1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package png 6 7import ( 8 "bufio" 9 "compress/zlib" 10 "encoding/binary" 11 "hash/crc32" 12 "image" 13 "image/color" 14 "io" 15 "strconv" 16) 17 18// Encoder configures encoding PNG images. 19type Encoder struct { 20 CompressionLevel CompressionLevel 21 22 // BufferPool optionally specifies a buffer pool to get temporary 23 // EncoderBuffers when encoding an image. 24 BufferPool EncoderBufferPool 25} 26 27// EncoderBufferPool is an interface for getting and returning temporary 28// instances of the [EncoderBuffer] struct. This can be used to reuse buffers 29// when encoding multiple images. 30type EncoderBufferPool interface { 31 Get() *EncoderBuffer 32 Put(*EncoderBuffer) 33} 34 35// EncoderBuffer holds the buffers used for encoding PNG images. 36type EncoderBuffer encoder 37 38type encoder struct { 39 enc *Encoder 40 w io.Writer 41 m image.Image 42 cb int 43 err error 44 header [8]byte 45 footer [4]byte 46 tmp [4 * 256]byte 47 cr [nFilter][]uint8 48 pr []uint8 49 zw *zlib.Writer 50 zwLevel int 51 bw *bufio.Writer 52} 53 54// CompressionLevel indicates the compression level. 55type CompressionLevel int 56 57const ( 58 DefaultCompression CompressionLevel = 0 59 NoCompression CompressionLevel = -1 60 BestSpeed CompressionLevel = -2 61 BestCompression CompressionLevel = -3 62 63 // Positive CompressionLevel values are reserved to mean a numeric zlib 64 // compression level, although that is not implemented yet. 65) 66 67type opaquer interface { 68 Opaque() bool 69} 70 71// Returns whether or not the image is fully opaque. 72func opaque(m image.Image) bool { 73 if o, ok := m.(opaquer); ok { 74 return o.Opaque() 75 } 76 b := m.Bounds() 77 for y := b.Min.Y; y < b.Max.Y; y++ { 78 for x := b.Min.X; x < b.Max.X; x++ { 79 _, _, _, a := m.At(x, y).RGBA() 80 if a != 0xffff { 81 return false 82 } 83 } 84 } 85 return true 86} 87 88// The absolute value of a byte interpreted as a signed int8. 89func abs8(d uint8) int { 90 if d < 128 { 91 return int(d) 92 } 93 return 256 - int(d) 94} 95 96func (e *encoder) writeChunk(b []byte, name string) { 97 if e.err != nil { 98 return 99 } 100 n := uint32(len(b)) 101 if int(n) != len(b) { 102 e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))) 103 return 104 } 105 binary.BigEndian.PutUint32(e.header[:4], n) 106 e.header[4] = name[0] 107 e.header[5] = name[1] 108 e.header[6] = name[2] 109 e.header[7] = name[3] 110 crc := crc32.NewIEEE() 111 crc.Write(e.header[4:8]) 112 crc.Write(b) 113 binary.BigEndian.PutUint32(e.footer[:4], crc.Sum32()) 114 115 _, e.err = e.w.Write(e.header[:8]) 116 if e.err != nil { 117 return 118 } 119 _, e.err = e.w.Write(b) 120 if e.err != nil { 121 return 122 } 123 _, e.err = e.w.Write(e.footer[:4]) 124} 125 126func (e *encoder) writeIHDR() { 127 b := e.m.Bounds() 128 binary.BigEndian.PutUint32(e.tmp[0:4], uint32(b.Dx())) 129 binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dy())) 130 // Set bit depth and color type. 131 switch e.cb { 132 case cbG8: 133 e.tmp[8] = 8 134 e.tmp[9] = ctGrayscale 135 case cbTC8: 136 e.tmp[8] = 8 137 e.tmp[9] = ctTrueColor 138 case cbP8: 139 e.tmp[8] = 8 140 e.tmp[9] = ctPaletted 141 case cbP4: 142 e.tmp[8] = 4 143 e.tmp[9] = ctPaletted 144 case cbP2: 145 e.tmp[8] = 2 146 e.tmp[9] = ctPaletted 147 case cbP1: 148 e.tmp[8] = 1 149 e.tmp[9] = ctPaletted 150 case cbTCA8: 151 e.tmp[8] = 8 152 e.tmp[9] = ctTrueColorAlpha 153 case cbG16: 154 e.tmp[8] = 16 155 e.tmp[9] = ctGrayscale 156 case cbTC16: 157 e.tmp[8] = 16 158 e.tmp[9] = ctTrueColor 159 case cbTCA16: 160 e.tmp[8] = 16 161 e.tmp[9] = ctTrueColorAlpha 162 } 163 e.tmp[10] = 0 // default compression method 164 e.tmp[11] = 0 // default filter method 165 e.tmp[12] = 0 // non-interlaced 166 e.writeChunk(e.tmp[:13], "IHDR") 167} 168 169func (e *encoder) writePLTEAndTRNS(p color.Palette) { 170 if len(p) < 1 || len(p) > 256 { 171 e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))) 172 return 173 } 174 last := -1 175 for i, c := range p { 176 c1 := color.NRGBAModel.Convert(c).(color.NRGBA) 177 e.tmp[3*i+0] = c1.R 178 e.tmp[3*i+1] = c1.G 179 e.tmp[3*i+2] = c1.B 180 if c1.A != 0xff { 181 last = i 182 } 183 e.tmp[3*256+i] = c1.A 184 } 185 e.writeChunk(e.tmp[:3*len(p)], "PLTE") 186 if last != -1 { 187 e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS") 188 } 189} 190 191// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, 192// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls 193// should be relatively infrequent, since writeIDATs uses a [bufio.Writer]. 194// 195// This method should only be called from writeIDATs (via writeImage). 196// No other code should treat an encoder as an io.Writer. 197func (e *encoder) Write(b []byte) (int, error) { 198 e.writeChunk(b, "IDAT") 199 if e.err != nil { 200 return 0, e.err 201 } 202 return len(b), nil 203} 204 205// Chooses the filter to use for encoding the current row, and applies it. 206// The return value is the index of the filter and also of the row in cr that has had it applied. 207func filter(cr *[nFilter][]byte, pr []byte, bpp int) int { 208 // We try all five filter types, and pick the one that minimizes the sum of absolute differences. 209 // This is the same heuristic that libpng uses, although the filters are attempted in order of 210 // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than 211 // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). 212 cdat0 := cr[0][1:] 213 cdat1 := cr[1][1:] 214 cdat2 := cr[2][1:] 215 cdat3 := cr[3][1:] 216 cdat4 := cr[4][1:] 217 pdat := pr[1:] 218 n := len(cdat0) 219 220 // The up filter. 221 sum := 0 222 for i := 0; i < n; i++ { 223 cdat2[i] = cdat0[i] - pdat[i] 224 sum += abs8(cdat2[i]) 225 } 226 best := sum 227 filter := ftUp 228 229 // The Paeth filter. 230 sum = 0 231 for i := 0; i < bpp; i++ { 232 cdat4[i] = cdat0[i] - pdat[i] 233 sum += abs8(cdat4[i]) 234 } 235 for i := bpp; i < n; i++ { 236 cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]) 237 sum += abs8(cdat4[i]) 238 if sum >= best { 239 break 240 } 241 } 242 if sum < best { 243 best = sum 244 filter = ftPaeth 245 } 246 247 // The none filter. 248 sum = 0 249 for i := 0; i < n; i++ { 250 sum += abs8(cdat0[i]) 251 if sum >= best { 252 break 253 } 254 } 255 if sum < best { 256 best = sum 257 filter = ftNone 258 } 259 260 // The sub filter. 261 sum = 0 262 for i := 0; i < bpp; i++ { 263 cdat1[i] = cdat0[i] 264 sum += abs8(cdat1[i]) 265 } 266 for i := bpp; i < n; i++ { 267 cdat1[i] = cdat0[i] - cdat0[i-bpp] 268 sum += abs8(cdat1[i]) 269 if sum >= best { 270 break 271 } 272 } 273 if sum < best { 274 best = sum 275 filter = ftSub 276 } 277 278 // The average filter. 279 sum = 0 280 for i := 0; i < bpp; i++ { 281 cdat3[i] = cdat0[i] - pdat[i]/2 282 sum += abs8(cdat3[i]) 283 } 284 for i := bpp; i < n; i++ { 285 cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2) 286 sum += abs8(cdat3[i]) 287 if sum >= best { 288 break 289 } 290 } 291 if sum < best { 292 filter = ftAverage 293 } 294 295 return filter 296} 297 298func (e *encoder) writeImage(w io.Writer, m image.Image, cb int, level int) error { 299 if e.zw == nil || e.zwLevel != level { 300 zw, err := zlib.NewWriterLevel(w, level) 301 if err != nil { 302 return err 303 } 304 e.zw = zw 305 e.zwLevel = level 306 } else { 307 e.zw.Reset(w) 308 } 309 defer e.zw.Close() 310 311 bitsPerPixel := 0 312 313 switch cb { 314 case cbG8: 315 bitsPerPixel = 8 316 case cbTC8: 317 bitsPerPixel = 24 318 case cbP8: 319 bitsPerPixel = 8 320 case cbP4: 321 bitsPerPixel = 4 322 case cbP2: 323 bitsPerPixel = 2 324 case cbP1: 325 bitsPerPixel = 1 326 case cbTCA8: 327 bitsPerPixel = 32 328 case cbTC16: 329 bitsPerPixel = 48 330 case cbTCA16: 331 bitsPerPixel = 64 332 case cbG16: 333 bitsPerPixel = 16 334 } 335 336 // cr[*] and pr are the bytes for the current and previous row. 337 // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). 338 // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the 339 // other PNG filter types. These buffers are allocated once and re-used for each row. 340 // The +1 is for the per-row filter type, which is at cr[*][0]. 341 b := m.Bounds() 342 sz := 1 + (bitsPerPixel*b.Dx()+7)/8 343 for i := range e.cr { 344 if cap(e.cr[i]) < sz { 345 e.cr[i] = make([]uint8, sz) 346 } else { 347 e.cr[i] = e.cr[i][:sz] 348 } 349 e.cr[i][0] = uint8(i) 350 } 351 cr := e.cr 352 if cap(e.pr) < sz { 353 e.pr = make([]uint8, sz) 354 } else { 355 e.pr = e.pr[:sz] 356 clear(e.pr) 357 } 358 pr := e.pr 359 360 gray, _ := m.(*image.Gray) 361 rgba, _ := m.(*image.RGBA) 362 paletted, _ := m.(*image.Paletted) 363 nrgba, _ := m.(*image.NRGBA) 364 365 for y := b.Min.Y; y < b.Max.Y; y++ { 366 // Convert from colors to bytes. 367 i := 1 368 switch cb { 369 case cbG8: 370 if gray != nil { 371 offset := (y - b.Min.Y) * gray.Stride 372 copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()]) 373 } else { 374 for x := b.Min.X; x < b.Max.X; x++ { 375 c := color.GrayModel.Convert(m.At(x, y)).(color.Gray) 376 cr[0][i] = c.Y 377 i++ 378 } 379 } 380 case cbTC8: 381 // We have previously verified that the alpha value is fully opaque. 382 cr0 := cr[0] 383 stride, pix := 0, []byte(nil) 384 if rgba != nil { 385 stride, pix = rgba.Stride, rgba.Pix 386 } else if nrgba != nil { 387 stride, pix = nrgba.Stride, nrgba.Pix 388 } 389 if stride != 0 { 390 j0 := (y - b.Min.Y) * stride 391 j1 := j0 + b.Dx()*4 392 for j := j0; j < j1; j += 4 { 393 cr0[i+0] = pix[j+0] 394 cr0[i+1] = pix[j+1] 395 cr0[i+2] = pix[j+2] 396 i += 3 397 } 398 } else { 399 for x := b.Min.X; x < b.Max.X; x++ { 400 r, g, b, _ := m.At(x, y).RGBA() 401 cr0[i+0] = uint8(r >> 8) 402 cr0[i+1] = uint8(g >> 8) 403 cr0[i+2] = uint8(b >> 8) 404 i += 3 405 } 406 } 407 case cbP8: 408 if paletted != nil { 409 offset := (y - b.Min.Y) * paletted.Stride 410 copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()]) 411 } else { 412 pi := m.(image.PalettedImage) 413 for x := b.Min.X; x < b.Max.X; x++ { 414 cr[0][i] = pi.ColorIndexAt(x, y) 415 i += 1 416 } 417 } 418 419 case cbP4, cbP2, cbP1: 420 pi := m.(image.PalettedImage) 421 422 var a uint8 423 var c int 424 pixelsPerByte := 8 / bitsPerPixel 425 for x := b.Min.X; x < b.Max.X; x++ { 426 a = a<<uint(bitsPerPixel) | pi.ColorIndexAt(x, y) 427 c++ 428 if c == pixelsPerByte { 429 cr[0][i] = a 430 i += 1 431 a = 0 432 c = 0 433 } 434 } 435 if c != 0 { 436 for c != pixelsPerByte { 437 a = a << uint(bitsPerPixel) 438 c++ 439 } 440 cr[0][i] = a 441 } 442 443 case cbTCA8: 444 if nrgba != nil { 445 offset := (y - b.Min.Y) * nrgba.Stride 446 copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4]) 447 } else if rgba != nil { 448 dst := cr[0][1:] 449 src := rgba.Pix[rgba.PixOffset(b.Min.X, y):rgba.PixOffset(b.Max.X, y)] 450 for ; len(src) >= 4; dst, src = dst[4:], src[4:] { 451 d := (*[4]byte)(dst) 452 s := (*[4]byte)(src) 453 if s[3] == 0x00 { 454 d[0] = 0 455 d[1] = 0 456 d[2] = 0 457 d[3] = 0 458 } else if s[3] == 0xff { 459 copy(d[:], s[:]) 460 } else { 461 // This code does the same as color.NRGBAModel.Convert( 462 // rgba.At(x, y)).(color.NRGBA) but with no extra memory 463 // allocations or interface/function call overhead. 464 // 465 // The multiplier m combines 0x101 (which converts 466 // 8-bit color to 16-bit color) and 0xffff (which, when 467 // combined with the division-by-a, converts from 468 // alpha-premultiplied to non-alpha-premultiplied). 469 const m = 0x101 * 0xffff 470 a := uint32(s[3]) * 0x101 471 d[0] = uint8((uint32(s[0]) * m / a) >> 8) 472 d[1] = uint8((uint32(s[1]) * m / a) >> 8) 473 d[2] = uint8((uint32(s[2]) * m / a) >> 8) 474 d[3] = s[3] 475 } 476 } 477 } else { 478 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 479 for x := b.Min.X; x < b.Max.X; x++ { 480 c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA) 481 cr[0][i+0] = c.R 482 cr[0][i+1] = c.G 483 cr[0][i+2] = c.B 484 cr[0][i+3] = c.A 485 i += 4 486 } 487 } 488 case cbG16: 489 for x := b.Min.X; x < b.Max.X; x++ { 490 c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16) 491 cr[0][i+0] = uint8(c.Y >> 8) 492 cr[0][i+1] = uint8(c.Y) 493 i += 2 494 } 495 case cbTC16: 496 // We have previously verified that the alpha value is fully opaque. 497 for x := b.Min.X; x < b.Max.X; x++ { 498 r, g, b, _ := m.At(x, y).RGBA() 499 cr[0][i+0] = uint8(r >> 8) 500 cr[0][i+1] = uint8(r) 501 cr[0][i+2] = uint8(g >> 8) 502 cr[0][i+3] = uint8(g) 503 cr[0][i+4] = uint8(b >> 8) 504 cr[0][i+5] = uint8(b) 505 i += 6 506 } 507 case cbTCA16: 508 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 509 for x := b.Min.X; x < b.Max.X; x++ { 510 c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64) 511 cr[0][i+0] = uint8(c.R >> 8) 512 cr[0][i+1] = uint8(c.R) 513 cr[0][i+2] = uint8(c.G >> 8) 514 cr[0][i+3] = uint8(c.G) 515 cr[0][i+4] = uint8(c.B >> 8) 516 cr[0][i+5] = uint8(c.B) 517 cr[0][i+6] = uint8(c.A >> 8) 518 cr[0][i+7] = uint8(c.A) 519 i += 8 520 } 521 } 522 523 // Apply the filter. 524 // Skip filter for NoCompression and paletted images (cbP8) as 525 // "filters are rarely useful on palette images" and will result 526 // in larger files (see http://www.libpng.org/pub/png/book/chapter09.html). 527 f := ftNone 528 if level != zlib.NoCompression && cb != cbP8 && cb != cbP4 && cb != cbP2 && cb != cbP1 { 529 // Since we skip paletted images we don't have to worry about 530 // bitsPerPixel not being a multiple of 8 531 bpp := bitsPerPixel / 8 532 f = filter(&cr, pr, bpp) 533 } 534 535 // Write the compressed bytes. 536 if _, err := e.zw.Write(cr[f]); err != nil { 537 return err 538 } 539 540 // The current row for y is the previous row for y+1. 541 pr, cr[0] = cr[0], pr 542 } 543 return nil 544} 545 546// Write the actual image data to one or more IDAT chunks. 547func (e *encoder) writeIDATs() { 548 if e.err != nil { 549 return 550 } 551 if e.bw == nil { 552 e.bw = bufio.NewWriterSize(e, 1<<15) 553 } else { 554 e.bw.Reset(e) 555 } 556 e.err = e.writeImage(e.bw, e.m, e.cb, levelToZlib(e.enc.CompressionLevel)) 557 if e.err != nil { 558 return 559 } 560 e.err = e.bw.Flush() 561} 562 563// This function is required because we want the zero value of 564// Encoder.CompressionLevel to map to zlib.DefaultCompression. 565func levelToZlib(l CompressionLevel) int { 566 switch l { 567 case DefaultCompression: 568 return zlib.DefaultCompression 569 case NoCompression: 570 return zlib.NoCompression 571 case BestSpeed: 572 return zlib.BestSpeed 573 case BestCompression: 574 return zlib.BestCompression 575 default: 576 return zlib.DefaultCompression 577 } 578} 579 580func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") } 581 582// Encode writes the Image m to w in PNG format. Any Image may be 583// encoded, but images that are not [image.NRGBA] might be encoded lossily. 584func Encode(w io.Writer, m image.Image) error { 585 var e Encoder 586 return e.Encode(w, m) 587} 588 589// Encode writes the Image m to w in PNG format. 590func (enc *Encoder) Encode(w io.Writer, m image.Image) error { 591 // Obviously, negative widths and heights are invalid. Furthermore, the PNG 592 // spec section 11.2.2 says that zero is invalid. Excessively large images are 593 // also rejected. 594 mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy()) 595 if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { 596 return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10)) 597 } 598 599 var e *encoder 600 if enc.BufferPool != nil { 601 buffer := enc.BufferPool.Get() 602 e = (*encoder)(buffer) 603 604 } 605 if e == nil { 606 e = &encoder{} 607 } 608 if enc.BufferPool != nil { 609 defer enc.BufferPool.Put((*EncoderBuffer)(e)) 610 } 611 612 e.enc = enc 613 e.w = w 614 e.m = m 615 616 var pal color.Palette 617 // cbP8 encoding needs PalettedImage's ColorIndexAt method. 618 if _, ok := m.(image.PalettedImage); ok { 619 pal, _ = m.ColorModel().(color.Palette) 620 } 621 if pal != nil { 622 if len(pal) <= 2 { 623 e.cb = cbP1 624 } else if len(pal) <= 4 { 625 e.cb = cbP2 626 } else if len(pal) <= 16 { 627 e.cb = cbP4 628 } else { 629 e.cb = cbP8 630 } 631 } else { 632 switch m.ColorModel() { 633 case color.GrayModel: 634 e.cb = cbG8 635 case color.Gray16Model: 636 e.cb = cbG16 637 case color.RGBAModel, color.NRGBAModel, color.AlphaModel: 638 if opaque(m) { 639 e.cb = cbTC8 640 } else { 641 e.cb = cbTCA8 642 } 643 default: 644 if opaque(m) { 645 e.cb = cbTC16 646 } else { 647 e.cb = cbTCA16 648 } 649 } 650 } 651 652 _, e.err = io.WriteString(w, pngHeader) 653 e.writeIHDR() 654 if pal != nil { 655 e.writePLTEAndTRNS(pal) 656 } 657 e.writeIDATs() 658 e.writeIEND() 659 return e.err 660} 661