/aosp_15_r20/external/tensorflow/tensorflow/python/keras/engine/ |
H A D | training_generator_v1.py | 559 validation_split=0., argument 573 y, sample_weight, validation_split=validation_split) 649 validation_split=0., argument 662 validation_split) 729 validation_split=0., argument 750 validation_split=validation_split, 757 elif validation_split and 0. < validation_split < 1.: 761 x, y, sample_weights, validation_split))
|
H A D | training_distributed_v1.py | 585 validation_split=0., argument 606 validation_split=validation_split) 614 validation_split=validation_split, 624 validation_split=validation_split, 641 validation_split=validation_split, 644 elif validation_split:
|
H A D | training_arrays_v1.py | 606 validation_split=0., argument 628 validation_split=validation_split, 634 elif validation_split and 0. < validation_split < 1.: 637 x, y, sample_weights, validation_split)
|
H A D | training_utils_v1.py | 1235 def validate_dataset_input(x, y, sample_weight, validation_split=None): argument 1266 if validation_split is not None and validation_split != 0.0: 1270 'Received: x=%s, validation_split=%f' % (x, validation_split)) 1292 validation_split=None): argument 1302 if validation_split: 1838 def split_training_and_validation_data(x, y, sample_weights, validation_split): argument 1844 split_at = int(x[0].shape[0] * (1. - validation_split)) 1846 split_at = int(len(x[0]) * (1. - validation_split)) 1927 validation_split=0., argument
|
H A D | training_v1.py | 622 validation_split=0., argument 801 validation_split=validation_split, 2108 validation_split=0, argument 2210 validation_split) 2222 validation_split=0, argument 2288 validation_split) 2299 validation_split)
|
H A D | data_adapter.py | 1466 def train_validation_split(arrays, validation_split): argument 1503 split_at = int(math.floor(batch_dim * (1. - validation_split))) 1511 batch_dim=batch_dim, validation_split=validation_split))
|
H A D | training.py | 887 validation_split=0., argument 1119 if validation_split: 1124 (x, y, sample_weight), validation_split=validation_split))
|
/aosp_15_r20/external/libopus/dnn/training_tf2/ |
H A D | pade.py | 59 model.fit([x, x2in], yout, batch_size=1, epochs=500000, validation_split=0.0) 62 model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) 65 model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) 68 model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0)
|
H A D | train_rdovae.py | 151 …ures, features, features], batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callback…
|
H A D | train_plc.py | 197 model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)
|
H A D | train_lpcnet.py | 214 model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/distribute/ |
H A D | distributed_training_utils_v1.py | 433 validation_split=0.): argument 438 if validation_split and 0. < validation_split < 1.: 439 num_samples = int(num_samples * (1 - validation_split))
|
/aosp_15_r20/external/rnnoise/training/ |
H A D | rnn_train.py | 115 validation_split=0.1)
|
/aosp_15_r20/external/tensorflow/tensorflow/lite/python/ |
H A D | util_test.py | 258 validation_split=0.1,
|
/aosp_15_r20/external/tensorflow/ |
H A D | RELEASE.md | 70 …irectory`, and `audio_dataset_from_directory`, to be used with the `validation_split` argument, fo…
|