parsed_time));
594   EXPECT_EQ(comparison_time_local_, parsed_time);
595 }
596 
TEST_F(TimeTest,ParseTimeTest9)597 TEST_F(TimeTest, ParseTimeTest9) {
598   Time parsed_time;
599   EXPECT_TRUE(Time::FromString("16 Oct 2007 4:45-JST (Tuesday)", &parsed_time));
600   EXPECT_EQ(comparison_time_pdt_, parsed_time);
601 }
602 
TEST_F(TimeTest,ParseTimeTest10)603 TEST_F(TimeTest, ParseTimeTest10) {
604   Time parsed_time;
605   EXPECT_TRUE(Time::FromString("15/10/07 12:45", &parsed_time));
606   EXPECT_EQ(parsed_time, comparison_time_local_);
607 }
608 
TEST_F(TimeTest,ParseTimeTest11)609 TEST_F(TimeTest, ParseTimeTest11) {
610   Time parsed_time;
611   EXPECT_TRUE(Time::FromString("2007-10-15 12:45:00", &parsed_time));
612   EXPECT_EQ(parsed_time, comparison_time_local_);
613 }
614 
615 // Test some of edge cases around epoch, etc.
TEST_F(TimeTest,ParseTimeTestEpoch0)616 TEST_F(TimeTest, ParseTimeTestEpoch0) {
617   Time parsed_time;
618 
619   // time_t == epoch == 0
620   EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:00 +0100 1970",
621                                &parsed_time));
622   EXPECT_EQ(0, parsed_time.ToTimeT());
623   EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:00 GMT 1970",
624                                &parsed_time));
625   EXPECT_EQ(0, parsed_time.ToTimeT());
626 }
627 
TEST_F(TimeTest,ParseTimeTestEpoch1)628 TEST_F(TimeTest, ParseTimeTestEpoch1) {
629   Time parsed_time;
630 
631   // time_t == 1 second after epoch == 1
632   EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:01 +0100 1970",
633                                &parsed_time));
634   EXPECT_EQ(1, parsed_time.ToTimeT());
635   EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:01 GMT 1970",
636                                &parsed_time));
637   EXPECT_EQ(1, parsed_time.ToTimeT());
638 }
639 
TEST_F(TimeTest,ParseTimeTestEpoch2)640 TEST_F(TimeTest, ParseTimeTestEpoch2) {
641   Time parsed_time;
642 
643   // time_t == 2 seconds after epoch == 2
644   EXPECT_TRUE(Time::FromString("Thu Jan 01 01:00:02 +0100 1970",
645                                &parsed_time));
646   EXPECT_EQ(2, parsed_time.ToTimeT());
647   EXPECT_TRUE(Time::FromString("Thu Jan 01 00:00:02 GMT 1970",
648                                &parsed_time));
649   EXPECT_EQ(2, parsed_time.ToTimeT());
650 }
651 
TEST_F(TimeTest,ParseTimeTestEpochNeg1)652 TEST_F(TimeTest, ParseTimeTestEpochNeg1) {
653   Time parsed_time;
654 
655   // time_t == 1 second before epoch == -1
656   EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:59 +0100 1970",
657                                &parsed_time));
658   EXPECT_EQ(-1, parsed_time.ToTimeT());
659   EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 1969",
660                                &parsed_time));
661   EXPECT_EQ(-1, parsed_time.ToTimeT());
662 }
663 
664 // If time_t is 32 bits, a date after year 2038 will overflow time_t and
665 // cause timegm() to return -1.  The parsed time should not be 1 second
666 // before epoch.
TEST_F(TimeTest,ParseTimeTestEpochNotNeg1)667 TEST_F(TimeTest, ParseTimeTestEpochNotNeg1) {
668   Time parsed_time;
669 
670   EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:59 GMT 2100",
671                                &parsed_time));
672   EXPECT_NE(-1, parsed_time.ToTimeT());
673 }
674 
TEST_F(TimeTest,ParseTimeTestEpochNeg2)675 TEST_F(TimeTest, ParseTimeTestEpochNeg2) {
676   Time parsed_time;
677 
678   // time_t == 2 seconds before epoch == -2
679   EXPECT_TRUE(Time::FromString("Thu Jan 01 00:59:58 +0100 1970",
680                                &parsed_time));
681   EXPECT_EQ(-2, parsed_time.ToTimeT());
682   EXPECT_TRUE(Time::FromString("Wed Dec 31 23:59:58 GMT 1969",
683                                &parsed_time));
684   EXPECT_EQ(-2, parsed_time.ToTimeT());
685 }
686 
TEST_F(TimeTest,ParseTimeTestEpoch1960)687 TEST_F(TimeTest, ParseTimeTestEpoch1960) {
688   Time parsed_time;
689 
690   // time_t before Epoch, in 1960
691   EXPECT_TRUE(Time::FromString("Wed Jun 29 19:40:01 +0100 1960",
692                                &parsed_time));
693   EXPECT_EQ(-299999999, parsed_time.ToTimeT());
694   EXPECT_TRUE(Time::FromString("Wed Jun 29 18:40:01 GMT 1960",
695                                &parsed_time));
696   EXPECT_EQ(-299999999, parsed_time.ToTimeT());
697   EXPECT_TRUE(Time::FromString("Wed Jun 29 17:40:01 GMT 1960",
698                                &parsed_time));
699   EXPECT_EQ(-300003599, parsed_time.ToTimeT());
700 }
701 
TEST_F(TimeTest,ParseTimeTestEmpty)702 TEST_F(TimeTest, ParseTimeTestEmpty) {
703   Time parsed_time;
704   EXPECT_FALSE(Time::FromString("", &parsed_time));
705 }
706 
TEST_F(TimeTest,ParseTimeTestInvalidString)707 TEST_F(TimeTest, ParseTimeTestInvalidString) {
708   Time parsed_time;
709   EXPECT_FALSE(Time::FromString("Monday morning 2000", &parsed_time));
710 }
711 
TEST_F(TimeTest,ExplodeBeforeUnixEpoch)712 TEST_F(TimeTest, ExplodeBeforeUnixEpoch) {
713   static const int kUnixEpochYear = 1970;  // In case this changes (ha!).
714   Time t;
715   Time::Exploded exploded;
716 
717   t = Time::UnixEpoch() - Microseconds(1);
718   t.UTCExplode(&exploded);
719   EXPECT_TRUE(exploded.HasValidValues());
720   // Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds).
721   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
722   EXPECT_EQ(12, exploded.month);
723   EXPECT_EQ(31, exploded.day_of_month);
724   EXPECT_EQ(23, exploded.hour);
725   EXPECT_EQ(59, exploded.minute);
726   EXPECT_EQ(59, exploded.second);
727   EXPECT_EQ(999, exploded.millisecond);
728 
729   t = Time::UnixEpoch() - Microseconds(999);
730   t.UTCExplode(&exploded);
731   EXPECT_TRUE(exploded.HasValidValues());
732   // Should be 1969-12-31 23:59:59 999 milliseconds (and 1 microsecond).
733   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
734   EXPECT_EQ(12, exploded.month);
735   EXPECT_EQ(31, exploded.day_of_month);
736   EXPECT_EQ(23, exploded.hour);
737   EXPECT_EQ(59, exploded.minute);
738   EXPECT_EQ(59, exploded.second);
739   EXPECT_EQ(999, exploded.millisecond);
740 
741   t = Time::UnixEpoch() - Microseconds(1000);
742   t.UTCExplode(&exploded);
743   EXPECT_TRUE(exploded.HasValidValues());
744   // Should be 1969-12-31 23:59:59 999 milliseconds.
745   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
746   EXPECT_EQ(12, exploded.month);
747   EXPECT_EQ(31, exploded.day_of_month);
748   EXPECT_EQ(23, exploded.hour);
749   EXPECT_EQ(59, exploded.minute);
750   EXPECT_EQ(59, exploded.second);
751   EXPECT_EQ(999, exploded.millisecond);
752 
753   t = Time::UnixEpoch() - Microseconds(1001);
754   t.UTCExplode(&exploded);
755   EXPECT_TRUE(exploded.HasValidValues());
756   // Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds).
757   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
758   EXPECT_EQ(12, exploded.month);
759   EXPECT_EQ(31, exploded.day_of_month);
760   EXPECT_EQ(23, exploded.hour);
761   EXPECT_EQ(59, exploded.minute);
762   EXPECT_EQ(59, exploded.second);
763   EXPECT_EQ(998, exploded.millisecond);
764 
765   t = Time::UnixEpoch() - Milliseconds(1000);
766   t.UTCExplode(&exploded);
767   EXPECT_TRUE(exploded.HasValidValues());
768   // Should be 1969-12-31 23:59:59.
769   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
770   EXPECT_EQ(12, exploded.month);
771   EXPECT_EQ(31, exploded.day_of_month);
772   EXPECT_EQ(23, exploded.hour);
773   EXPECT_EQ(59, exploded.minute);
774   EXPECT_EQ(59, exploded.second);
775   EXPECT_EQ(0, exploded.millisecond);
776 
777   t = Time::UnixEpoch() - Milliseconds(1001);
778   t.UTCExplode(&exploded);
779   EXPECT_TRUE(exploded.HasValidValues());
780   // Should be 1969-12-31 23:59:58 999 milliseconds.
781   EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
782   EXPECT_EQ(12, exploded.month);
783   EXPECT_EQ(31, exploded.day_of_month);
784   EXPECT_EQ(23, exploded.hour);
785   EXPECT_EQ(59, exploded.minute);
786   EXPECT_EQ(58, exploded.second);
787   EXPECT_EQ(999, exploded.millisecond);
788 
789   // Make sure we still handle at/after Unix epoch correctly.
790   t = Time::UnixEpoch();
791   t.UTCExplode(&exploded);
792   EXPECT_TRUE(exploded.HasValidValues());
793   // Should be 1970-12-31 00:00:00 0 milliseconds.
794   EXPECT_EQ(kUnixEpochYear, exploded.year);
795   EXPECT_EQ(1, exploded.month);
796   EXPECT_EQ(1, exploded.day_of_month);
797   EXPECT_EQ(0, exploded.hour);
798   EXPECT_EQ(0, exploded.minute);
799   EXPECT_EQ(0, exploded.second);
800   EXPECT_EQ(0, exploded.millisecond);
801 
802   t = Time::UnixEpoch() + Microseconds(1);
803   t.UTCExplode(&exploded);
804   EXPECT_TRUE(exploded.HasValidValues());
805   // Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond).
806   EXPECT_EQ(kUnixEpochYear, exploded.year);
807   EXPECT_EQ(1, exploded.month);
808   EXPECT_EQ(1, exploded.day_of_month);
809   EXPECT_EQ(0, exploded.hour);
810   EXPECT_EQ(0, exploded.minute);
811   EXPECT_EQ(0, exploded.second);
812   EXPECT_EQ(0, exploded.millisecond);
813 
814   t = Time::UnixEpoch() + Microseconds(999);
815   t.UTCExplode(&exploded);
816   EXPECT_TRUE(exploded.HasValidValues());
817   // Should be 1970-01-01 00:00:00 0 milliseconds (and 999 microseconds).
818   EXPECT_EQ(kUnixEpochYear, exploded.year);
819   EXPECT_EQ(1, exploded.month);
820   EXPECT_EQ(1, exploded.day_of_month);
821   EXPECT_EQ(0, exploded.hour);
822   EXPECT_EQ(0, exploded.minute);
823   EXPECT_EQ(0, exploded.second);
824   EXPECT_EQ(0, exploded.millisecond);
825 
826   t = Time::UnixEpoch() + Microseconds(1000);
827   t.UTCExplode(&exploded);
828   EXPECT_TRUE(exploded.HasValidValues());
829   // Should be 1970-01-01 00:00:00 1 millisecond.
830   EXPECT_EQ(kUnixEpochYear, exploded.year);
831   EXPECT_EQ(1, exploded.month);
832   EXPECT_EQ(1, exploded.day_of_month);
833   EXPECT_EQ(0, exploded.hour);
834   EXPECT_EQ(0, exploded.minute);
835   EXPECT_EQ(0, exploded.second);
836   EXPECT_EQ(1, exploded.millisecond);
837 
838   t = Time::UnixEpoch() + Milliseconds(1000);
839   t.UTCExplode(&exploded);
840   EXPECT_TRUE(exploded.HasValidValues());
841   // Should be 1970-01-01 00:00:01.
842   EXPECT_EQ(kUnixEpochYear, exploded.year);
843   EXPECT_EQ(1, exploded.month);
844   EXPECT_EQ(1, exploded.day_of_month);
845   EXPECT_EQ(0, exploded.hour);
846   EXPECT_EQ(0, exploded.minute);
847   EXPECT_EQ(1, exploded.second);
848   EXPECT_EQ(0, exploded.millisecond);
849 
850   t = Time::UnixEpoch() + Milliseconds(1001);
851   t.UTCExplode(&exploded);
852   EXPECT_TRUE(exploded.HasValidValues());
853   // Should be 1970-01-01 00:00:01 1 millisecond.
854   EXPECT_EQ(kUnixEpochYear, exploded.year);
855   EXPECT_EQ(1, exploded.month);
856   EXPECT_EQ(1, exploded.day_of_month);
857   EXPECT_EQ(0, exploded.hour);
858   EXPECT_EQ(0, exploded.minute);
859   EXPECT_EQ(1, exploded.second);
860   EXPECT_EQ(1, exploded.millisecond);
861 }
862 
TEST_F(TimeTest,Max)863 TEST_F(TimeTest, Max) {
864   constexpr Time kMax = Time::Max();
865   static_assert(kMax.is_max());
866   static_assert(kMax == Time::Max());
867   EXPECT_GT(kMax, Time::Now());
868   static_assert(kMax > Time());
869   EXPECT_TRUE((Time::Now() - kMax).is_negative());
870   EXPECT_TRUE((kMax - Time::Now()).is_positive());
871 }
872 
TEST_F(TimeTest,MaxConversions)873 TEST_F(TimeTest, MaxConversions) {
874   constexpr Time kMax = Time::Max();
875   static_assert(std::numeric_limits<int64_t>::max() == kMax.ToInternalValue(),
876                 "");
877 
878   Time t =
879       Time::FromSecondsSinceUnixEpoch(std::numeric_limits<double>::infinity());
880   EXPECT_TRUE(t.is_max());
881   EXPECT_EQ(std::numeric_limits<double>::infinity(),
882             t.InSecondsFSinceUnixEpoch());
883 
884   t = Time::FromMillisecondsSinceUnixEpoch(
885       std::numeric_limits<double>::infinity());
886   EXPECT_TRUE(t.is_max());
887   EXPECT_EQ(std::numeric_limits<double>::infinity(),
888             t.InMillisecondsFSinceUnixEpoch());
889 
890   t = Time::FromTimeT(std::numeric_limits<time_t>::max());
891   EXPECT_TRUE(t.is_max());
892   EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
893 
894 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
895   struct timeval tval;
896   tval.tv_sec = std::numeric_limits<time_t>::max();
897   tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
898   t = Time::FromTimeVal(tval);
899   EXPECT_TRUE(t.is_max());
900   tval = t.ToTimeVal();
901   EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
902   EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
903       tval.tv_usec);
904 #endif
905 
906 #if BUILDFLAG(IS_APPLE)
907   t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity());
908   EXPECT_TRUE(t.is_max());
909   EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(),
910             t.ToCFAbsoluteTime());
911 #endif
912 
913 #if BUILDFLAG(IS_WIN)
914   FILETIME ftime;
915   ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
916   ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
917   t = Time::FromFileTime(ftime);
918   EXPECT_TRUE(t.is_max());
919   ftime = t.ToFileTime();
920   EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
921   EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
922 #endif
923 }
924 
TEST_F(TimeTest,Min)925 TEST_F(TimeTest, Min) {
926   constexpr Time kMin = Time::Min();
927   static_assert(kMin.is_min());
928   static_assert(kMin == Time::Min());
929   EXPECT_LT(kMin, Time::Now());
930   static_assert(kMin < Time());
931   EXPECT_TRUE((Time::Now() - kMin).is_positive());
932   EXPECT_TRUE((kMin - Time::Now()).is_negative());
933 }
934 
TEST_F(TimeTest,TimeTOverflow)935 TEST_F(TimeTest, TimeTOverflow) {
936   // We always expect Max and Min Time values to map to the extreme of the range
937   // of time_t because we have things that make this assumption - Even if such a
938   // time were representable in time_t.
939   EXPECT_EQ(std::numeric_limits<time_t>::max(), Time::Max().ToTimeT());
940   EXPECT_EQ(std::numeric_limits<time_t>::min(), Time::Min().ToTimeT());
941 
942   // In the bad old days time_t was 32 bit. Occasionally it still is.
943   // Usually it is 64 bit. It must be one or the other.
944   constexpr bool time_t_is_32_bit = sizeof(time_t) == sizeof(int32_t);
945   static_assert(time_t_is_32_bit || sizeof(time_t) == sizeof(int64_t));
946 
947   // base::Time internally represents time as microseconds since the Windows
948   // epoch as an int64_t. When time_t is a int64_t of seconds since the Unix
949   // epoch, time_t can represent the maxiumum value of base::Time. A 32 bit
950   // time_t can not represent it.
951 
952   // If we have a 32 bit time_t, check that a non-infinite value of one
953   // microsecond less than the max value of a base::Time still maps to the max
954   // value of time_t.
955   if (time_t_is_32_bit) {
956     constexpr Time kMaxMinusOne =
957         Time() + base::Microseconds(std::numeric_limits<int64_t>::max() - 1);
958     static_assert(!kMaxMinusOne.is_max());
959     EXPECT_EQ(std::numeric_limits<time_t>::max(), kMaxMinusOne.ToTimeT());
960   }
961   // Converting a base::Time to a time_t subtracts the value of the UnixEpoch in
962   // microseconds since the Windows epoch from the current time value. As such
963   // we expect a value of the minimum time plus one, subtracted by the UnixEpoch
964   // value to be clamped by the TimeDelta math, meaning that we will see a
965   // minimum value in the time_t, 32 bit or 64 bit
966   constexpr Time kMinPlusOne =
967       Time() + base::Microseconds(std::numeric_limits<int64_t>::min() + 1);
968   static_assert(!kMinPlusOne.is_min());
969   EXPECT_EQ(std::numeric_limits<time_t>::min(), kMinPlusOne.ToTimeT());
970 
971   // We also expect the same behaviour for Min plus the Unix Epoch.
972   constexpr Time kMinPlusUnix =
973       Time() + base::Microseconds(std::numeric_limits<int64_t>::min() +
974                                   Time::kTimeTToMicrosecondsOffset);
975   static_assert(!kMinPlusUnix.is_min());
976   EXPECT_EQ(std::numeric_limits<time_t>::min(), kMinPlusUnix.ToTimeT());
977 
978   // We expect Min plus the UnixEpoch plus 1 in microseconds to convert back to
979   // one more than Min - a negative number of microseconds far before the
980   // Windows epoch of 1601-01-01. It will representable in seconds as a 64 bit
981   // time_t, but not on a 32 bit time_t, which can only represent values
982   // starting from 1901-12-13
983   constexpr Time kMinPlusUnixPlusOne =
984       Time() + base::Microseconds(std::numeric_limits<int64_t>::min() +
985                                   Time::kTimeTToMicrosecondsOffset + 1);
986   static_assert(!kMinPlusUnixPlusOne.is_min());
987   if (time_t_is_32_bit) {
988     EXPECT_EQ(std::numeric_limits<time_t>::min(),
989               kMinPlusUnixPlusOne.ToTimeT());
990   } else {
991     EXPECT_NE(std::numeric_limits<time_t>::min(),
992               kMinPlusUnixPlusOne.ToTimeT());
993   }
994 }
995 
996 #if BUILDFLAG(IS_ANDROID)
TEST_F(TimeTest,FromLocalExplodedCrashOnAndroid)997 TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) {
998   // This crashed inside Time:: FromLocalExploded() on Android 4.1.2.
999   // See http://crbug.com/287821
1000   Time::Exploded midnight = {2013,  // year
1001                              10,    // month
1002                              0,     // day_of_week
1003                              13,    // day_of_month
1004                              0,     // hour
1005                              0,     // minute
1006                              0,     // second
1007   };
1008   // The string passed to putenv() must be a char* and the documentation states
1009   // that it 'becomes part of the environment', so use a static buffer.
1010   static char buffer[] = "TZ=America/Santiago";
1011   putenv(buffer);
1012   tzset();
1013   Time t;
1014   EXPECT_TRUE(Time::FromLocalExploded(midnight, &t));
1015   EXPECT_EQ(1381633200, t.ToTimeT());
1016 }
1017 #endif  // BUILDFLAG(IS_ANDROID)
1018 
1019 // Regression test for https://crbug.com/1104442
TEST_F(TimeTest,Explode_Y10KCompliance)1020 TEST_F(TimeTest, Explode_Y10KCompliance) {
1021   constexpr int kDaysPerYear = 365;
1022   constexpr int64_t kHalfYearInMicros = Days(kDaysPerYear / 2).InMicroseconds();
1023 
1024   // The Y2038 issue occurs when a 32-bit signed integer overflows.
1025   constexpr int64_t kYear2038MicrosOffset =
1026       Time::kTimeTToMicrosecondsOffset +
1027       (std::numeric_limits<int32_t>::max() * Time::kMicrosecondsPerSecond);
1028 
1029   // 1 March 10000 at noon.
1030   constexpr int64_t kYear10000YearsOffset = 10000 - 1970;
1031   constexpr int kExtraLeapDaysOverThoseYears = 1947;
1032   constexpr int kDaysFromJanToMar10000 = 31 + 29;
1033   constexpr int64_t kMarch10000MicrosOffset =
1034       Time::kTimeTToMicrosecondsOffset +
1035       Days(kYear10000YearsOffset * kDaysPerYear + kExtraLeapDaysOverThoseYears +
1036            kDaysFromJanToMar10000)
1037           .InMicroseconds() +
1038       Hours(12).InMicroseconds();
1039 
1040   // Windows uses a 64-bit signed integer type that reperesents the number of
1041   // 1/10 microsecond ticks.
1042   constexpr int64_t kWindowsMaxMicrosOffset =
1043       std::numeric_limits<int64_t>::max() / 10;
1044 
1045   // ICU's Calendar API uses double values. Thus, the maximum supported value is
1046   // the maximum integer that can be represented by a double.
1047   static_assert(std::numeric_limits<double>::radix == 2);
1048   constexpr int64_t kMaxIntegerAsDoubleMillis =
1049       int64_t{1} << std::numeric_limits<double>::digits;
1050   constexpr int64_t kIcuMaxMicrosOffset =
1051       Time::kTimeTToMicrosecondsOffset +
1052       (kMaxIntegerAsDoubleMillis * Time::kMicrosecondsPerMillisecond + 999);
1053 
1054   const auto make_time = [](int64_t micros) {
1055     return Time::FromDeltaSinceWindowsEpoch(Microseconds(micros));
1056   };
1057 
1058   const struct TestCase {
1059     Time time;
1060     Time::Exploded expected;
1061   } kTestCases[] = {
1062       // A very long time ago.
1063       {Time::Min(), Time::Exploded{-290677, 12, 4, 23, 19, 59, 5, 224}},
1064 
1065       // Before/On/After 1 Jan 1601.
1066       {make_time(-kHalfYearInMicros),
1067        Time::Exploded{1600, 7, 1, 3, 0, 0, 0, 0}},
1068       {make_time(0), Time::Exploded{1601, 1, 1, 1, 0, 0, 0, 0}},
1069       {make_time(kHalfYearInMicros), Time::Exploded{1601, 7, 1, 2, 0, 0, 0, 0}},
1070 
1071       // Before/On/After 1 Jan 1970.
1072       {make_time(Time::kTimeTToMicrosecondsOffset - kHalfYearInMicros),
1073        Time::Exploded{1969, 7, 4, 3, 0, 0, 0, 0}},
1074       {make_time(Time::kTimeTToMicrosecondsOffset),
1075        Time::Exploded{1970, 1, 4, 1, 0, 0, 0, 0}},
1076       {make_time(Time::kTimeTToMicrosecondsOffset + kHalfYearInMicros),
1077        Time::Exploded{1970, 7, 4, 2, 0, 0, 0, 0}},
1078 
1079       // Before/On/After 19 January 2038.
1080       {make_time(kYear2038MicrosOffset - kHalfYearInMicros),
1081        Time::Exploded{2037, 7, 2, 21, 3, 14, 7, 0}},
1082       {make_time(kYear2038MicrosOffset),
1083        Time::Exploded{2038, 1, 2, 19, 3, 14, 7, 0}},
1084       {make_time(kYear2038MicrosOffset + kHalfYearInMicros),
1085        Time::Exploded{2038, 7, 2, 20, 3, 14, 7, 0}},
1086 
1087       // Before/On/After 1 March 10000 at noon.
1088       {make_time(kMarch10000MicrosOffset - kHalfYearInMicros),
1089        Time::Exploded{9999, 9, 3, 1, 12, 0, 0, 0}},
1090       {make_time(kMarch10000MicrosOffset),
1091        Time::Exploded{10000, 3, 3, 1, 12, 0, 0, 0}},
1092       {make_time(kMarch10000MicrosOffset + kHalfYearInMicros),
1093        Time::Exploded{10000, 8, 3, 30, 12, 0, 0, 0}},
1094 
1095       // Before/On/After Windows Max (14 September 30828).
1096       {make_time(kWindowsMaxMicrosOffset - kHalfYearInMicros),
1097        Time::Exploded{30828, 3, 4, 16, 2, 48, 5, 477}},
1098       {make_time(kWindowsMaxMicrosOffset),
1099        Time::Exploded{30828, 9, 4, 14, 2, 48, 5, 477}},
1100       {make_time(kWindowsMaxMicrosOffset + kHalfYearInMicros),
1101        Time::Exploded{30829, 3, 4, 15, 2, 48, 5, 477}},
1102 
1103       // Before/On/After ICU Max.
1104       {make_time(kIcuMaxMicrosOffset - kHalfYearInMicros),
1105        Time::Exploded{287396, 4, 3, 13, 8, 59, 0, 992}},
1106       {make_time(kIcuMaxMicrosOffset),
1107        Time::Exploded{287396, 10, 3, 12, 8, 59, 0, 992}},
1108       {make_time(kIcuMaxMicrosOffset + kHalfYearInMicros),
1109        Time::Exploded{287397, 4, 3, 12, 8, 59, 0, 992}},
1110 
1111       // A very long time from now.
1112       {Time::Max(), Time::Exploded{293878, 1, 4, 10, 4, 0, 54, 775}},
1113   };
1114 
1115   for (const TestCase& test_case : kTestCases) {
1116     SCOPED_TRACE(testing::Message() << "Time: " << test_case.time);
1117 
1118     Time::Exploded exploded = {};
1119     test_case.time.UTCExplode(&exploded);
1120 
1121     // Confirm the implementation provides a correct conversion for all inputs
1122     // within the guaranteed range (as discussed in the header comments). If an
1123     // implementation provides a result for inputs outside the guaranteed range,
1124     // the result must still be correct.
1125     if (exploded.HasValidValues()) {
1126       EXPECT_EQ(test_case.expected.year, exploded.year);
1127       EXPECT_EQ(test_case.expected.month, exploded.month);
1128       EXPECT_EQ(test_case.expected.day_of_week, exploded.day_of_week);
1129       EXPECT_EQ(test_case.expected.day_of_month, exploded.day_of_month);
1130       EXPECT_EQ(test_case.expected.hour, exploded.hour);
1131       EXPECT_EQ(test_case.expected.minute, exploded.minute);
1132       EXPECT_EQ(test_case.expected.second, exploded.second);
1133       EXPECT_EQ(test_case.expected.millisecond, exploded.millisecond);
1134     } else {
1135       // The implementation could not provide a conversion. That is only allowed
1136       // for inputs outside the guaranteed range.
1137       const bool is_in_range =
1138           test_case.time >= make_time(0) &&
1139           test_case.time <= make_time(kWindowsMaxMicrosOffset);
1140       EXPECT_FALSE(is_in_range);
1141     }
1142   }
1143 }
1144 
1145 #if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
1146 // Regression tests for https://crbug.com/1198313: base::Time::UTCExplode and
1147 // base::Time::LocalExplode should not be locale-dependent.
TEST_F(TimeTest,UTCExplodedIsLocaleIndependent)1148 TEST_F(TimeTest, UTCExplodedIsLocaleIndependent) {
1149   // Time-to-Exploded could be using libc or ICU functions.
1150   // Set the ICU locale and timezone and the libc timezone.
1151   // We're not setting the libc locale because the libc time functions are
1152   // locale-independent and the th_TH.utf8 locale was not available on all
1153   // trybots at the time this test was added.
1154   // th-TH maps to a non-gregorian calendar.
1155   test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
1156   test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
1157   ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
1158   ASSERT_TRUE(scoped_libc_tz.is_success());
1159 
1160   Time::Exploded utc_exploded_orig;
1161   utc_exploded_orig.year = 2020;
1162   utc_exploded_orig.month = 7;
1163   utc_exploded_orig.day_of_week = 5;  // Friday
1164   utc_exploded_orig.day_of_month = 3;
1165   utc_exploded_orig.hour = 12;
1166   utc_exploded_orig.minute = 0;
1167   utc_exploded_orig.second = 0;
1168   utc_exploded_orig.millisecond = 0;
1169 
1170   Time time;
1171   ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
1172 
1173   // Round trip to UTC Exploded should produce the exact same result.
1174   Time::Exploded utc_exploded;
1175   time.UTCExplode(&utc_exploded);
1176   EXPECT_EQ(utc_exploded_orig.year, utc_exploded.year);
1177   EXPECT_EQ(utc_exploded_orig.month, utc_exploded.month);
1178   EXPECT_EQ(utc_exploded_orig.day_of_week, utc_exploded.day_of_week);
1179   EXPECT_EQ(utc_exploded_orig.day_of_month, utc_exploded.day_of_month);
1180   EXPECT_EQ(utc_exploded_orig.hour, utc_exploded.hour);
1181   EXPECT_EQ(utc_exploded_orig.minute, utc_exploded.minute);
1182   EXPECT_EQ(utc_exploded_orig.second, utc_exploded.second);
1183   EXPECT_EQ(utc_exploded_orig.millisecond, utc_exploded.millisecond);
1184 }
1185 
TEST_F(TimeTest,LocalExplodedIsLocaleIndependent)1186 TEST_F(TimeTest, LocalExplodedIsLocaleIndependent) {
1187   // Time-to-Exploded could be using libc or ICU functions.
1188   // Set the ICU locale and timezone and the libc timezone.
1189   // We're not setting the libc locale because the libc time functions are
1190   // locale-independent and the th_TH.utf8 locale was not available on all
1191   // trybots at the time this test was added.
1192   // th-TH maps to a non-gregorian calendar.
1193   test::ScopedRestoreICUDefaultLocale scoped_icu_locale(kThaiLocale);
1194   test::ScopedRestoreDefaultTimezone scoped_timezone(kBangkokTimeZoneId);
1195   ScopedLibcTZ scoped_libc_tz(kBangkokTimeZoneId);
1196   ASSERT_TRUE(scoped_libc_tz.is_success());
1197 
1198   Time::Exploded utc_exploded_orig;
1199   utc_exploded_orig.year = 2020;
1200   utc_exploded_orig.month = 7;
1201   utc_exploded_orig.day_of_week = 5;  // Friday
1202   utc_exploded_orig.day_of_month = 3;
1203   utc_exploded_orig.hour = 12;
1204   utc_exploded_orig.minute = 0;
1205   utc_exploded_orig.second = 0;
1206   utc_exploded_orig.millisecond = 0;
1207 
1208   Time time;
1209   ASSERT_TRUE(base::Time::FromUTCExploded(utc_exploded_orig, &time));
1210 
1211   std::optional<TimeDelta> expected_delta =
1212       GetTimeZoneOffsetAtTime(kBangkokTimeZoneId, time);
1213 
1214   ASSERT_TRUE(expected_delta.has_value());
1215 
1216   // This is to be sure that the day has not changed
1217   ASSERT_LT(*expected_delta, base::Hours(12));
1218 
1219   Time::Exploded local_exploded;
1220   time.LocalExplode(&local_exploded);
1221 
1222   TimeDelta actual_delta = TimePassedAfterMidnight(local_exploded) -
1223                            TimePassedAfterMidnight(utc_exploded_orig);
1224 
1225   EXPECT_EQ(utc_exploded_orig.year, local_exploded.year);
1226   EXPECT_EQ(utc_exploded_orig.month, local_exploded.month);
1227   EXPECT_EQ(utc_exploded_orig.day_of_week, local_exploded.day_of_week);
1228   EXPECT_EQ(utc_exploded_orig.day_of_month, local_exploded.day_of_month);
1229   EXPECT_EQ(actual_delta, *expected_delta);
1230 }
1231 #endif  // BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_CHROMEOS)
1232 
TEST_F(TimeTest,FromExploded_MinMax)1233 TEST_F(TimeTest, FromExploded_MinMax) {
1234   Time::Exploded exploded = {0};
1235   exploded.month = 1;
1236   exploded.day_of_month = 1;
1237 
1238   Time parsed_time;
1239 
1240   if (Time::kExplodedMinYear != std::numeric_limits<int>::min()) {
1241     exploded.year = Time::kExplodedMinYear;
1242     EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
1243 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
1244     // On Windows, January 1, 1601 00:00:00 is actually the null time.
1245     EXPECT_FALSE(parsed_time.is_null());
1246 #endif
1247 
1248 #if !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_APPLE)
1249     // The dates earlier than |kExplodedMinYear| that don't work are OS version
1250     // dependent on Android and Mac (for example, macOS 10.13 seems to support
1251     // dates before 1902).
1252     exploded.year--;
1253     EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
1254     EXPECT_TRUE(parsed_time.is_null());
1255 #endif
1256   }
1257 
1258   if (Time::kExplodedMaxYear != std::numeric_limits<int>::max()) {
1259     exploded.year = Time::kExplodedMaxYear;
1260     exploded.month = 12;
1261     exploded.day_of_month = 31;
1262     exploded.hour = 23;
1263     exploded.minute = 59;
1264     exploded.second = 59;
1265     exploded.millisecond = 999;
1266     EXPECT_TRUE(Time::FromUTCExploded(exploded, &parsed_time));
1267     EXPECT_FALSE(parsed_time.is_null());
1268 
1269     exploded.year++;
1270     EXPECT_FALSE(Time::FromUTCExploded(exploded, &parsed_time));
1271     EXPECT_TRUE(parsed_time.is_null());
1272   }
1273 }
1274 
1275 class TimeOverride {
1276  public:
Now()1277   static Time Now() {
1278     now_time_ += Seconds(1);
1279     return now_time_;
1280   }
1281 
1282   static Time now_time_;
1283 };
1284 
1285 // static
1286 Time TimeOverride::now_time_;
1287 
1288 // Disabled on Android due to flakes; see https://crbug.com/1474884.
1289 #if BUILDFLAG(IS_ANDROID)
1290 #define MAYBE_NowOverride DISABLED_NowOverride
1291 #else
1292 #define MAYBE_NowOverride NowOverride
1293 #endif
TEST_F(TimeTest,MAYBE_NowOverride)1294 TEST_F(TimeTest, MAYBE_NowOverride) {
1295   TimeOverride::now_time_ = Time::UnixEpoch();
1296 
1297   // Choose a reference time that we know to be in the past but close to now.
1298   Time build_time = GetBuildTime();
1299 
1300   // Override is not active. All Now() methods should return a time greater than
1301   // the build time.
1302   EXPECT_LT(build_time, Time::Now());
1303   EXPECT_GT(Time::Max(), Time::Now());
1304   EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
1305   EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
1306   EXPECT_LT(build_time, Time::NowFromSystemTime());
1307   EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
1308   EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
1309   EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
1310 
1311   {
1312     // Set override.
1313     subtle::ScopedTimeClockOverrides overrides(&TimeOverride::Now, nullptr,
1314                                                nullptr);
1315 
1316     // Overridden value is returned and incremented when Now() or
1317     // NowFromSystemTime() is called.
1318     EXPECT_EQ(Time::UnixEpoch() + Seconds(1), Time::Now());
1319     EXPECT_EQ(Time::UnixEpoch() + Seconds(2), Time::Now());
1320     EXPECT_EQ(Time::UnixEpoch() + Seconds(3), Time::NowFromSystemTime());
1321     EXPECT_EQ(Time::UnixEpoch() + Seconds(4), Time::NowFromSystemTime());
1322 
1323     // IgnoringOverride methods still return real time.
1324     EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
1325     EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
1326     EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
1327     EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
1328 
1329     // IgnoringOverride methods didn't call NowOverrideClock::Now().
1330     EXPECT_EQ(Time::UnixEpoch() + Seconds(5), Time::Now());
1331     EXPECT_EQ(Time::UnixEpoch() + Seconds(6), Time::NowFromSystemTime());
1332   }
1333 
1334   // All methods return real time again.
1335   EXPECT_LT(build_time, Time::Now());
1336   EXPECT_GT(Time::Max(), Time::Now());
1337   EXPECT_LT(build_time, subtle::TimeNowIgnoringOverride());
1338   EXPECT_GT(Time::Max(), subtle::TimeNowIgnoringOverride());
1339   EXPECT_LT(build_time, Time::NowFromSystemTime());
1340   EXPECT_GT(Time::Max(), Time::NowFromSystemTime());
1341   EXPECT_LT(build_time, subtle::TimeNowFromSystemTimeIgnoringOverride());
1342   EXPECT_GT(Time::Max(), subtle::TimeNowFromSystemTimeIgnoringOverride());
1343 }
1344 
1345 #undef MAYBE_NowOverride
1346 
1347 #if BUILDFLAG(IS_FUCHSIA)
TEST(ZxTimeTest,ToFromConversions)1348 TEST(ZxTimeTest, ToFromConversions) {
1349   Time unix_epoch = Time::UnixEpoch();
1350   EXPECT_EQ(unix_epoch.ToZxTime(), 0);
1351   EXPECT_EQ(Time::FromZxTime(6000000000), unix_epoch + Seconds(6));
1352 
1353   TimeTicks ticks_now = TimeTicks::Now();
1354   EXPECT_GE(ticks_now.ToZxTime(), 0);
1355   TimeTicks ticks_later = ticks_now + Seconds(2);
1356   EXPECT_EQ((ticks_later.ToZxTime() - ticks_now.ToZxTime()), 2000000000);
1357   EXPECT_EQ(TimeTicks::FromZxTime(3000000000), TimeTicks() + Seconds(3));
1358 
1359   EXPECT_EQ(TimeDelta().ToZxDuration(), 0);
1360   EXPECT_EQ(TimeDelta::FromZxDuration(0), TimeDelta());
1361 
1362   EXPECT_EQ(Seconds(2).ToZxDuration(), 2000000000);
1363   EXPECT_EQ(TimeDelta::FromZxDuration(4000000000), Seconds(4));
1364 }
1365 #endif  // BUILDFLAG(IS_FUCHSIA)
1366 
TEST(TimeTicks,Deltas)1367 TEST(TimeTicks, Deltas) {
1368   for (int index = 0; index < 50; index++) {
1369     TimeTicks ticks_start = TimeTicks::Now();
1370     base::PlatformThread::Sleep(base::Milliseconds(10));
1371     TimeTicks ticks_stop = TimeTicks::Now();
1372     TimeDelta delta = ticks_stop - ticks_start;
1373     // Note:  Although we asked for a 10ms sleep, if the
1374     // time clock has a finer granularity than the Sleep()
1375     // clock, it is quite possible to wakeup early.  Here
1376     // is how that works:
1377     //      Time(ms timer)      Time(us timer)
1378     //          5                   5010
1379     //          6                   6010
1380     //          7                   7010
1381     //          8                   8010
1382     //          9                   9000
1383     // Elapsed  4ms                 3990us
1384     //
1385     // Unfortunately, our InMilliseconds() function truncates
1386     // rather than rounds.  We should consider fixing this
1387     // so that our averages come out better.
1388     EXPECT_GE(delta.InMilliseconds(), 9);
1389     EXPECT_GE(delta.InMicroseconds(), 9000);
1390     EXPECT_EQ(delta.InSeconds(), 0);
1391   }
1392 }
1393 
HighResClockTest(TimeTicks (* GetTicks)())1394 static void HighResClockTest(TimeTicks (*GetTicks)()) {
1395   // IsHighResolution() is false on some systems.  Since the product still works
1396   // even if it's false, it makes this entire test questionable.
1397   if (!TimeTicks::IsHighResolution())
1398     return;
1399 
1400   // Why do we loop here?
1401   // We're trying to measure that intervals increment in a VERY small amount
1402   // of time --  less than 15ms.  Unfortunately, if we happen to have a
1403   // context switch in the middle of our test, the context switch could easily
1404   // exceed our limit.  So, we iterate on this several times.  As long as we're
1405   // able to detect the fine-granularity timers at least once, then the test
1406   // has succeeded.
1407 
1408   const int kTargetGranularityUs = 15000;  // 15ms
1409 
1410   bool success = false;
1411   int retries = 100;  // Arbitrary.
1412   TimeDelta delta;
1413   while (!success && retries--) {
1414     TimeTicks ticks_start = GetTicks();
1415     // Loop until we can detect that the clock has changed.  Non-HighRes timers
1416     // will increment in chunks, e.g. 15ms.  By spinning until we see a clock
1417     // change, we detect the minimum time between measurements.
1418     do {
1419       delta = GetTicks() - ticks_start;
1420     } while (delta.InMilliseconds() == 0);
1421 
1422     if (delta.InMicroseconds() <= kTargetGranularityUs)
1423       success = true;
1424   }
1425 
1426   // In high resolution mode, we expect to see the clock increment
1427   // in intervals less than 15ms.
1428   EXPECT_TRUE(success);
1429 }
1430 
TEST(TimeTicks,HighRes)1431 TEST(TimeTicks, HighRes) {
1432   HighResClockTest(&TimeTicks::Now);
1433 }
1434 
1435 class TimeTicksOverride {
1436  public:
Now()1437   static TimeTicks Now() {
1438     now_ticks_ += Seconds(1);
1439     return now_ticks_;
1440   }
1441 
1442   static TimeTicks now_ticks_;
1443 };
1444 
1445 // static
1446 TimeTicks TimeTicksOverride::now_ticks_;
1447 
TEST(TimeTicks,NowOverride)1448 TEST(TimeTicks, NowOverride) {
1449   TimeTicksOverride::now_ticks_ = TimeTicks::Min();
1450 
1451   // Override is not active. All Now() methods should return a sensible value.
1452   EXPECT_LT(TimeTicks::Min(), TimeTicks::UnixEpoch());
1453   EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
1454   EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
1455   EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
1456   EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
1457 
1458   {
1459     // Set override.
1460     subtle::ScopedTimeClockOverrides overrides(nullptr, &TimeTicksOverride::Now,
1461                                                nullptr);
1462 
1463     // Overridden value is returned and incremented when Now() is called.
1464     EXPECT_EQ(TimeTicks::Min() + Seconds(1), TimeTicks::Now());
1465     EXPECT_EQ(TimeTicks::Min() + Seconds(2), TimeTicks::Now());
1466 
1467     // NowIgnoringOverride() still returns real ticks.
1468     EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
1469     EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
1470 
1471     // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
1472     EXPECT_EQ(TimeTicks::Min() + Seconds(3), TimeTicks::Now());
1473   }
1474 
1475   // All methods return real ticks again.
1476   EXPECT_LT(TimeTicks::UnixEpoch(), TimeTicks::Now());
1477   EXPECT_GT(TimeTicks::Max(), TimeTicks::Now());
1478   EXPECT_LT(TimeTicks::UnixEpoch(), subtle::TimeTicksNowIgnoringOverride());
1479   EXPECT_GT(TimeTicks::Max(), subtle::TimeTicksNowIgnoringOverride());
1480 }
1481 
1482 class ThreadTicksOverride {
1483  public:
Now()1484   static ThreadTicks Now() {
1485     now_ticks_ += Seconds(1);
1486     return now_ticks_;
1487   }
1488 
1489   static ThreadTicks now_ticks_;
1490 };
1491 
1492 // static
1493 ThreadTicks ThreadTicksOverride::now_ticks_;
1494 
1495 // IOS doesn't support ThreadTicks::Now().
1496 #if BUILDFLAG(IS_IOS)
1497 #define MAYBE_NowOverride DISABLED_NowOverride
1498 #else
1499 #define MAYBE_NowOverride NowOverride
1500 #endif
TEST(ThreadTicks,MAYBE_NowOverride)1501 TEST(ThreadTicks, MAYBE_NowOverride) {
1502   ThreadTicksOverride::now_ticks_ = ThreadTicks::Min();
1503 
1504   // Override is not active. All Now() methods should return a sensible value.
1505   ThreadTicks initial_thread_ticks = ThreadTicks::Now();
1506   EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
1507   EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
1508   EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
1509   EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
1510 
1511   {
1512     // Set override.
1513     subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr,
1514                                                &ThreadTicksOverride::Now);
1515 
1516     // Overridden value is returned and incremented when Now() is called.
1517     EXPECT_EQ(ThreadTicks::Min() + Seconds(1), ThreadTicks::Now());
1518     EXPECT_EQ(ThreadTicks::Min() + Seconds(2), ThreadTicks::Now());
1519 
1520     // NowIgnoringOverride() still returns real ticks.
1521     EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
1522     EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
1523 
1524     // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
1525     EXPECT_EQ(ThreadTicks::Min() + Seconds(3), ThreadTicks::Now());
1526   }
1527 
1528   // All methods return real ticks again.
1529   EXPECT_LE(initial_thread_ticks, ThreadTicks::Now());
1530   EXPECT_GT(ThreadTicks::Max(), ThreadTicks::Now());
1531   EXPECT_LE(initial_thread_ticks, subtle::ThreadTicksNowIgnoringOverride());
1532   EXPECT_GT(ThreadTicks::Max(), subtle::ThreadTicksNowIgnoringOverride());
1533 }
1534 
TEST(ThreadTicks,ThreadNow)1535 TEST(ThreadTicks, ThreadNow) {
1536   if (ThreadTicks::IsSupported()) {
1537     ThreadTicks::WaitUntilInitialized();
1538     TimeTicks begin = TimeTicks::Now();
1539     ThreadTicks begin_thread = ThreadTicks::Now();
1540     // Make sure that ThreadNow value is non-zero.
1541     EXPECT_GT(begin_thread, ThreadTicks());
1542     // Sleep for 10 milliseconds to get the thread de-scheduled.
1543     base::PlatformThread::Sleep(base::Milliseconds(10));
1544     ThreadTicks end_thread = ThreadTicks::Now();
1545     TimeTicks end = TimeTicks::Now();
1546     TimeDelta delta = end - begin;
1547     TimeDelta delta_thread = end_thread - begin_thread;
1548     // Make sure that some thread time have elapsed.
1549     EXPECT_GE(delta_thread.InMicroseconds(), 0);
1550     // But the thread time is at least 9ms less than clock time.
1551     TimeDelta difference = delta - delta_thread;
1552     EXPECT_GE(difference.InMicroseconds(), 9000);
1553   }
1554 }
1555 
TEST(TimeTicks,SnappedToNextTickBasic)1556 TEST(TimeTicks, SnappedToNextTickBasic) {
1557   base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000);
1558   base::TimeDelta interval = base::Microseconds(1000);
1559   base::TimeTicks timestamp;
1560 
1561   // Timestamp in previous interval.
1562   timestamp = base::TimeTicks::FromInternalValue(3500);
1563   EXPECT_EQ(4000,
1564             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1565 
1566   // Timestamp in next interval.
1567   timestamp = base::TimeTicks::FromInternalValue(4500);
1568   EXPECT_EQ(5000,
1569             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1570 
1571   // Timestamp multiple intervals before.
1572   timestamp = base::TimeTicks::FromInternalValue(2500);
1573   EXPECT_EQ(3000,
1574             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1575 
1576   // Timestamp multiple intervals after.
1577   timestamp = base::TimeTicks::FromInternalValue(6500);
1578   EXPECT_EQ(7000,
1579             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1580 
1581   // Timestamp on previous interval.
1582   timestamp = base::TimeTicks::FromInternalValue(3000);
1583   EXPECT_EQ(3000,
1584             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1585 
1586   // Timestamp on next interval.
1587   timestamp = base::TimeTicks::FromInternalValue(5000);
1588   EXPECT_EQ(5000,
1589             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1590 
1591   // Timestamp equal to phase.
1592   timestamp = base::TimeTicks::FromInternalValue(4000);
1593   EXPECT_EQ(4000,
1594             timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1595 }
1596 
TEST(TimeTicks,SnappedToNextTickOverflow)1597 TEST(TimeTicks, SnappedToNextTickOverflow) {
1598   // int(big_timestamp / interval) < 0, so this causes a crash if the number of
1599   // intervals elapsed is attempted to be stored in an int.
1600   base::TimeTicks phase = base::TimeTicks::FromInternalValue(0);
1601   base::TimeDelta interval = base::Microseconds(4000);
1602   base::TimeTicks big_timestamp =
1603       base::TimeTicks::FromInternalValue(8635916564000);
1604 
1605   EXPECT_EQ(8635916564000,
1606             big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
1607   EXPECT_EQ(8635916564000,
1608             big_timestamp.SnappedToNextTick(big_timestamp, interval)
1609                 .ToInternalValue());
1610 }
1611 
1612 #if BUILDFLAG(IS_ANDROID)
TEST(TimeTicks,Android_FromUptimeMillis_ClocksMatch)1613 TEST(TimeTicks, Android_FromUptimeMillis_ClocksMatch) {
1614   JNIEnv* const env = android::AttachCurrentThread();
1615   android::ScopedJavaLocalRef<jclass> clazz(
1616       android::GetClass(env, "android/os/SystemClock"));
1617   ASSERT_TRUE(clazz.obj());
1618   const jmethodID method_id =
1619       android::MethodID::Get<android::MethodID::TYPE_STATIC>(
1620           env, clazz.obj(), "uptimeMillis", "()J");
1621   ASSERT_FALSE(!method_id);
1622   // Subtract 1ms from the expected lower bound to allow millisecond-level
1623   // truncation performed in uptimeMillis().
1624   const TimeTicks lower_bound_ticks = TimeTicks::Now() - Milliseconds(1);
1625   const TimeTicks converted_ticks = TimeTicks::FromUptimeMillis(
1626       env->CallStaticLongMethod(clazz.obj(), method_id));
1627   const TimeTicks upper_bound_ticks = TimeTicks::Now();
1628   EXPECT_LE(lower_bound_ticks, converted_ticks);
1629   EXPECT_GE(upper_bound_ticks, converted_ticks);
1630 }
1631 
TEST(TimeTicks,Android_FromJavaNanoTime_ClocksMatch)1632 TEST(TimeTicks, Android_FromJavaNanoTime_ClocksMatch) {
1633   JNIEnv* const env = android::AttachCurrentThread();
1634   android::ScopedJavaLocalRef<jclass> clazz(
1635       android::GetClass(env, "java/lang/System"));
1636   ASSERT_TRUE(clazz.obj());
1637   const jmethodID method_id =
1638       android::MethodID::Get<android::MethodID::TYPE_STATIC>(env, clazz.obj(),
1639                                                              "nanoTime", "()J");
1640   ASSERT_FALSE(!method_id);
1641   const TimeTicks lower_bound_ticks = TimeTicks::Now();
1642   const TimeTicks converted_ticks = TimeTicks::FromJavaNanoTime(
1643       env->CallStaticLongMethod(clazz.obj(), method_id));
1644   // Add 1us to the expected upper bound to allow microsecond-level
1645   // truncation performed in TimeTicks::Now().
1646   const TimeTicks upper_bound_ticks = TimeTicks::Now() + Microseconds(1);
1647   EXPECT_LE(lower_bound_ticks, converted_ticks);
1648   EXPECT_GE(upper_bound_ticks, converted_ticks);
1649 }
1650 #endif  // BUILDFLAG(IS_ANDROID)
1651 
1652 class LiveTicksOverride {
1653  public:
Now()1654   static LiveTicks Now() {
1655     now_ticks_ += Seconds(1);
1656     return now_ticks_;
1657   }
1658 
1659   static LiveTicks now_ticks_;
1660 };
1661 
1662 // static
1663 LiveTicks LiveTicksOverride::now_ticks_;
1664 
TEST(LiveTicks,NowOverride)1665 TEST(LiveTicks, NowOverride) {
1666   LiveTicksOverride::now_ticks_ = LiveTicks::Min();
1667 
1668   // Override is not active. All Now() methods should return a sensible value.
1669   LiveTicks initial_live_ticks = LiveTicks::Now();
1670   EXPECT_LE(initial_live_ticks, LiveTicks::Now());
1671   EXPECT_LT(LiveTicks::Now(), LiveTicks::Max());
1672   EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
1673   EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
1674 
1675   {
1676     // Set override.
1677     subtle::ScopedTimeClockOverrides overrides(nullptr, nullptr, nullptr,
1678                                                &LiveTicksOverride::Now);
1679 
1680     // Overridden value is returned and incremented when Now() is called.
1681     EXPECT_EQ(LiveTicks::Min() + Seconds(1), LiveTicks::Now());
1682     EXPECT_EQ(LiveTicks::Min() + Seconds(2), LiveTicks::Now());
1683 
1684     // NowIgnoringOverride() still returns real ticks.
1685     EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
1686     EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
1687 
1688     // IgnoringOverride methods didn't call NowOverrideTickClock::NowTicks().
1689     EXPECT_EQ(LiveTicks::Min() + Seconds(3), LiveTicks::Now());
1690   }
1691 
1692   // All methods return real ticks again.
1693   EXPECT_LE(initial_live_ticks, LiveTicks::Now());
1694   EXPECT_LT(LiveTicks::Now(), LiveTicks::Max());
1695   EXPECT_LE(initial_live_ticks, subtle::LiveTicksNowIgnoringOverride());
1696   EXPECT_LT(subtle::LiveTicksNowIgnoringOverride(), LiveTicks::Max());
1697 }
1698 
TEST(TimeDelta,FromAndIn)1699 TEST(TimeDelta, FromAndIn) {
1700   // static_assert also checks that the contained expression is a constant
1701   // expression, meaning all its components are suitable for initializing global
1702   // variables.
1703   static_assert(Days(2) == Hours(48));
1704   static_assert(Hours(3) == Minutes(180));
1705   static_assert(Minutes(2) == Seconds(120));
1706   static_assert(Seconds(2) == Milliseconds(2000));
1707   static_assert(Milliseconds(2) == Microseconds(2000));
1708   static_assert(Seconds(2.3) == Milliseconds(2300));
1709   static_assert(Milliseconds(2.5) == Microseconds(2500));
1710   static_assert(Days(13).InDays() == 13);
1711   static_assert(Hours(13).InHours() == 13);
1712   static_assert(Minutes(13).InMinutes() == 13);
1713   static_assert(Seconds(13).InSeconds() == 13);
1714   static_assert(Seconds(13).InSecondsF() == 13.0);
1715   static_assert(Milliseconds(13).InMilliseconds() == 13);
1716   static_assert(Milliseconds(13).InMillisecondsF() == 13.0);
1717   static_assert(Seconds(13.1).InSeconds() == 13);
1718   static_assert(Seconds(13.1).InSecondsF() == 13.1);
1719   static_assert(Milliseconds(13.3).InMilliseconds() == 13);
1720   static_assert(Milliseconds(13.3).InMillisecondsF() == 13.3);
1721   static_assert(Microseconds(13).InMicroseconds() == 13);
1722   static_assert(Microseconds(13.3).InMicroseconds() == 13);
1723   static_assert(Milliseconds(3.45678).InMillisecondsF() == 3.456);
1724   static_assert(Nanoseconds(12345).InNanoseconds() == 12000);
1725   static_assert(Nanoseconds(12345.678).InNanoseconds() == 12000);
1726 }
1727 
TEST(TimeDelta,InRoundsTowardsZero)1728 TEST(TimeDelta, InRoundsTowardsZero) {
1729   static_assert(Hours(23).InDays() == 0);
1730   static_assert(Hours(-23).InDays() == 0);
1731   static_assert(Minutes(59).InHours() == 0);
1732   static_assert(Minutes(-59).InHours() == 0);
1733   static_assert(Seconds(59).InMinutes() == 0);
1734   static_assert(Seconds(-59).InMinutes() == 0);
1735   static_assert(Milliseconds(999).InSeconds() == 0);
1736   static_assert(Milliseconds(-999).InSeconds() == 0);
1737   static_assert(Microseconds(999).InMilliseconds() == 0);
1738   static_assert(Microseconds(-999).InMilliseconds() == 0);
1739 }
1740 
TEST(TimeDelta,InDaysFloored)1741 TEST(TimeDelta, InDaysFloored) {
1742   static_assert(Hours(-25).InDaysFloored() == -2);
1743   static_assert(Hours(-24).InDaysFloored() == -1);
1744   static_assert(Hours(-23).InDaysFloored() == -1);
1745 
1746   static_assert(Hours(-1).InDaysFloored() == -1);
1747   static_assert(Hours(0).InDaysFloored() == 0);
1748   static_assert(Hours(1).InDaysFloored() == 0);
1749 
1750   static_assert(Hours(23).InDaysFloored() == 0);
1751   static_assert(Hours(24).InDaysFloored() == 1);
1752   static_assert(Hours(25).InDaysFloored() == 1);
1753 }
1754 
TEST(TimeDelta,InSecondsFloored)1755 TEST(TimeDelta, InSecondsFloored) {
1756   static_assert(Seconds(13.1).InSecondsFloored() == 13);
1757   static_assert(Seconds(13.9).InSecondsFloored() == 13);
1758   static_assert(Seconds(13).InSecondsFloored() == 13);
1759 
1760   static_assert(Milliseconds(1001).InSecondsFloored() == 1);
1761   static_assert(Milliseconds(1000).InSecondsFloored() == 1);
1762   static_assert(Milliseconds(999).InSecondsFloored() == 0);
1763   static_assert(Milliseconds(1).InSecondsFloored() == 0);
1764   static_assert(Milliseconds(0).InSecondsFloored() == 0);
1765   static_assert(Milliseconds(-1).InSecondsFloored() == -1);
1766   static_assert(Milliseconds(-1000).InSecondsFloored() == -1);
1767   static_assert(Milliseconds(-1001).InSecondsFloored() == -2);
1768 }
1769 
TEST(TimeDelta,InMillisecondsRoundedUp)1770 TEST(TimeDelta, InMillisecondsRoundedUp) {
1771   static_assert(Microseconds(-1001).InMillisecondsRoundedUp() == -1);
1772   static_assert(Microseconds(-1000).InMillisecondsRoundedUp() == -1);
1773   static_assert(Microseconds(-999).InMillisecondsRoundedUp() == 0);
1774 
1775   static_assert(Microseconds(-1).InMillisecondsRoundedUp() == 0);
1776   static_assert(Microseconds(0).InMillisecondsRoundedUp() == 0);
1777   static_assert(Microseconds(1).InMillisecondsRoundedUp() == 1);
1778 
1779   static_assert(Microseconds(999).InMillisecondsRoundedUp() == 1);
1780   static_assert(Microseconds(1000).InMillisecondsRoundedUp() == 1);
1781   static_assert(Microseconds(1001).InMillisecondsRoundedUp() == 2);
1782 }
1783 
1784 // Check that near-min/max values saturate rather than overflow when converted
1785 // lossily with InXXX() functions.  Only integral hour, minute, and nanosecond
1786 // conversions are checked, since those are the only cases where the return type
1787 // is small enough for saturation or overflow to occur.
TEST(TimeDelta,InXXXOverflow)1788 TEST(TimeDelta, InXXXOverflow) {
1789   constexpr TimeDelta kLargeDelta =
1790       Microseconds(std::numeric_limits<int64_t>::max() - 1);
1791   static_assert(!kLargeDelta.is_max());
1792   static_assert(std::numeric_limits<int>::max() == kLargeDelta.InHours());
1793   static_assert(std::numeric_limits<int>::max() == kLargeDelta.InMinutes());
1794   static_assert(
1795       std::numeric_limits<int64_t>::max() == kLargeDelta.InNanoseconds(), "");
1796 
1797   constexpr TimeDelta kLargeNegative =
1798       Microseconds(std::numeric_limits<int64_t>::min() + 1);
1799   static_assert(!kLargeNegative.is_min());
1800   static_assert(std::numeric_limits<int>::min() == kLargeNegative.InHours(),
1801                 "");
1802   static_assert(std::numeric_limits<int>::min() == kLargeNegative.InMinutes(),
1803                 "");
1804   static_assert(
1805       std::numeric_limits<int64_t>::min() == kLargeNegative.InNanoseconds(),
1806       "");
1807 }
1808 
1809 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
TEST(TimeDelta,TimeSpecConversion)1810 TEST(TimeDelta, TimeSpecConversion) {
1811   TimeDelta delta = Seconds(0);
1812   struct timespec result = delta.ToTimeSpec();
1813   EXPECT_EQ(result.tv_sec, 0);
1814   EXPECT_EQ(result.tv_nsec, 0);
1815   EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
1816 
1817   delta = Seconds(1);
1818   result = delta.ToTimeSpec();
1819   EXPECT_EQ(result.tv_sec, 1);
1820   EXPECT_EQ(result.tv_nsec, 0);
1821   EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
1822 
1823   delta = Microseconds(1);
1824   result = delta.ToTimeSpec();
1825   EXPECT_EQ(result.tv_sec, 0);
1826   EXPECT_EQ(result.tv_nsec, 1000);
1827   EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
1828 
1829   delta = Microseconds(Time::kMicrosecondsPerSecond + 1);
1830   result = delta.ToTimeSpec();
1831   EXPECT_EQ(result.tv_sec, 1);
1832   EXPECT_EQ(result.tv_nsec, 1000);
1833   EXPECT_EQ(delta, TimeDelta::FromTimeSpec(result));
1834 }
1835 #endif  // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
1836 
1837 // Our internal time format is serialized in things like databases, so it's
1838 // important that it's consistent across all our platforms.  We use the 1601
1839 // Windows epoch as the internal format across all platforms.
TEST(TimeDelta,WindowsEpoch)1840 TEST(TimeDelta, WindowsEpoch) {
1841   Time::Exploded exploded;
1842   exploded.year = 1970;
1843   exploded.month = 1;
1844   exploded.day_of_week = 0;  // Should be unusued.
1845   exploded.day_of_month = 1;
1846   exploded.hour = 0;
1847   exploded.minute = 0;
1848   exploded.second = 0;
1849   exploded.millisecond = 0;
1850   Time t;
1851   EXPECT_TRUE(Time::FromUTCExploded(exploded, &t));
1852   // Unix 1970 epoch.
1853   EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue());
1854 
1855   // We can't test 1601 epoch, since the system time functions on Linux
1856   // only compute years starting from 1900.
1857 }
1858 
TEST(TimeDelta,Hz)1859 TEST(TimeDelta, Hz) {
1860   static_assert(Hertz(1) == Seconds(1));
1861   EXPECT_EQ(Hertz(0), TimeDelta::Max());
1862   static_assert(Hertz(-1) == Seconds(-1));
1863   static_assert(Hertz(1000) == Milliseconds(1));
1864   static_assert(Hertz(0.5) == Seconds(2));
1865   static_assert(Hertz(std::numeric_limits<double>::infinity()) == TimeDelta(),
1866                 "");
1867 
1868   static_assert(Seconds(1).ToHz() == 1);
1869   static_assert(TimeDelta::Max().ToHz() == 0);
1870   static_assert(Seconds(-1).ToHz() == -1);
1871   static_assert(Milliseconds(1).ToHz() == 1000);
1872   static_assert(Seconds(2).ToHz() == 0.5);
1873   EXPECT_EQ(TimeDelta().ToHz(), std::numeric_limits<double>::infinity());
1874 
1875   // 60 Hz can't be represented exactly.
1876   static_assert(Hertz(60) * 60 != Seconds(1));
1877   static_assert(Hertz(60).ToHz() != 60);
1878   EXPECT_EQ(base::ClampRound(Hertz(60).ToHz()), 60);
1879 }
1880 
TEST(TimeDelta,Magnitude)1881 TEST(TimeDelta, Magnitude) {
1882   constexpr int64_t zero = 0;
1883   static_assert(Microseconds(zero) == Microseconds(zero).magnitude());
1884 
1885   constexpr int64_t one = 1;
1886   constexpr int64_t negative_one = -1;
1887   static_assert(Microseconds(one) == Microseconds(one).magnitude());
1888   static_assert(Microseconds(one) == Microseconds(negative_one).magnitude(),
1889                 "");
1890 
1891   constexpr int64_t max_int64_minus_one =
1892       std::numeric_limits<int64_t>::max() - 1;
1893   constexpr int64_t min_int64_plus_two =
1894       std::numeric_limits<int64_t>::min() + 2;
1895   static_assert(Microseconds(max_int64_minus_one) ==
1896                     Microseconds(max_int64_minus_one).magnitude(),
1897                 "");
1898   static_assert(Microseconds(max_int64_minus_one) ==
1899                     Microseconds(min_int64_plus_two).magnitude(),
1900                 "");
1901 
1902   static_assert(TimeDelta::Max() == TimeDelta::Min().magnitude());
1903 }
1904 
TEST(TimeDelta,ZeroMinMax)1905 TEST(TimeDelta, ZeroMinMax) {
1906   constexpr TimeDelta kZero;
1907   static_assert(kZero.is_zero());
1908 
1909   constexpr TimeDelta kMax = TimeDelta::Max();
1910   static_assert(kMax.is_max());
1911   static_assert(kMax == TimeDelta::Max());
1912   static_assert(kMax > Days(100 * 365));
1913   static_assert(kMax > kZero);
1914 
1915   constexpr TimeDelta kMin = TimeDelta::Min();
1916   static_assert(kMin.is_min());
1917   static_assert(kMin == TimeDelta::Min());
1918   static_assert(kMin < Days(-100 * 365));
1919   static_assert(kMin < kZero);
1920 }
1921 
TEST(TimeDelta,MaxConversions)1922 TEST(TimeDelta, MaxConversions) {
1923   // static_assert also confirms constexpr works as intended.
1924   constexpr TimeDelta kMax = TimeDelta::Max();
1925   static_assert(kMax.ToInternalValue() == std::numeric_limits<int64_t>::max(),
1926                 "");
1927   static_assert(kMax.InDays() == std::numeric_limits<int>::max());
1928   static_assert(kMax.InHours() == std::numeric_limits<int>::max());
1929   static_assert(kMax.InMinutes() == std::numeric_limits<int>::max());
1930   static_assert(kMax.InSecondsF() == std::numeric_limits<double>::infinity(),
1931                 "");
1932   static_assert(kMax.InSeconds() == std::numeric_limits<int64_t>::max());
1933   static_assert(kMax.InMillisecondsF() ==
1934                 std::numeric_limits<double>::infinity());
1935   static_assert(kMax.InMilliseconds() == std::numeric_limits<int64_t>::max());
1936   static_assert(kMax.InMillisecondsRoundedUp() ==
1937                 std::numeric_limits<int64_t>::max());
1938 
1939   static_assert(Days(std::numeric_limits<int64_t>::max()).is_max());
1940 
1941   static_assert(Hours(std::numeric_limits<int64_t>::max()).is_max());
1942 
1943   static_assert(Minutes(std::numeric_limits<int64_t>::max()).is_max());
1944 
1945   constexpr int64_t max_int = std::numeric_limits<int64_t>::max();
1946   constexpr int64_t min_int = std::numeric_limits<int64_t>::min();
1947 
1948   static_assert(Seconds(max_int / Time::kMicrosecondsPerSecond + 1).is_max(),
1949                 "");
1950 
1951   static_assert(
1952       Milliseconds(max_int / Time::kMillisecondsPerSecond + 1).is_max(), "");
1953 
1954   static_assert(Microseconds(max_int).is_max());
1955 
1956   static_assert(Seconds(min_int / Time::kMicrosecondsPerSecond - 1).is_min(),
1957                 "");
1958 
1959   static_assert(
1960       Milliseconds(min_int / Time::kMillisecondsPerSecond - 1).is_min(), "");
1961 
1962   static_assert(Microseconds(min_int).is_min());
1963 
1964   static_assert(Microseconds(std::numeric_limits<int64_t>::min()).is_min());
1965 
1966   static_assert(Seconds(std::numeric_limits<double>::infinity()).is_max());
1967 
1968   // Note that max_int/min_int will be rounded when converted to doubles - they
1969   // can't be exactly represented.
1970   constexpr double max_d = static_cast<double>(max_int);
1971   constexpr double min_d = static_cast<double>(min_int);
1972 
1973   static_assert(Seconds(max_d / Time::kMicrosecondsPerSecond + 1).is_max());
1974 
1975   static_assert(
1976       Microseconds(max_d).is_max(),
1977       "Make sure that 2^63 correctly gets clamped to `max` (crbug.com/612601)");
1978 
1979   static_assert(Milliseconds(std::numeric_limits<double>::infinity()).is_max(),
1980                 "");
1981 
1982   static_assert(Milliseconds(max_d / Time::kMillisecondsPerSecond * 2).is_max(),
1983                 "");
1984 
1985   static_assert(Seconds(min_d / Time::kMicrosecondsPerSecond - 1).is_min());
1986 
1987   static_assert(Milliseconds(min_d / Time::kMillisecondsPerSecond * 2).is_min(),
1988                 "");
1989 }
1990 
TEST(TimeDelta,MinConversions)1991 TEST(TimeDelta, MinConversions) {
1992   constexpr TimeDelta kMin = TimeDelta::Min();
1993 
1994   static_assert(kMin.InDays() == std::numeric_limits<int>::min());
1995   static_assert(kMin.InHours() == std::numeric_limits<int>::min());
1996   static_assert(kMin.InMinutes() == std::numeric_limits<int>::min());
1997   static_assert(kMin.InSecondsF() == -std::numeric_limits<double>::infinity(),
1998                 "");
1999   static_assert(kMin.InSeconds() == std::numeric_limits<int64_t>::min());
2000   static_assert(kMin.InMillisecondsF() ==
2001                 -std::numeric_limits<double>::infinity());
2002   static_assert(kMin.InMilliseconds() == std::numeric_limits<int64_t>::min());
2003   static_assert(kMin.InMillisecondsRoundedUp() ==
2004                 std::numeric_limits<int64_t>::min());
2005 }
2006 
TEST(TimeDelta,FiniteMaxMin)2007 TEST(TimeDelta, FiniteMaxMin) {
2008   constexpr TimeDelta kFiniteMax = TimeDelta::FiniteMax();
2009   constexpr TimeDelta kUnit = Microseconds(1);
2010   static_assert(kFiniteMax + kUnit == TimeDelta::Max());
2011   static_assert(kFiniteMax - kUnit < kFiniteMax);
2012 
2013   constexpr TimeDelta kFiniteMin = TimeDelta::FiniteMin();
2014   static_assert(kFiniteMin - kUnit == TimeDelta::Min());
2015   static_assert(kFiniteMin + kUnit > kFiniteMin);
2016 }
2017 
TEST(TimeDelta,NumericOperators)2018 TEST(TimeDelta, NumericOperators) {
2019   constexpr double d = 0.5;
2020   static_assert(Milliseconds(500) == Milliseconds(1000) * d);
2021   static_assert(Milliseconds(2000) == (Milliseconds(1000) / d));
2022   static_assert(Milliseconds(500) == (Milliseconds(1000) *= d));
2023   static_assert(Milliseconds(2000) == (Milliseconds(1000) /= d));
2024   static_assert(Milliseconds(500) == d * Milliseconds(1000));
2025 
2026   constexpr float f = 0.5;
2027   static_assert(Milliseconds(500) == Milliseconds(1000) * f);
2028   static_assert(Milliseconds(2000) == (Milliseconds(1000) / f));
2029   static_assert(Milliseconds(500) == (Milliseconds(1000) *= f));
2030   static_assert(Milliseconds(2000) == (Milliseconds(1000) /= f));
2031   static_assert(Milliseconds(500) == f * Milliseconds(1000));
2032 
2033   constexpr int i = 2;
2034   static_assert(Milliseconds(2000) == Milliseconds(1000) * i);
2035   static_assert(Milliseconds(500) == (Milliseconds(1000) / i));
2036   static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i));
2037   static_assert(Milliseconds(500) == (Milliseconds(1000) /= i));
2038   static_assert(Milliseconds(2000) == i * Milliseconds(1000));
2039 
2040   constexpr int64_t i64 = 2;
2041   static_assert(Milliseconds(2000) == Milliseconds(1000) * i64);
2042   static_assert(Milliseconds(500) == (Milliseconds(1000) / i64));
2043   static_assert(Milliseconds(2000) == (Milliseconds(1000) *= i64));
2044   static_assert(Milliseconds(500) == (Milliseconds(1000) /= i64));
2045   static_assert(Milliseconds(2000) == i64 * Milliseconds(1000));
2046 
2047   static_assert(Milliseconds(500) == Milliseconds(1000) * 0.5);
2048   static_assert(Milliseconds(2000) == (Milliseconds(1000) / 0.5));
2049   static_assert(Milliseconds(500) == (Milliseconds(1000) *= 0.5));
2050   static_assert(Milliseconds(2000) == (Milliseconds(1000) /= 0.5));
2051   static_assert(Milliseconds(500) == 0.5 * Milliseconds(1000));
2052 
2053   static_assert(Milliseconds(2000) == Milliseconds(1000) * 2);
2054   static_assert(Milliseconds(500) == (Milliseconds(1000) / 2));
2055   static_assert(Milliseconds(2000) == (Milliseconds(1000) *= 2));
2056   static_assert(Milliseconds(500) == (Milliseconds(1000) /= 2));
2057   static_assert(Milliseconds(2000) == 2 * Milliseconds(1000));
2058 }
2059 
2060 // Basic test of operators between TimeDeltas (without overflow -- next test
2061 // handles overflow).
TEST(TimeDelta,TimeDeltaOperators)2062 TEST(TimeDelta, TimeDeltaOperators) {
2063   constexpr TimeDelta kElevenSeconds = Seconds(11);
2064   constexpr TimeDelta kThreeSeconds = Seconds(3);
2065 
2066   static_assert(Seconds(14) == kElevenSeconds + kThreeSeconds);
2067   static_assert(Seconds(14) == kThreeSeconds + kElevenSeconds);
2068   static_assert(Seconds(8) == kElevenSeconds - kThreeSeconds);
2069   static_assert(Seconds(-8) == kThreeSeconds - kElevenSeconds);
2070   static_assert(11.0 / 3.0 == kElevenSeconds / kThreeSeconds);
2071   static_assert(3.0 / 11.0 == kThreeSeconds / kElevenSeconds);
2072   static_assert(3 == kElevenSeconds.IntDiv(kThreeSeconds));
2073   static_assert(0 == kThreeSeconds.IntDiv(kElevenSeconds));
2074   static_assert(Seconds(2) == kElevenSeconds % kThreeSeconds);
2075 }
2076 
TEST(TimeDelta,Overflows)2077 TEST(TimeDelta, Overflows) {
2078   // Some sanity checks. static_asserts used where possible to verify constexpr
2079   // evaluation at the same time.
2080   static_assert(TimeDelta::Max().is_max());
2081   static_assert(TimeDelta::Max().is_positive());
2082   static_assert((-TimeDelta::Max()).is_negative());
2083   static_assert(-TimeDelta::Max() == TimeDelta::Min());
2084   static_assert(TimeDelta() > -TimeDelta::Max());
2085 
2086   static_assert(TimeDelta::Min().is_min());
2087   static_assert(TimeDelta::Min().is_negative());
2088   static_assert((-TimeDelta::Min()).is_positive());
2089   static_assert(-TimeDelta::Min() == TimeDelta::Max());
2090   static_assert(TimeDelta() < -TimeDelta::Min());
2091 
2092   constexpr TimeDelta kLargeDelta = TimeDelta::Max() - Milliseconds(1);
2093   constexpr TimeDelta kLargeNegative = -kLargeDelta;
2094   static_assert(TimeDelta() > kLargeNegative);
2095   static_assert(!kLargeDelta.is_max());
2096   static_assert(!(-kLargeNegative).is_min());
2097 
2098   // Test +, -, * and / operators.
2099   constexpr TimeDelta kOneSecond = Seconds(1);
2100   static_assert((kLargeDelta + kOneSecond).is_max());
2101   static_assert((kLargeNegative + (-kOneSecond)).is_min());
2102   static_assert((kLargeNegative - kOneSecond).is_min());
2103   static_assert((kLargeDelta - (-kOneSecond)).is_max());
2104   static_assert((kLargeDelta * 2).is_max());
2105   static_assert((kLargeDelta * -2).is_min());
2106   static_assert((kLargeDelta / 0.5).is_max());
2107   static_assert((kLargeDelta / -0.5).is_min());
2108 
2109   // Test math operators on Max() and Min() values
2110   // Calculations that would overflow are saturated.
2111   static_assert(TimeDelta::Max() + kOneSecond == TimeDelta::Max());
2112   static_assert(TimeDelta::Max() * 7 == TimeDelta::Max());
2113   static_assert(TimeDelta::FiniteMax() + kOneSecond == TimeDelta::Max());
2114   static_assert(TimeDelta::Min() - kOneSecond == TimeDelta::Min());
2115   static_assert(TimeDelta::Min() * 7 == TimeDelta::Min());
2116   static_assert(TimeDelta::FiniteMin() - kOneSecond == TimeDelta::Min());
2117 
2118   // Division is done by converting to double with Max()/Min() converted to
2119   // +/- infinities.
2120   static_assert(
2121       TimeDelta::Max() / kOneSecond == std::numeric_limits<double>::infinity(),
2122       "");
2123   static_assert(TimeDelta::Max() / -kOneSecond ==
2124                     -std::numeric_limits<double>::infinity(),
2125                 "");
2126   static_assert(
2127       TimeDelta::Min() / kOneSecond == -std::numeric_limits<double>::infinity(),
2128       "");
2129   static_assert(
2130       TimeDelta::Min() / -kOneSecond == std::numeric_limits<double>::infinity(),
2131       "");
2132   static_assert(TimeDelta::Max().IntDiv(kOneSecond) ==
2133                     std::numeric_limits<int64_t>::max(),
2134                 "");
2135   static_assert(TimeDelta::Max().IntDiv(-kOneSecond) ==
2136                     std::numeric_limits<int64_t>::min(),
2137                 "");
2138   static_assert(TimeDelta::Min().IntDiv(kOneSecond) ==
2139                     std::numeric_limits<int64_t>::min(),
2140                 "");
2141   static_assert(TimeDelta::Min().IntDiv(-kOneSecond) ==
2142                     std::numeric_limits<int64_t>::max(),
2143                 "");
2144   static_assert(TimeDelta::Max() % kOneSecond == TimeDelta::Max());
2145   static_assert(TimeDelta::Max() % -kOneSecond == TimeDelta::Max());
2146   static_assert(TimeDelta::Min() % kOneSecond == TimeDelta::Min());
2147   static_assert(TimeDelta::Min() % -kOneSecond == TimeDelta::Min());
2148 
2149   // Division by zero.
2150   static_assert((kOneSecond / 0).is_max());
2151   static_assert((-kOneSecond / 0).is_min());
2152   static_assert((TimeDelta::Max() / 0).is_max());
2153   static_assert((TimeDelta::Min() / 0).is_min());
2154   EXPECT_EQ(std::numeric_limits<double>::infinity(), kOneSecond / TimeDelta());
2155   EXPECT_EQ(-std::numeric_limits<double>::infinity(),
2156             -kOneSecond / TimeDelta());
2157   EXPECT_EQ(std::numeric_limits<double>::infinity(),
2158             TimeDelta::Max() / TimeDelta());
2159   EXPECT_EQ(-std::numeric_limits<double>::infinity(),
2160             TimeDelta::Min() / TimeDelta());
2161   static_assert(
2162       kOneSecond.IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::max(),
2163       "");
2164   static_assert(
2165       (-kOneSecond).IntDiv(TimeDelta()) == std::numeric_limits<int64_t>::min(),
2166       "");
2167   static_assert(TimeDelta::Max().IntDiv(TimeDelta()) ==
2168                     std::numeric_limits<int64_t>::max(),
2169                 "");
2170   static_assert(TimeDelta::Min().IntDiv(TimeDelta()) ==
2171                     std::numeric_limits<int64_t>::min(),
2172                 "");
2173   static_assert(kOneSecond % TimeDelta() == kOneSecond);
2174   static_assert(-kOneSecond % TimeDelta() == -kOneSecond);
2175   static_assert(TimeDelta::Max() % TimeDelta() == TimeDelta::Max());
2176   static_assert(TimeDelta::Min() % TimeDelta() == TimeDelta::Min());
2177 
2178   // Division by infinity.
2179   static_assert(kLargeDelta / TimeDelta::Min() == 0);
2180   static_assert(kLargeDelta / TimeDelta::Max() == 0);
2181   static_assert(kLargeNegative / TimeDelta::Min() == 0);
2182   static_assert(kLargeNegative / TimeDelta::Max() == 0);
2183   static_assert(kLargeDelta.IntDiv(TimeDelta::Min()) == 0);
2184   static_assert(kLargeDelta.IntDiv(TimeDelta::Max()) == 0);
2185   static_assert(kLargeNegative.IntDiv(TimeDelta::Min()) == 0);
2186   static_assert(kLargeNegative.IntDiv(TimeDelta::Max()) == 0);
2187   static_assert(kOneSecond % TimeDelta::Min() == kOneSecond);
2188   static_assert(kOneSecond % TimeDelta::Max() == kOneSecond);
2189 
2190   // Test that double conversions overflow to infinity.
2191   static_assert((kLargeDelta + kOneSecond).InSecondsF() ==
2192                     std::numeric_limits<double>::infinity(),
2193                 "");
2194   static_assert((kLargeDelta + kOneSecond).InMillisecondsF() ==
2195                 std::numeric_limits<double>::infinity());
2196   static_assert((kLargeDelta + kOneSecond).InMicrosecondsF() ==
2197                 std::numeric_limits<double>::infinity());
2198 
2199   // Test op=.
2200   static_assert((TimeDelta::FiniteMax() += kOneSecond).is_max());
2201   static_assert((TimeDelta::FiniteMin() += -kOneSecond).is_min());
2202 
2203   static_assert((TimeDelta::FiniteMin() -= kOneSecond).is_min());
2204   static_assert((TimeDelta::FiniteMax() -= -kOneSecond).is_max());
2205 
2206   static_assert((TimeDelta::FiniteMax() *= 2).is_max());
2207   static_assert((TimeDelta::FiniteMin() *= 1.5).is_min());
2208 
2209   static_assert((TimeDelta::FiniteMax() /= 0.5).is_max());
2210   static_assert((TimeDelta::FiniteMin() /= 0.5).is_min());
2211 
2212   static_assert((Seconds(1) %= TimeDelta::Max()) == Seconds(1));
2213   static_assert((Seconds(1) %= TimeDelta()) == Seconds(1));
2214 
2215   // Test operations with Time and TimeTicks.
2216   EXPECT_TRUE((kLargeDelta + Time::Now()).is_max());
2217   EXPECT_TRUE((kLargeDelta + TimeTicks::Now()).is_max());
2218   EXPECT_TRUE((Time::Now() + kLargeDelta).is_max());
2219   EXPECT_TRUE((TimeTicks::Now() + kLargeDelta).is_max());
2220 
2221   Time time_now = Time::Now();
2222   EXPECT_EQ(kOneSecond, (time_now + kOneSecond) - time_now);
2223   EXPECT_EQ(-kOneSecond, (time_now - kOneSecond) - time_now);
2224 
2225   TimeTicks ticks_now = TimeTicks::Now();
2226   EXPECT_EQ(-kOneSecond, (ticks_now - kOneSecond) - ticks_now);
2227   EXPECT_EQ(kOneSecond, (ticks_now + kOneSecond) - ticks_now);
2228 }
2229 
TEST(TimeDelta,CeilToMultiple)2230 TEST(TimeDelta, CeilToMultiple) {
2231   for (const auto interval : {Seconds(10), Seconds(-10)}) {
2232     SCOPED_TRACE(interval);
2233     EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
2234     EXPECT_EQ(Seconds(1).CeilToMultiple(interval), Seconds(10));
2235     EXPECT_EQ(Seconds(9).CeilToMultiple(interval), Seconds(10));
2236     EXPECT_EQ(Seconds(10).CeilToMultiple(interval), Seconds(10));
2237     EXPECT_EQ(Seconds(15).CeilToMultiple(interval), Seconds(20));
2238     EXPECT_EQ(Seconds(20).CeilToMultiple(interval), Seconds(20));
2239     EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
2240     EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
2241     EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
2242     EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), Seconds(-10));
2243     EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), Seconds(-10));
2244     EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), Seconds(-20));
2245     EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
2246   }
2247 
2248   for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
2249     SCOPED_TRACE(interval);
2250     EXPECT_EQ(TimeDelta().CeilToMultiple(interval), TimeDelta());
2251     EXPECT_EQ(Seconds(1).CeilToMultiple(interval), TimeDelta::Max());
2252     EXPECT_EQ(Seconds(9).CeilToMultiple(interval), TimeDelta::Max());
2253     EXPECT_EQ(Seconds(10).CeilToMultiple(interval), TimeDelta::Max());
2254     EXPECT_EQ(Seconds(15).CeilToMultiple(interval), TimeDelta::Max());
2255     EXPECT_EQ(Seconds(20).CeilToMultiple(interval), TimeDelta::Max());
2256     EXPECT_EQ(TimeDelta::Max().CeilToMultiple(interval), TimeDelta::Max());
2257     EXPECT_EQ(Seconds(-1).CeilToMultiple(interval), TimeDelta());
2258     EXPECT_EQ(Seconds(-9).CeilToMultiple(interval), TimeDelta());
2259     EXPECT_EQ(Seconds(-10).CeilToMultiple(interval), TimeDelta());
2260     EXPECT_EQ(Seconds(-15).CeilToMultiple(interval), TimeDelta());
2261     EXPECT_EQ(Seconds(-20).CeilToMultiple(interval), TimeDelta());
2262     EXPECT_EQ(TimeDelta::Min().CeilToMultiple(interval), TimeDelta::Min());
2263   }
2264 }
2265 
TEST(TimeDelta,FloorToMultiple)2266 TEST(TimeDelta, FloorToMultiple) {
2267   for (const auto interval : {Seconds(10), Seconds(-10)}) {
2268     SCOPED_TRACE(interval);
2269     EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
2270     EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
2271     EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
2272     EXPECT_EQ(Seconds(10).FloorToMultiple(interval), Seconds(10));
2273     EXPECT_EQ(Seconds(15).FloorToMultiple(interval), Seconds(10));
2274     EXPECT_EQ(Seconds(20).FloorToMultiple(interval), Seconds(20));
2275     EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
2276     EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), Seconds(-10));
2277     EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), Seconds(-10));
2278     EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), Seconds(-10));
2279     EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), Seconds(-20));
2280     EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), Seconds(-20));
2281     EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
2282   }
2283 
2284   for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
2285     SCOPED_TRACE(interval);
2286     EXPECT_EQ(TimeDelta().FloorToMultiple(interval), TimeDelta());
2287     EXPECT_EQ(Seconds(1).FloorToMultiple(interval), TimeDelta());
2288     EXPECT_EQ(Seconds(9).FloorToMultiple(interval), TimeDelta());
2289     EXPECT_EQ(Seconds(10).FloorToMultiple(interval), TimeDelta());
2290     EXPECT_EQ(Seconds(15).FloorToMultiple(interval), TimeDelta());
2291     EXPECT_EQ(Seconds(20).FloorToMultiple(interval), TimeDelta());
2292     EXPECT_EQ(TimeDelta::Max().FloorToMultiple(interval), TimeDelta::Max());
2293     EXPECT_EQ(Seconds(-1).FloorToMultiple(interval), TimeDelta::Min());
2294     EXPECT_EQ(Seconds(-9).FloorToMultiple(interval), TimeDelta::Min());
2295     EXPECT_EQ(Seconds(-10).FloorToMultiple(interval), TimeDelta::Min());
2296     EXPECT_EQ(Seconds(-15).FloorToMultiple(interval), TimeDelta::Min());
2297     EXPECT_EQ(Seconds(-20).FloorToMultiple(interval), TimeDelta::Min());
2298     EXPECT_EQ(TimeDelta::Min().FloorToMultiple(interval), TimeDelta::Min());
2299   }
2300 }
2301 
TEST(TimeDelta,RoundToMultiple)2302 TEST(TimeDelta, RoundToMultiple) {
2303   for (const auto interval : {Seconds(10), Seconds(-10)}) {
2304     SCOPED_TRACE(interval);
2305     EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
2306     EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
2307     EXPECT_EQ(Seconds(9).RoundToMultiple(interval), Seconds(10));
2308     EXPECT_EQ(Seconds(10).RoundToMultiple(interval), Seconds(10));
2309     EXPECT_EQ(Seconds(15).RoundToMultiple(interval), Seconds(20));
2310     EXPECT_EQ(Seconds(20).RoundToMultiple(interval), Seconds(20));
2311     EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
2312     EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
2313     EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), Seconds(-10));
2314     EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), Seconds(-10));
2315     EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), Seconds(-20));
2316     EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), Seconds(-20));
2317     EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
2318   }
2319 
2320   for (const auto interval : {TimeDelta::Max(), TimeDelta::Min()}) {
2321     SCOPED_TRACE(interval);
2322     EXPECT_EQ(TimeDelta().RoundToMultiple(interval), TimeDelta());
2323     EXPECT_EQ(Seconds(1).RoundToMultiple(interval), TimeDelta());
2324     EXPECT_EQ(Seconds(9).RoundToMultiple(interval), TimeDelta());
2325     EXPECT_EQ(Seconds(10).RoundToMultiple(interval), TimeDelta());
2326     EXPECT_EQ(Seconds(15).RoundToMultiple(interval), TimeDelta());
2327     EXPECT_EQ(Seconds(20).RoundToMultiple(interval), TimeDelta());
2328     EXPECT_EQ(TimeDelta::Max().RoundToMultiple(interval), TimeDelta::Max());
2329     EXPECT_EQ(Seconds(-1).RoundToMultiple(interval), TimeDelta());
2330     EXPECT_EQ(Seconds(-9).RoundToMultiple(interval), TimeDelta());
2331     EXPECT_EQ(Seconds(-10).RoundToMultiple(interval), TimeDelta());
2332     EXPECT_EQ(Seconds(-15).RoundToMultiple(interval), TimeDelta());
2333     EXPECT_EQ(Seconds(-20).RoundToMultiple(interval), TimeDelta());
2334     EXPECT_EQ(TimeDelta::Min().RoundToMultiple(interval), TimeDelta::Min());
2335   }
2336 }
2337 
TEST(TimeBase,AddSubDeltaSaturates)2338 TEST(TimeBase, AddSubDeltaSaturates) {
2339   constexpr TimeTicks kLargeTimeTicks =
2340       TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::max() - 1);
2341 
2342   constexpr TimeTicks kLargeNegativeTimeTicks =
2343       TimeTicks::FromInternalValue(std::numeric_limits<int64_t>::min() + 1);
2344 
2345   static_assert((kLargeTimeTicks + TimeDelta::Max()).is_max());
2346   static_assert((kLargeNegativeTimeTicks + TimeDelta::Max()).is_max());
2347   static_assert((kLargeTimeTicks - TimeDelta::Max()).is_min());
2348   static_assert((kLargeNegativeTimeTicks - TimeDelta::Max()).is_min());
2349   static_assert((TimeTicks() + TimeDelta::Max()).is_max());
2350   static_assert((TimeTicks() - TimeDelta::Max()).is_min());
2351   EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Max()).is_max())
2352       << (TimeTicks::Now() + TimeDelta::Max());
2353   EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Max()).is_min())
2354       << (TimeTicks::Now() - TimeDelta::Max());
2355 
2356   static_assert((kLargeTimeTicks + TimeDelta::Min()).is_min());
2357   static_assert((kLargeNegativeTimeTicks + TimeDelta::Min()).is_min());
2358   static_assert((kLargeTimeTicks - TimeDelta::Min()).is_max());
2359   static_assert((kLargeNegativeTimeTicks - TimeDelta::Min()).is_max());
2360   static_assert((TimeTicks() + TimeDelta::Min()).is_min());
2361   static_assert((TimeTicks() - TimeDelta::Min()).is_max());
2362   EXPECT_TRUE((TimeTicks::Now() + TimeDelta::Min()).is_min())
2363       << (TimeTicks::Now() + TimeDelta::Min());
2364   EXPECT_TRUE((TimeTicks::Now() - TimeDelta::Min()).is_max())
2365       << (TimeTicks::Now() - TimeDelta::Min());
2366 }
2367 
TEST(TimeBase,AddSubInfinities)2368 TEST(TimeBase, AddSubInfinities) {
2369   // CHECK when adding opposite signs or subtracting same sign.
2370   EXPECT_CHECK_DEATH({ TimeTicks::Min() + TimeDelta::Max(); });
2371   EXPECT_CHECK_DEATH({ TimeTicks::Max() + TimeDelta::Min(); });
2372   EXPECT_CHECK_DEATH({ TimeTicks::Min() - TimeDelta::Min(); });
2373   EXPECT_CHECK_DEATH({ TimeTicks::Max() - TimeDelta::Max(); });
2374 
2375   // Saturates when adding same sign or subtracting opposite signs.
2376   static_assert((TimeTicks::Max() + TimeDelta::Max()).is_max());
2377   static_assert((TimeTicks::Min() + TimeDelta::Min()).is_min());
2378   static_assert((TimeTicks::Max() - TimeDelta::Min()).is_max());
2379   static_assert((TimeTicks::Min() - TimeDelta::Max()).is_min());
2380 }
2381 
TestTimeTicksConstexprCopyAssignment()2382 constexpr TimeTicks TestTimeTicksConstexprCopyAssignment() {
2383   TimeTicks a = TimeTicks::FromInternalValue(12345);
2384   TimeTicks b;
2385   b = a;
2386   return b;
2387 }
2388 
TEST(TimeTicks,ConstexprAndTriviallyCopiable)2389 TEST(TimeTicks, ConstexprAndTriviallyCopiable) {
2390   // "Trivially copyable" is necessary for use in std::atomic<TimeTicks>.
2391   static_assert(std::is_trivially_copyable<TimeTicks>());
2392 
2393   // Copy ctor.
2394   constexpr TimeTicks a = TimeTicks::FromInternalValue(12345);
2395   constexpr TimeTicks b{a};
2396   static_assert(a.ToInternalValue() == b.ToInternalValue());
2397 
2398   // Copy assignment.
2399   static_assert(a.ToInternalValue() ==
2400                     TestTimeTicksConstexprCopyAssignment().ToInternalValue(),
2401                 "");
2402 }
2403 
TestThreadTicksConstexprCopyAssignment()2404 constexpr ThreadTicks TestThreadTicksConstexprCopyAssignment() {
2405   ThreadTicks a = ThreadTicks::FromInternalValue(12345);
2406   ThreadTicks b;
2407   b = a;
2408   return b;
2409 }
2410 
TEST(ThreadTicks,ConstexprAndTriviallyCopiable)2411 TEST(ThreadTicks, ConstexprAndTriviallyCopiable) {
2412   // "Trivially copyable" is necessary for use in std::atomic<ThreadTicks>.
2413   static_assert(std::is_trivially_copyable<ThreadTicks>());
2414 
2415   // Copy ctor.
2416   constexpr ThreadTicks a = ThreadTicks::FromInternalValue(12345);
2417   constexpr ThreadTicks b{a};
2418   static_assert(a.ToInternalValue() == b.ToInternalValue());
2419 
2420   // Copy assignment.
2421   static_assert(a.ToInternalValue() ==
2422                     TestThreadTicksConstexprCopyAssignment().ToInternalValue(),
2423                 "");
2424 }
2425 
TestTimeDeltaConstexprCopyAssignment()2426 constexpr TimeDelta TestTimeDeltaConstexprCopyAssignment() {
2427   TimeDelta a = Seconds(1);
2428   TimeDelta b;
2429   b = a;
2430   return b;
2431 }
2432 
TEST(TimeDelta,ConstexprAndTriviallyCopiable)2433 TEST(TimeDelta, ConstexprAndTriviallyCopiable) {
2434   // "Trivially copyable" is necessary for use in std::atomic<TimeDelta>.
2435   static_assert(std::is_trivially_copyable<TimeDelta>());
2436 
2437   // Copy ctor.
2438   constexpr TimeDelta a = Seconds(1);
2439   constexpr TimeDelta b{a};
2440   static_assert(a == b);
2441 
2442   // Copy assignment.
2443   static_assert(a == TestTimeDeltaConstexprCopyAssignment());
2444 }
2445 
TEST(TimeDeltaLogging,DCheckEqCompiles)2446 TEST(TimeDeltaLogging, DCheckEqCompiles) {
2447   DCHECK_EQ(TimeDelta(), TimeDelta());
2448 }
2449 
TEST(TimeDeltaLogging,EmptyIsZero)2450 TEST(TimeDeltaLogging, EmptyIsZero) {
2451   constexpr TimeDelta kZero;
2452   EXPECT_EQ("0 s", ToString(kZero));
2453 }
2454 
TEST(TimeDeltaLogging,FiveHundredMs)2455 TEST(TimeDeltaLogging, FiveHundredMs) {
2456   constexpr TimeDelta kFiveHundredMs = Milliseconds(500);
2457   EXPECT_EQ("0.5 s", ToString(kFiveHundredMs));
2458 }
2459 
TEST(TimeDeltaLogging,MinusTenSeconds)2460 TEST(TimeDeltaLogging, MinusTenSeconds) {
2461   constexpr TimeDelta kMinusTenSeconds = Seconds(-10);
2462   EXPECT_EQ("-10 s", ToString(kMinusTenSeconds));
2463 }
2464 
TEST(TimeDeltaLogging,DoesNotMessUpFormattingFlags)2465 TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) {
2466   std::ostringstream oss;
2467   std::ios_base::fmtflags flags_before = oss.flags();
2468   oss << TimeDelta();
2469   EXPECT_EQ(flags_before, oss.flags());
2470 }
2471 
TEST(TimeDeltaLogging,DoesNotMakeStreamBad)2472 TEST(TimeDeltaLogging, DoesNotMakeStreamBad) {
2473   std::ostringstream oss;
2474   oss << TimeDelta();
2475   EXPECT_TRUE(oss.good());
2476 }
2477 
TEST(TimeLogging,DCheckEqCompiles)2478 TEST(TimeLogging, DCheckEqCompiles) {
2479   DCHECK_EQ(Time(), Time());
2480 }
2481 
TEST(TimeLogging,ChromeBirthdate)2482 TEST(TimeLogging, ChromeBirthdate) {
2483   Time birthdate;
2484   ASSERT_TRUE(Time::FromString("Tue, 02 Sep 2008 09:42:18 GMT", &birthdate));
2485   EXPECT_EQ("2008-09-02 09:42:18.000000 UTC", ToString(birthdate));
2486 }
2487 
TEST(TimeLogging,Microseconds)2488 TEST(TimeLogging, Microseconds) {
2489   // Some Time with a non-zero number of microseconds.
2490   Time now = Time::Now();
2491   if (now.ToDeltaSinceWindowsEpoch().InMicroseconds() %
2492           Time::kMicrosecondsPerMillisecond ==
2493       0) {
2494     now += Microseconds(1);
2495   }
2496 
2497   // Crudely parse the microseconds portion out of the stringified Time. Use
2498   // find() and ASSERTs to try to give an accurate test result, without
2499   // crashing, even if the logging format changes in the future (e.g. someone
2500   // removes microseconds, adds nanoseconds, changes the timezone format, etc.).
2501   const std::string now_str = ToString(now);
2502   ASSERT_GT(now_str.length(), 6u);
2503   const size_t period = now_str.find('.');
2504   ASSERT_LT(period, now_str.length() - 6);
2505   int microseconds = 0;
2506   EXPECT_TRUE(StringToInt(now_str.substr(period + 4, 3), &microseconds));
2507 
2508   // The stringified microseconds should also be nonzero.
2509   EXPECT_NE(0, microseconds);
2510 }
2511 
TEST(TimeLogging,DoesNotMessUpFormattingFlags)2512 TEST(TimeLogging, DoesNotMessUpFormattingFlags) {
2513   std::ostringstream oss;
2514   std::ios_base::fmtflags flags_before = oss.flags();
2515   oss << Time();
2516   EXPECT_EQ(flags_before, oss.flags());
2517 }
2518 
TEST(TimeLogging,DoesNotMakeStreamBad)2519 TEST(TimeLogging, DoesNotMakeStreamBad) {
2520   std::ostringstream oss;
2521   oss << Time();
2522   EXPECT_TRUE(oss.good());
2523 }
2524 
TEST(TimeTicksLogging,DCheckEqCompiles)2525 TEST(TimeTicksLogging, DCheckEqCompiles) {
2526   DCHECK_EQ(TimeTicks(), TimeTicks());
2527 }
2528 
TEST(TimeTicksLogging,ZeroTime)2529 TEST(TimeTicksLogging, ZeroTime) {
2530   TimeTicks zero;
2531   EXPECT_EQ("0 bogo-microseconds", ToString(zero));
2532 }
2533 
TEST(TimeTicksLogging,FortyYearsLater)2534 TEST(TimeTicksLogging, FortyYearsLater) {
2535   TimeTicks forty_years_later = TimeTicks() + Days(365.25 * 40);
2536   EXPECT_EQ("1262304000000000 bogo-microseconds", ToString(forty_years_later));
2537 }
2538 
TEST(TimeTicksLogging,DoesNotMessUpFormattingFlags)2539 TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) {
2540   std::ostringstream oss;
2541   std::ios_base::fmtflags flags_before = oss.flags();
2542   oss << TimeTicks();
2543   EXPECT_EQ(flags_before, oss.flags());
2544 }
2545 
TEST(TimeTicksLogging,DoesNotMakeStreamBad)2546 TEST(TimeTicksLogging, DoesNotMakeStreamBad) {
2547   std::ostringstream oss;
2548   oss << TimeTicks();
2549   EXPECT_TRUE(oss.good());
2550 }
2551 
2552 }  // namespace
2553 
2554 }  // namespace base
2555