1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14
15 #include "config/aom_config.h"
16
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33
34 #define USE_B_QUANT_NO_TRELLIS 1
35
36 #define MAX_MB_PLANE 3
37
38 #define MAX_DIFFWTD_MASK_BITS 1
39
40 #define INTERINTRA_WEDGE_SIGN 0
41
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47
48 /*!\cond */
49
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52 DIFFWTD_38 = 0,
53 DIFFWTD_38_INV,
54 DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56
57 enum {
58 KEY_FRAME = 0,
59 INTER_FRAME = 1,
60 INTRA_ONLY_FRAME = 2, // replaces intra-only
61 S_FRAME = 3,
62 FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64
is_comp_ref_allowed(BLOCK_SIZE bsize)65 static inline int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68
is_inter_mode(PREDICTION_MODE mode)69 static inline int is_inter_mode(PREDICTION_MODE mode) {
70 return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72
73 typedef struct {
74 uint8_t *plane[MAX_MB_PLANE];
75 int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77
is_inter_singleref_mode(PREDICTION_MODE mode)78 static inline int is_inter_singleref_mode(PREDICTION_MODE mode) {
79 return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
is_inter_compound_mode(PREDICTION_MODE mode)81 static inline int is_inter_compound_mode(PREDICTION_MODE mode) {
82 return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84
compound_ref0_mode(PREDICTION_MODE mode)85 static inline PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86 static const PREDICTION_MODE lut[] = {
87 DC_PRED, // DC_PRED
88 V_PRED, // V_PRED
89 H_PRED, // H_PRED
90 D45_PRED, // D45_PRED
91 D135_PRED, // D135_PRED
92 D113_PRED, // D113_PRED
93 D157_PRED, // D157_PRED
94 D203_PRED, // D203_PRED
95 D67_PRED, // D67_PRED
96 SMOOTH_PRED, // SMOOTH_PRED
97 SMOOTH_V_PRED, // SMOOTH_V_PRED
98 SMOOTH_H_PRED, // SMOOTH_H_PRED
99 PAETH_PRED, // PAETH_PRED
100 NEARESTMV, // NEARESTMV
101 NEARMV, // NEARMV
102 GLOBALMV, // GLOBALMV
103 NEWMV, // NEWMV
104 NEARESTMV, // NEAREST_NEARESTMV
105 NEARMV, // NEAR_NEARMV
106 NEARESTMV, // NEAREST_NEWMV
107 NEWMV, // NEW_NEARESTMV
108 NEARMV, // NEAR_NEWMV
109 NEWMV, // NEW_NEARMV
110 GLOBALMV, // GLOBAL_GLOBALMV
111 NEWMV, // NEW_NEWMV
112 };
113 assert(NELEMENTS(lut) == MB_MODE_COUNT);
114 assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115 return lut[mode];
116 }
117
compound_ref1_mode(PREDICTION_MODE mode)118 static inline PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119 static const PREDICTION_MODE lut[] = {
120 MB_MODE_COUNT, // DC_PRED
121 MB_MODE_COUNT, // V_PRED
122 MB_MODE_COUNT, // H_PRED
123 MB_MODE_COUNT, // D45_PRED
124 MB_MODE_COUNT, // D135_PRED
125 MB_MODE_COUNT, // D113_PRED
126 MB_MODE_COUNT, // D157_PRED
127 MB_MODE_COUNT, // D203_PRED
128 MB_MODE_COUNT, // D67_PRED
129 MB_MODE_COUNT, // SMOOTH_PRED
130 MB_MODE_COUNT, // SMOOTH_V_PRED
131 MB_MODE_COUNT, // SMOOTH_H_PRED
132 MB_MODE_COUNT, // PAETH_PRED
133 MB_MODE_COUNT, // NEARESTMV
134 MB_MODE_COUNT, // NEARMV
135 MB_MODE_COUNT, // GLOBALMV
136 MB_MODE_COUNT, // NEWMV
137 NEARESTMV, // NEAREST_NEARESTMV
138 NEARMV, // NEAR_NEARMV
139 NEWMV, // NEAREST_NEWMV
140 NEARESTMV, // NEW_NEARESTMV
141 NEWMV, // NEAR_NEWMV
142 NEARMV, // NEW_NEARMV
143 GLOBALMV, // GLOBAL_GLOBALMV
144 NEWMV, // NEW_NEWMV
145 };
146 assert(NELEMENTS(lut) == MB_MODE_COUNT);
147 assert(is_inter_compound_mode(mode));
148 return lut[mode];
149 }
150
have_nearmv_in_inter_mode(PREDICTION_MODE mode)151 static inline int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152 return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153 mode == NEW_NEARMV);
154 }
155
have_newmv_in_inter_mode(PREDICTION_MODE mode)156 static inline int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157 return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158 mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160
is_masked_compound_type(COMPOUND_TYPE type)161 static inline int is_masked_compound_type(COMPOUND_TYPE type) {
162 return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166 modes for the Y blocks to the left and above us; for interframes, there
167 is a single probability table. */
168
169 typedef struct {
170 // Value of base colors for Y, U, and V
171 uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172 // Number of base colors for Y (0) and UV (1)
173 uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175
176 typedef struct {
177 FILTER_INTRA_MODE filter_intra_mode;
178 uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182 DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188
189 typedef struct RD_STATS {
190 int rate;
191 int zero_rate;
192 int64_t dist;
193 // Please be careful of using rdcost, it's not guaranteed to be set all the
194 // time.
195 // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196 // these functions, make sure rdcost is always up-to-date according to
197 // rate/dist.
198 int64_t rdcost;
199 int64_t sse;
200 uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202 int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209 uint8_t *seg_mask;
210 int8_t wedge_index;
211 int8_t wedge_sign;
212 DIFFWTD_MASK_TYPE mask_type;
213 COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 /*!\endcond */
219
220 /*! \brief Stores the prediction/txfm mode of the current coding block
221 */
222 typedef struct MB_MODE_INFO {
223 /*****************************************************************************
224 * \name General Info of the Coding Block
225 ****************************************************************************/
226 /**@{*/
227 /*! \brief The block size of the current coding block */
228 BLOCK_SIZE bsize;
229 /*! \brief The partition type of the current coding block. */
230 PARTITION_TYPE partition;
231 /*! \brief The prediction mode used */
232 PREDICTION_MODE mode;
233 /*! \brief The UV mode when intra is used */
234 UV_PREDICTION_MODE uv_mode;
235 /*! \brief The q index for the current coding block. */
236 int current_qindex;
237 /**@}*/
238
239 /*****************************************************************************
240 * \name Inter Mode Info
241 ****************************************************************************/
242 /**@{*/
243 /*! \brief The motion vectors used by the current inter mode */
244 int_mv mv[2];
245 /*! \brief The reference frames for the MV */
246 MV_REFERENCE_FRAME ref_frame[2];
247 /*! \brief Filter used in subpel interpolation. */
248 int_interpfilters interp_filters;
249 /*! \brief The motion mode used by the inter prediction. */
250 MOTION_MODE motion_mode;
251 /*! \brief Number of samples used by warp causal */
252 uint8_t num_proj_ref;
253 /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
254 * mode. */
255 uint8_t overlappable_neighbors;
256 /*! \brief The parameters used in warp motion mode. */
257 WarpedMotionParams wm_params;
258 /*! \brief The type of intra mode used by inter-intra */
259 INTERINTRA_MODE interintra_mode;
260 /*! \brief The type of wedge used in interintra mode. */
261 int8_t interintra_wedge_index;
262 /*! \brief Struct that stores the data used in interinter compound mode. */
263 INTERINTER_COMPOUND_DATA interinter_comp;
264 /**@}*/
265
266 /*****************************************************************************
267 * \name Intra Mode Info
268 ****************************************************************************/
269 /**@{*/
270 /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
271 * step). */
272 int8_t angle_delta[PLANE_TYPES];
273 /*! \brief The type of filter intra mode used (if applicable). */
274 FILTER_INTRA_MODE_INFO filter_intra_mode_info;
275 /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
276 int8_t cfl_alpha_signs;
277 /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
278 uint8_t cfl_alpha_idx;
279 /*! \brief Stores the size and colors of palette mode */
280 PALETTE_MODE_INFO palette_mode_info;
281 /**@}*/
282
283 /*****************************************************************************
284 * \name Transform Info
285 ****************************************************************************/
286 /**@{*/
287 /*! \brief Whether to skip transforming and sending. */
288 uint8_t skip_txfm;
289 /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
290 TX_SIZE tx_size;
291 /*! \brief Transform size when recursive txfm tree is on. */
292 TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
293 /**@}*/
294
295 /*****************************************************************************
296 * \name Loop Filter Info
297 ****************************************************************************/
298 /**@{*/
299 /*! \copydoc MACROBLOCKD::delta_lf_from_base */
300 int8_t delta_lf_from_base;
301 /*! \copydoc MACROBLOCKD::delta_lf */
302 int8_t delta_lf[FRAME_LF_COUNT];
303 /**@}*/
304
305 /*****************************************************************************
306 * \name Bitfield for Memory Reduction
307 ****************************************************************************/
308 /**@{*/
309 /*! \brief The segment id */
310 uint8_t segment_id : 3;
311 /*! \brief Only valid when temporal update if off. */
312 uint8_t seg_id_predicted : 1;
313 /*! \brief Which ref_mv to use */
314 uint8_t ref_mv_idx : 2;
315 /*! \brief Inter skip mode */
316 uint8_t skip_mode : 1;
317 /*! \brief Whether intrabc is used. */
318 uint8_t use_intrabc : 1;
319 /*! \brief Indicates if masked compound is used(1) or not (0). */
320 uint8_t comp_group_idx : 1;
321 /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
322 uint8_t compound_idx : 1;
323 /*! \brief Whether to use interintra wedge */
324 uint8_t use_wedge_interintra : 1;
325 /*! \brief CDEF strength per BLOCK_64X64 */
326 int8_t cdef_strength : 4;
327 /**@}*/
328
329 #if CONFIG_RD_DEBUG
330 /*! \brief RD info used for debugging */
331 RD_STATS rd_stats;
332 /*! \brief The current row in unit of 4x4 blocks for debugging */
333 int mi_row;
334 /*! \brief The current col in unit of 4x4 blocks for debugging */
335 int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
338 /*! \brief Whether we are skipping the current rows or columns. */
339 int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342
343 /*!\cond */
344
is_intrabc_block(const MB_MODE_INFO * mbmi)345 static inline int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346 return mbmi->use_intrabc;
347 }
348
get_uv_mode(UV_PREDICTION_MODE mode)349 static inline PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350 assert(mode < UV_INTRA_MODES);
351 static const PREDICTION_MODE uv2y[] = {
352 DC_PRED, // UV_DC_PRED
353 V_PRED, // UV_V_PRED
354 H_PRED, // UV_H_PRED
355 D45_PRED, // UV_D45_PRED
356 D135_PRED, // UV_D135_PRED
357 D113_PRED, // UV_D113_PRED
358 D157_PRED, // UV_D157_PRED
359 D203_PRED, // UV_D203_PRED
360 D67_PRED, // UV_D67_PRED
361 SMOOTH_PRED, // UV_SMOOTH_PRED
362 SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
363 SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
364 PAETH_PRED, // UV_PAETH_PRED
365 DC_PRED, // UV_CFL_PRED
366 INTRA_INVALID, // UV_INTRA_MODES
367 INTRA_INVALID, // UV_MODE_INVALID
368 };
369 return uv2y[mode];
370 }
371
is_inter_block(const MB_MODE_INFO * mbmi)372 static inline int is_inter_block(const MB_MODE_INFO *mbmi) {
373 return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375
has_second_ref(const MB_MODE_INFO * mbmi)376 static inline int has_second_ref(const MB_MODE_INFO *mbmi) {
377 return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379
has_uni_comp_refs(const MB_MODE_INFO * mbmi)380 static inline int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381 return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382 (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384
comp_ref0(int ref_idx)385 static inline MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386 static const MV_REFERENCE_FRAME lut[] = {
387 LAST_FRAME, // LAST_LAST2_FRAMES,
388 LAST_FRAME, // LAST_LAST3_FRAMES,
389 LAST_FRAME, // LAST_GOLDEN_FRAMES,
390 BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
391 LAST2_FRAME, // LAST2_LAST3_FRAMES
392 LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
393 LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
394 BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
395 ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
396 };
397 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398 return lut[ref_idx];
399 }
400
comp_ref1(int ref_idx)401 static inline MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402 static const MV_REFERENCE_FRAME lut[] = {
403 LAST2_FRAME, // LAST_LAST2_FRAMES,
404 LAST3_FRAME, // LAST_LAST3_FRAMES,
405 GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
406 ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
407 LAST3_FRAME, // LAST2_LAST3_FRAMES
408 GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
409 GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
410 ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
411 ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
412 };
413 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414 return lut[ref_idx];
415 }
416
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)421 static inline int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422 TransformationType type) {
423 const PREDICTION_MODE mode = mbmi->mode;
424 const BLOCK_SIZE bsize = mbmi->bsize;
425 const int block_size_allowed =
426 AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427 return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428 block_size_allowed;
429 }
430
431 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)432 static inline void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433 int mi_row, int tx_blk_col, int tx_blk_row,
434 int subsampling_x, int subsampling_y) {
435 *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436 (tx_blk_col << MI_SIZE_LOG2);
437 *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438 (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443
444 struct buf_2d {
445 uint8_t *buf;
446 uint8_t *buf0;
447 int width;
448 int height;
449 int stride;
450 };
451
452 typedef struct eob_info {
453 uint16_t eob;
454 uint16_t max_scan_line;
455 } eob_info;
456
457 typedef struct {
458 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459 eob_info eob_data[MAX_MB_PLANE]
460 [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461 DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463
464 typedef struct macroblockd_plane {
465 PLANE_TYPE plane_type;
466 int subsampling_x;
467 int subsampling_y;
468 struct buf_2d dst;
469 struct buf_2d pre[2];
470 ENTROPY_CONTEXT *above_entropy_context;
471 ENTROPY_CONTEXT *left_entropy_context;
472
473 // The dequantizers below are true dequantizers used only in the
474 // dequantization process. They have the same coefficient
475 // shift/scale as TX.
476 int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477 // Pointer to color index map of:
478 // - Current coding block, on encoder side.
479 // - Current superblock, on decoder side.
480 uint8_t *color_index_map;
481
482 // block size in pixels
483 uint8_t width, height;
484
485 qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486 qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488
489 #define BLOCK_OFFSET(i) ((i) << 4)
490
491 /*!\endcond */
492
493 /*!\brief Parameters related to Wiener Filter */
494 typedef struct {
495 /*!
496 * Vertical filter kernel.
497 */
498 DECLARE_ALIGNED(16, InterpKernel, vfilter);
499
500 /*!
501 * Horizontal filter kernel.
502 */
503 DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505
506 /*!\brief Parameters related to Sgrproj Filter */
507 typedef struct {
508 /*!
509 * Parameter index.
510 */
511 int ep;
512
513 /*!
514 * Weights for linear combination of filtered versions
515 */
516 int xqd[2];
517 } SgrprojInfo;
518
519 /*!\cond */
520
521 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
522 #define CFL_BUF_LINE (32)
523 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
524 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
525 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
526 typedef struct cfl_ctx {
527 // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
528 // shifts)
529 uint16_t recon_buf_q3[CFL_BUF_SQUARE];
530 // Q3 AC contributions (reconstructed luma pixels - tx block avg)
531 int16_t ac_buf_q3[CFL_BUF_SQUARE];
532
533 // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
534 // for every scaling parameter
535 bool dc_pred_is_cached[CFL_PRED_PLANES];
536 // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when
537 // decoding.
538 bool use_dc_pred_cache;
539 // Only cache the first row of the DC_PRED
540 int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
541
542 // Height and width currently used in the CfL prediction buffer.
543 int buf_height, buf_width;
544
545 int are_parameters_computed;
546
547 // Chroma subsampling
548 int subsampling_x, subsampling_y;
549
550 // Whether the reconstructed luma pixels need to be stored
551 int store_y;
552 } CFL_CTX;
553
554 typedef struct dist_wtd_comp_params {
555 int use_dist_wtd_comp_avg;
556 int fwd_offset;
557 int bck_offset;
558 } DIST_WTD_COMP_PARAMS;
559
560 struct scale_factors;
561
562 /*!\endcond */
563
564 /*! \brief Variables related to current coding block.
565 *
566 * This is a common set of variables used by both encoder and decoder.
567 * Most/all of the pointers are mere pointers to actual arrays are allocated
568 * elsewhere. This is mostly for coding convenience.
569 */
570 typedef struct macroblockd {
571 /**
572 * \name Position of current macroblock in mi units
573 */
574 /**@{*/
575 int mi_row; /*!< Row position in mi units. */
576 int mi_col; /*!< Column position in mi units. */
577 /**@}*/
578
579 /*!
580 * Same as cm->mi_params.mi_stride, copied here for convenience.
581 */
582 int mi_stride;
583
584 /*!
585 * True if current block transmits chroma information.
586 * More detail:
587 * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
588 * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
589 * blocks smaller than 8x8 maybe combined into one chroma block.
590 * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
591 * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
592 * these four luma blocks. This is implemented in bitstream as follows:
593 * - There are four MB_MODE_INFO structs for the four luma blocks.
594 * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
595 * any information for chroma planes.
596 * - Last block will have is_chroma_ref = true and transmits chroma
597 * information for the 4x4 chroma block that covers whole 8x8 area covered by
598 * four luma blocks.
599 * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
600 */
601 bool is_chroma_ref;
602
603 /*!
604 * Info specific to each plane.
605 */
606 struct macroblockd_plane plane[MAX_MB_PLANE];
607
608 /*!
609 * Tile related info.
610 */
611 TileInfo tile;
612
613 /*!
614 * Appropriate offset inside cm->mi_params.mi_grid_base based on current
615 * mi_row and mi_col.
616 */
617 MB_MODE_INFO **mi;
618
619 /*!
620 * True if 4x4 block above the current block is available.
621 */
622 bool up_available;
623 /*!
624 * True if 4x4 block to the left of the current block is available.
625 */
626 bool left_available;
627 /*!
628 * True if the above chrome reference block is available.
629 */
630 bool chroma_up_available;
631 /*!
632 * True if the left chrome reference block is available.
633 */
634 bool chroma_left_available;
635
636 /*!
637 * MB_MODE_INFO for 4x4 block to the left of the current block, if
638 * left_available == true; otherwise NULL.
639 */
640 MB_MODE_INFO *left_mbmi;
641 /*!
642 * MB_MODE_INFO for 4x4 block above the current block, if
643 * up_available == true; otherwise NULL.
644 */
645 MB_MODE_INFO *above_mbmi;
646 /*!
647 * Above chroma reference block if is_chroma_ref == true for the current block
648 * and chroma_up_available == true; otherwise NULL.
649 * See also: the special case logic when current chroma block covers more than
650 * one luma blocks in set_mi_row_col().
651 */
652 MB_MODE_INFO *chroma_left_mbmi;
653 /*!
654 * Left chroma reference block if is_chroma_ref == true for the current block
655 * and chroma_left_available == true; otherwise NULL.
656 * See also: the special case logic when current chroma block covers more than
657 * one luma blocks in set_mi_row_col().
658 */
659 MB_MODE_INFO *chroma_above_mbmi;
660
661 /*!
662 * Appropriate offset based on current 'mi_row' and 'mi_col', inside
663 * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
664 * 'MACROBLOCK' structs.
665 */
666 uint8_t *tx_type_map;
667 /*!
668 * Stride for 'tx_type_map'. Note that this may / may not be same as
669 * 'mi_stride', depending on which actual array 'tx_type_map' points to.
670 */
671 int tx_type_map_stride;
672
673 /**
674 * \name Distance of this macroblock from frame edges in 1/8th pixel units.
675 */
676 /**@{*/
677 int mb_to_left_edge; /*!< Distance from left edge */
678 int mb_to_right_edge; /*!< Distance from right edge */
679 int mb_to_top_edge; /*!< Distance from top edge */
680 int mb_to_bottom_edge; /*!< Distance from bottom edge */
681 /**@}*/
682
683 /*!
684 * Scale factors for reference frames of the current block.
685 * These are pointers into 'cm->ref_scale_factors'.
686 */
687 const struct scale_factors *block_ref_scale_factors[2];
688
689 /*!
690 * - On encoder side: points to cpi->source, which is the buffer containing
691 * the current *source* frame (maybe filtered).
692 * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
693 * which current frame is being *decoded*.
694 */
695 const YV12_BUFFER_CONFIG *cur_buf;
696
697 /*!
698 * Entropy contexts for the above blocks.
699 * above_entropy_context[i][j] corresponds to above entropy context for ith
700 * plane and jth mi column of this *frame*, wrt current 'mi_row'.
701 * These are pointers into 'cm->above_contexts.entropy'.
702 */
703 ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
704 /*!
705 * Entropy contexts for the left blocks.
706 * left_entropy_context[i][j] corresponds to left entropy context for ith
707 * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
708 * Note: These contain actual data, NOT pointers.
709 */
710 ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
711
712 /*!
713 * Partition contexts for the above blocks.
714 * above_partition_context[i] corresponds to above partition context for ith
715 * mi column of this *frame*, wrt current 'mi_row'.
716 * This is a pointer into 'cm->above_contexts.partition'.
717 */
718 PARTITION_CONTEXT *above_partition_context;
719 /*!
720 * Partition contexts for the left blocks.
721 * left_partition_context[i] corresponds to left partition context for ith
722 * mi row of this *superblock*, wrt current 'mi_col'.
723 * Note: These contain actual data, NOT pointers.
724 */
725 PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
726
727 /*!
728 * Transform contexts for the above blocks.
729 * above_txfm_context[i] corresponds to above transform context for ith mi col
730 * from the current position (mi row and mi column) for this *frame*.
731 * This is a pointer into 'cm->above_contexts.txfm'.
732 */
733 TXFM_CONTEXT *above_txfm_context;
734 /*!
735 * Transform contexts for the left blocks.
736 * left_txfm_context[i] corresponds to left transform context for ith mi row
737 * from the current position (mi_row and mi_col) for this *superblock*.
738 * This is a pointer into 'left_txfm_context_buffer'.
739 */
740 TXFM_CONTEXT *left_txfm_context;
741 /*!
742 * left_txfm_context_buffer[i] is the left transform context for ith mi_row
743 * in this *superblock*.
744 * Behaves like an internal actual buffer which 'left_txt_context' points to,
745 * and never accessed directly except to fill in initial default values.
746 */
747 TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
748
749 /**
750 * \name Default values for the two restoration filters for each plane.
751 * Default values for the two restoration filters for each plane.
752 * These values are used as reference values when writing the bitstream. That
753 * is, we transmit the delta between the actual values in
754 * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
755 */
756 /**@{*/
757 WienerInfo wiener_info[MAX_MB_PLANE]; /*!< Defaults for Wiener filter*/
758 SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
759 /**@}*/
760
761 /**
762 * \name Block dimensions in MB_MODE_INFO units.
763 */
764 /**@{*/
765 uint8_t width; /*!< Block width in MB_MODE_INFO units */
766 uint8_t height; /*!< Block height in MB_MODE_INFO units */
767 /**@}*/
768
769 /*!
770 * Contains the motion vector candidates found during motion vector prediction
771 * process. ref_mv_stack[i] contains the candidates for ith type of
772 * reference frame (single/compound). The actual number of candidates found in
773 * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
774 * or mbmi_ext->ref_mv_count[i] (encoder side).
775 */
776 CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
777 /*!
778 * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
779 * DRL (dynamic reference list) mode contexts.
780 */
781 uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
782
783 /*!
784 * True if this is the last vertical rectangular block in a VERTICAL or
785 * VERTICAL_4 partition.
786 */
787 bool is_last_vertical_rect;
788 /*!
789 * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
790 * HORIZONTAL_4 partition.
791 */
792 bool is_first_horizontal_rect;
793
794 /*!
795 * Counts of each reference frame in the above and left neighboring blocks.
796 * NOTE: Take into account both single and comp references.
797 */
798 uint8_t neighbors_ref_counts[REF_FRAMES];
799
800 /*!
801 * Current CDFs of all the symbols for the current tile.
802 */
803 FRAME_CONTEXT *tile_ctx;
804
805 /*!
806 * Bit depth: copied from cm->seq_params->bit_depth for convenience.
807 */
808 int bd;
809
810 /*!
811 * Quantizer index for each segment (base qindex + delta for each segment).
812 */
813 int qindex[MAX_SEGMENTS];
814 /*!
815 * lossless[s] is true if segment 's' is coded losslessly.
816 */
817 int lossless[MAX_SEGMENTS];
818 /*!
819 * Q index for the coding blocks in this superblock will be stored in
820 * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
821 * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
822 * the base, and adding any transmitted delta qindex on top of it.
823 * Precisely, this is the latest qindex used by the first coding block of a
824 * non-skip superblock in the current tile; OR
825 * same as cm->quant_params.base_qindex (if not explicitly set yet).
826 * Note: This is 'CurrentQIndex' in the AV1 spec.
827 */
828 int current_base_qindex;
829
830 /*!
831 * Same as cm->features.cur_frame_force_integer_mv.
832 */
833 int cur_frame_force_integer_mv;
834
835 /*!
836 * Pointer to cm->error.
837 */
838 struct aom_internal_error_info *error_info;
839
840 /*!
841 * Same as cm->global_motion.
842 */
843 const WarpedMotionParams *global_motion;
844
845 /*!
846 * Since actual frame level loop filtering level value is not available
847 * at the beginning of the tile (only available during actual filtering)
848 * at encoder side.we record the delta_lf (against the frame level loop
849 * filtering level) and code the delta between previous superblock's delta
850 * lf and current delta lf. It is equivalent to the delta between previous
851 * superblock's actual lf and current lf.
852 */
853 int8_t delta_lf_from_base;
854 /*!
855 * We have four frame filter levels for different plane and direction. So, to
856 * support the per superblock update, we need to add a few more params:
857 * 0. delta loop filter level for y plane vertical
858 * 1. delta loop filter level for y plane horizontal
859 * 2. delta loop filter level for u plane
860 * 3. delta loop filter level for v plane
861 * To make it consistent with the reference to each filter level in segment,
862 * we need to -1, since
863 * - SEG_LVL_ALT_LF_Y_V = 1;
864 * - SEG_LVL_ALT_LF_Y_H = 2;
865 * - SEG_LVL_ALT_LF_U = 3;
866 * - SEG_LVL_ALT_LF_V = 4;
867 */
868 int8_t delta_lf[FRAME_LF_COUNT];
869 /*!
870 * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
871 * current superblock has already been read from (decoder) / written to
872 * (encoder) the bitstream; and false otherwise.
873 * More detail:
874 * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
875 * non-skip coding block. So, we need this array to keep track of whether CDEF
876 * strengths for the given CDEF units have been transmitted yet or not.
877 * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
878 * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
879 * superblock size is 128x128). Hence the array size is 4.
880 * 3. In the current implementation, CDEF strength for this CDEF unit is
881 * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
882 * cm->mi_params.mi_grid_base).
883 */
884 bool cdef_transmitted[4];
885
886 /*!
887 * Mask for this block used for compound prediction.
888 */
889 uint8_t *seg_mask;
890
891 /*!
892 * CFL (chroma from luma) related parameters.
893 */
894 CFL_CTX cfl;
895
896 /*!
897 * Offset to plane[p].color_index_map.
898 * Currently:
899 * - On encoder side, this is always 0 as 'color_index_map' is allocated per
900 * *coding block* there.
901 * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
902 * memory pointing to the base of a *superblock* there, and we need an offset
903 * to it to get the color index map for current coding block.
904 */
905 uint16_t color_index_map_offset[2];
906
907 /*!
908 * Temporary buffer used for convolution in case of compound reference only
909 * for (weighted or uniform) averaging operation.
910 * There are pointers to actual buffers allocated elsewhere: e.g.
911 * - In decoder, 'pbi->td.tmp_conv_dst' or
912 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
913 * - In encoder, 'x->tmp_conv_dst' or
914 * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
915 */
916 CONV_BUF_TYPE *tmp_conv_dst;
917 /*!
918 * Temporary buffers used to build OBMC prediction by above (index 0) and left
919 * (index 1) predictors respectively.
920 * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
921 * There are pointers to actual buffers allocated elsewhere: e.g.
922 * - In decoder, 'pbi->td.tmp_obmc_bufs' or
923 * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
924 * -In encoder, 'x->tmp_pred_bufs' or
925 * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
926 */
927 uint8_t *tmp_obmc_bufs[2];
928 } MACROBLOCKD;
929
930 /*!\cond */
931
is_cur_buf_hbd(const MACROBLOCKD * xd)932 static inline int is_cur_buf_hbd(const MACROBLOCKD *xd) {
933 #if CONFIG_AV1_HIGHBITDEPTH
934 return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
935 #else
936 (void)xd;
937 return 0;
938 #endif
939 }
940
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)941 static inline uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
942 #if CONFIG_AV1_HIGHBITDEPTH
943 return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
944 ? CONVERT_TO_BYTEPTR(buf16)
945 : buf16;
946 #else
947 (void)xd;
948 return buf16;
949 #endif
950 }
951
952 typedef struct BitDepthInfo {
953 int bit_depth;
954 /*! Is the image buffer high bit depth?
955 * Low bit depth buffer uses uint8_t.
956 * High bit depth buffer uses uint16_t.
957 * Equivalent to cm->seq_params->use_highbitdepth
958 */
959 int use_highbitdepth_buf;
960 } BitDepthInfo;
961
get_bit_depth_info(const MACROBLOCKD * xd)962 static inline BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
963 BitDepthInfo bit_depth_info;
964 bit_depth_info.bit_depth = xd->bd;
965 bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
966 assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
967 bit_depth_info.bit_depth == 8));
968 return bit_depth_info;
969 }
970
get_sqr_bsize_idx(BLOCK_SIZE bsize)971 static inline int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
972 switch (bsize) {
973 case BLOCK_4X4: return 0;
974 case BLOCK_8X8: return 1;
975 case BLOCK_16X16: return 2;
976 case BLOCK_32X32: return 3;
977 case BLOCK_64X64: return 4;
978 case BLOCK_128X128: return 5;
979 default: return SQR_BLOCK_SIZES;
980 }
981 }
982
983 // For a square block size 'bsize', returns the size of the sub-blocks used by
984 // the given partition type. If the partition produces sub-blocks of different
985 // sizes, then the function returns the largest sub-block size.
986 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
987 // Conversion tables).
988 // Note: the input block size should be square.
989 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)990 static inline BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
991 PARTITION_TYPE partition) {
992 if (partition == PARTITION_INVALID) {
993 return BLOCK_INVALID;
994 } else {
995 const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
996 return sqr_bsize_idx >= SQR_BLOCK_SIZES
997 ? BLOCK_INVALID
998 : subsize_lookup[partition][sqr_bsize_idx];
999 }
1000 }
1001
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)1002 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1003 PLANE_TYPE plane_type) {
1004 static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1005 DCT_DCT, // DC_PRED
1006 ADST_DCT, // V_PRED
1007 DCT_ADST, // H_PRED
1008 DCT_DCT, // D45_PRED
1009 ADST_ADST, // D135_PRED
1010 ADST_DCT, // D113_PRED
1011 DCT_ADST, // D157_PRED
1012 DCT_ADST, // D203_PRED
1013 ADST_DCT, // D67_PRED
1014 ADST_ADST, // SMOOTH_PRED
1015 ADST_DCT, // SMOOTH_V_PRED
1016 DCT_ADST, // SMOOTH_H_PRED
1017 ADST_ADST, // PAETH_PRED
1018 };
1019 const PREDICTION_MODE mode =
1020 (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1021 assert(mode < INTRA_MODES);
1022 return _intra_mode_to_tx_type[mode];
1023 }
1024
is_rect_tx(TX_SIZE tx_size)1025 static inline int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1026
block_signals_txsize(BLOCK_SIZE bsize)1027 static inline int block_signals_txsize(BLOCK_SIZE bsize) {
1028 return bsize > BLOCK_4X4;
1029 }
1030
1031 // Number of transform types in each set type
1032 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1033 1, 2, 5, 7, 12, 16,
1034 };
1035
1036 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1037 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1038 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1039 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1040 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1041 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1042 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1043 };
1044
1045 // The bitmask corresponds to the transform types as defined in
1046 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1047 // the use of the corresponding transform type in that table.
1048 // The av1_derived_intra_tx_used_flag table is used when
1049 // use_reduced_intra_txset is set to 2, where one only searches
1050 // the transform types derived from residual statistics.
1051 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1052 0x0209, // DC_PRED: 0000 0010 0000 1001
1053 0x0403, // V_PRED: 0000 0100 0000 0011
1054 0x0805, // H_PRED: 0000 1000 0000 0101
1055 0x020F, // D45_PRED: 0000 0010 0000 1111
1056 0x0009, // D135_PRED: 0000 0000 0000 1001
1057 0x0009, // D113_PRED: 0000 0000 0000 1001
1058 0x0009, // D157_PRED: 0000 0000 0000 1001
1059 0x0805, // D203_PRED: 0000 1000 0000 0101
1060 0x0403, // D67_PRED: 0000 0100 0000 0011
1061 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1062 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1063 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1064 0x0209, // PAETH_PRED: 0000 0010 0000 1001
1065 };
1066
1067 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1068 0x080F, // DC_PRED: 0000 1000 0000 1111
1069 0x040F, // V_PRED: 0000 0100 0000 1111
1070 0x080F, // H_PRED: 0000 1000 0000 1111
1071 0x020F, // D45_PRED: 0000 0010 0000 1111
1072 0x080F, // D135_PRED: 0000 1000 0000 1111
1073 0x040F, // D113_PRED: 0000 0100 0000 1111
1074 0x080F, // D157_PRED: 0000 1000 0000 1111
1075 0x080F, // D203_PRED: 0000 1000 0000 1111
1076 0x040F, // D67_PRED: 0000 0100 0000 1111
1077 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1078 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1079 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1080 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1081 };
1082
1083 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1084 0x0001, // 0000 0000 0000 0001
1085 0x0201, // 0000 0010 0000 0001
1086 0x020F, // 0000 0010 0000 1111
1087 0x0E0F, // 0000 1110 0000 1111
1088 0x0FFF, // 0000 1111 1111 1111
1089 0xFFFF, // 1111 1111 1111 1111
1090 };
1091
1092 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1093 { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1094 { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1095 };
1096
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)1097 static inline TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1098 int use_reduced_set) {
1099 const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1100 if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1101 if (tx_size_sqr_up == TX_32X32)
1102 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1103 if (use_reduced_set)
1104 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1105 const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1106 return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1107 }
1108
1109 // Maps tx set types to the indices.
1110 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1111 { // Intra
1112 0, -1, 2, 1, -1, -1 },
1113 { // Inter
1114 0, 3, -1, -1, 2, 1 },
1115 };
1116
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)1117 static inline int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1118 int use_reduced_set) {
1119 const TxSetType set_type =
1120 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1121 return ext_tx_set_index[is_inter][set_type];
1122 }
1123
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)1124 static inline int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1125 int use_reduced_set) {
1126 const int set_type =
1127 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128 return av1_num_ext_tx_set[set_type];
1129 }
1130
1131 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1132 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1133
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)1134 static inline TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1135 const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1136 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1137 if (bsize == BLOCK_4X4)
1138 return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1139 if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1140 return max_rect_tx_size;
1141 else
1142 return largest_tx_size;
1143 }
1144
1145 static const uint8_t mode_to_angle_map[INTRA_MODES] = {
1146 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1147 };
1148
1149 // Converts block_index for given transform size to index of the block in raster
1150 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)1151 static inline int av1_block_index_to_raster_order(TX_SIZE tx_size,
1152 int block_idx) {
1153 // For transform size 4x8, the possible block_idx values are 0 & 2, because
1154 // block_idx values are incremented in steps of size 'tx_width_unit x
1155 // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1156 // block number 1 in raster order, inside an 8x8 MI block.
1157 // For any other transform size, the two indices are equivalent.
1158 return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1159 }
1160
1161 // Inverse of above function.
1162 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)1163 static inline int av1_raster_order_to_block_index(TX_SIZE tx_size,
1164 int raster_order) {
1165 assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1166 // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1167 return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1168 }
1169
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int use_screen_content_tools)1170 static inline TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1171 const MACROBLOCKD *xd,
1172 TX_SIZE tx_size,
1173 int use_screen_content_tools) {
1174 const MB_MODE_INFO *const mbmi = xd->mi[0];
1175
1176 if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1177 xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1178 use_screen_content_tools)
1179 return DEFAULT_INTER_TX_TYPE;
1180
1181 return intra_mode_to_tx_type(mbmi, plane_type);
1182 }
1183
1184 // Implements the get_plane_residual_size() function in the spec (Section
1185 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1186 static inline BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1187 int subsampling_x,
1188 int subsampling_y) {
1189 assert(bsize < BLOCK_SIZES_ALL);
1190 assert(subsampling_x >= 0 && subsampling_x < 2);
1191 assert(subsampling_y >= 0 && subsampling_y < 2);
1192 return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1193 }
1194
1195 /*
1196 * Logic to generate the lookup tables:
1197 *
1198 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1199 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1200 * txs = sub_tx_size_map[txs];
1201 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1202 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1203 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1204 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1205 */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1206 static inline int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1207 int blk_col) {
1208 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1209 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1210 };
1211 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1212 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1213 };
1214 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1215 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1216 };
1217 const int index =
1218 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1219 (blk_col >> tw_w_log2_table[bsize]);
1220 assert(index < INTER_TX_SIZE_BUF_LEN);
1221 return index;
1222 }
1223
1224 #if CONFIG_INSPECTION
1225 /*
1226 * Here is the logic to generate the lookup tables:
1227 *
1228 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1229 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1230 * txs = sub_tx_size_map[txs];
1231 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1232 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1233 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1234 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1235 */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1236 static inline int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1237 int blk_col) {
1238 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1239 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1240 };
1241 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1242 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1243 };
1244 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1245 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1246 };
1247 const int index =
1248 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1249 (blk_col >> tw_w_log2_table[bsize]);
1250 assert(index < TXK_TYPE_BUF_LEN);
1251 return index;
1252 }
1253 #endif // CONFIG_INSPECTION
1254
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)1255 static inline void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1256 int blk_col, TX_SIZE tx_size,
1257 TX_TYPE tx_type) {
1258 const int stride = xd->tx_type_map_stride;
1259 xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1260
1261 const int txw = tx_size_wide_unit[tx_size];
1262 const int txh = tx_size_high_unit[tx_size];
1263 // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1264 // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1265 // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1266 // the intricacy, cover all the 16x16 units inside a 64 level transform.
1267 if (txw == tx_size_wide_unit[TX_64X64] ||
1268 txh == tx_size_high_unit[TX_64X64]) {
1269 const int tx_unit = tx_size_wide_unit[TX_16X16];
1270 for (int idy = 0; idy < txh; idy += tx_unit) {
1271 for (int idx = 0; idx < txw; idx += tx_unit) {
1272 xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1273 }
1274 }
1275 }
1276 }
1277
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)1278 static inline TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1279 PLANE_TYPE plane_type, int blk_row,
1280 int blk_col, TX_SIZE tx_size,
1281 int reduced_tx_set) {
1282 const MB_MODE_INFO *const mbmi = xd->mi[0];
1283 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1284 return DCT_DCT;
1285 }
1286
1287 TX_TYPE tx_type;
1288 if (plane_type == PLANE_TYPE_Y) {
1289 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1290 } else {
1291 if (is_inter_block(mbmi)) {
1292 // scale back to y plane's coordinate
1293 const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1294 blk_row <<= pd->subsampling_y;
1295 blk_col <<= pd->subsampling_x;
1296 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297 } else {
1298 // In intra mode, uv planes don't share the same prediction mode as y
1299 // plane, so the tx_type should not be shared
1300 tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1301 }
1302 const TxSetType tx_set_type =
1303 av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1304 if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1305 }
1306 assert(tx_type < TX_TYPES);
1307 assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1308 reduced_tx_set)][tx_type]);
1309 return tx_type;
1310 }
1311
1312 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1313 const int num_planes);
1314
1315 /*
1316 * Logic to generate the lookup table:
1317 *
1318 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1319 * int depth = 0;
1320 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1321 * depth++;
1322 * tx_size = sub_tx_size_map[tx_size];
1323 * }
1324 */
bsize_to_max_depth(BLOCK_SIZE bsize)1325 static inline int bsize_to_max_depth(BLOCK_SIZE bsize) {
1326 static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1327 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1328 };
1329 return bsize_to_max_depth_table[bsize];
1330 }
1331
1332 /*
1333 * Logic to generate the lookup table:
1334 *
1335 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1336 * assert(tx_size != TX_4X4);
1337 * int depth = 0;
1338 * while (tx_size != TX_4X4) {
1339 * depth++;
1340 * tx_size = sub_tx_size_map[tx_size];
1341 * }
1342 * assert(depth < 10);
1343 */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1344 static inline int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1345 assert(bsize < BLOCK_SIZES_ALL);
1346 static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1347 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1348 };
1349 const int depth = bsize_to_tx_size_depth_table[bsize];
1350 assert(depth <= MAX_TX_CATS);
1351 return depth - 1;
1352 }
1353
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1354 static inline TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1355 TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1356 TX_SIZE tx_size = max_tx_size;
1357 for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1358 return tx_size;
1359 }
1360
av1_get_adjusted_tx_size(TX_SIZE tx_size)1361 static inline TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1362 switch (tx_size) {
1363 case TX_64X64:
1364 case TX_64X32:
1365 case TX_32X64: return TX_32X32;
1366 case TX_64X16: return TX_32X16;
1367 case TX_16X64: return TX_16X32;
1368 default: return tx_size;
1369 }
1370 }
1371
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1372 static inline TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1373 int subsampling_y) {
1374 const BLOCK_SIZE plane_bsize =
1375 get_plane_block_size(bsize, subsampling_x, subsampling_y);
1376 assert(plane_bsize < BLOCK_SIZES_ALL);
1377 const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1378 return av1_get_adjusted_tx_size(uv_tx);
1379 }
1380
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1381 static inline TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1382 const MB_MODE_INFO *mbmi = xd->mi[0];
1383 if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1384 if (plane == 0) return mbmi->tx_size;
1385 const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1386 return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1387 pd->subsampling_y);
1388 }
1389
1390 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1391 const int num_planes);
1392
1393 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1394
1395 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1396
1397 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1398 int blk_row, int blk_col,
1399 BLOCK_SIZE plane_bsize,
1400 TX_SIZE tx_size, void *arg);
1401
1402 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1403 struct macroblockd_plane *pd, int plane,
1404 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1405 int has_eob, int aoff, int loff);
1406
1407 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1408 static inline int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1409 return (mbmi->ref_frame[0] > INTRA_FRAME &&
1410 mbmi->ref_frame[1] == INTRA_FRAME);
1411 }
1412
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1413 static inline int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1414 return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1415 }
1416
is_interintra_allowed_mode(const PREDICTION_MODE mode)1417 static inline int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1418 return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1419 }
1420
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1421 static inline int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1422 return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1423 }
1424
is_interintra_allowed(const MB_MODE_INFO * mbmi)1425 static inline int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1426 return is_interintra_allowed_bsize(mbmi->bsize) &&
1427 is_interintra_allowed_mode(mbmi->mode) &&
1428 is_interintra_allowed_ref(mbmi->ref_frame);
1429 }
1430
is_interintra_allowed_bsize_group(int group)1431 static inline int is_interintra_allowed_bsize_group(int group) {
1432 int i;
1433 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1434 if (size_group_lookup[i] == group &&
1435 is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1436 return 1;
1437 }
1438 }
1439 return 0;
1440 }
1441
is_interintra_pred(const MB_MODE_INFO * mbmi)1442 static inline int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1443 return mbmi->ref_frame[0] > INTRA_FRAME &&
1444 mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1445 }
1446
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1447 static inline int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1448 int plane) {
1449 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1450 const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1451 if (plane == 0) return max_txsize; // luma
1452 return av1_get_adjusted_tx_size(max_txsize); // chroma
1453 }
1454
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1455 static inline int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1456 assert(bsize < BLOCK_SIZES_ALL);
1457 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1458 }
1459
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1460 static inline int is_motion_variation_allowed_compound(
1461 const MB_MODE_INFO *mbmi) {
1462 return !has_second_ref(mbmi);
1463 }
1464
1465 // input: log2 of length, 0(4), 1(8), ...
1466 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1467
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1468 static inline int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1469 return mbmi->overlappable_neighbors != 0;
1470 }
1471
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1472 static inline MOTION_MODE motion_mode_allowed(
1473 const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1474 const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1475 if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1476 if (xd->cur_frame_force_integer_mv == 0) {
1477 const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1478 if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1479 }
1480 if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1481 is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1482 is_motion_variation_allowed_compound(mbmi)) {
1483 assert(!has_second_ref(mbmi));
1484 if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1485 !xd->cur_frame_force_integer_mv &&
1486 !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1487 return WARPED_CAUSAL;
1488 }
1489 return OBMC_CAUSAL;
1490 }
1491 return SIMPLE_TRANSLATION;
1492 }
1493
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1494 static inline int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1495 return (is_inter_block(mbmi));
1496 }
1497
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1498 static inline int av1_allow_palette(int allow_screen_content_tools,
1499 BLOCK_SIZE sb_type) {
1500 assert(sb_type < BLOCK_SIZES_ALL);
1501 return allow_screen_content_tools &&
1502 block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1503 block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1504 sb_type >= BLOCK_8X8;
1505 }
1506
1507 // Returns sub-sampled dimensions of the given block.
1508 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1509 // differ from 'height' and 'width' when part of the block is outside the
1510 // right
1511 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1512 static inline void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1513 const MACROBLOCKD *xd, int *width,
1514 int *height,
1515 int *rows_within_bounds,
1516 int *cols_within_bounds) {
1517 const int block_height = block_size_high[bsize];
1518 const int block_width = block_size_wide[bsize];
1519 const int block_rows = (xd->mb_to_bottom_edge >= 0)
1520 ? block_height
1521 : (xd->mb_to_bottom_edge >> 3) + block_height;
1522 const int block_cols = (xd->mb_to_right_edge >= 0)
1523 ? block_width
1524 : (xd->mb_to_right_edge >> 3) + block_width;
1525 const struct macroblockd_plane *const pd = &xd->plane[plane];
1526 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1527 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1528 assert(block_width >= block_cols);
1529 assert(block_height >= block_rows);
1530 const int plane_block_width = block_width >> pd->subsampling_x;
1531 const int plane_block_height = block_height >> pd->subsampling_y;
1532 // Special handling for chroma sub8x8.
1533 const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1534 const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1535 if (width) {
1536 *width = plane_block_width + 2 * is_chroma_sub8_x;
1537 assert(*width >= 0);
1538 }
1539 if (height) {
1540 *height = plane_block_height + 2 * is_chroma_sub8_y;
1541 assert(*height >= 0);
1542 }
1543 if (rows_within_bounds) {
1544 *rows_within_bounds =
1545 (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1546 assert(*rows_within_bounds >= 0);
1547 }
1548 if (cols_within_bounds) {
1549 *cols_within_bounds =
1550 (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1551 assert(*cols_within_bounds >= 0);
1552 }
1553 }
1554
1555 /* clang-format off */
1556 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1557 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1558 [CDF_SIZE(PALETTE_COLORS)];
1559 // Pointer to a const three-dimensional array whose first dimension is
1560 // PALETTE_SIZES.
1561 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1562 /* clang-format on */
1563
1564 typedef struct {
1565 int rows;
1566 int cols;
1567 int n_colors;
1568 int plane_width;
1569 int plane_height;
1570 uint8_t *color_map;
1571 MapCdf map_cdf;
1572 ColorCost color_cost;
1573 } Av1ColorMapParam;
1574
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1575 static inline int is_nontrans_global_motion(const MACROBLOCKD *xd,
1576 const MB_MODE_INFO *mbmi) {
1577 int ref;
1578
1579 // First check if all modes are GLOBALMV
1580 if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1581
1582 if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1583 return 0;
1584
1585 // Now check if all global motion is non translational
1586 for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1587 if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1588 }
1589 return 1;
1590 }
1591
get_plane_type(int plane)1592 static inline PLANE_TYPE get_plane_type(int plane) {
1593 return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1594 }
1595
av1_get_max_eob(TX_SIZE tx_size)1596 static inline int av1_get_max_eob(TX_SIZE tx_size) {
1597 if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1598 return 1024;
1599 }
1600 if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1601 return 512;
1602 }
1603 return tx_size_2d[tx_size];
1604 }
1605
1606 /*!\endcond */
1607
1608 #ifdef __cplusplus
1609 } // extern "C"
1610 #endif
1611
1612 #endif // AOM_AV1_COMMON_BLOCKD_H_
1613