xref: /aosp_15_r20/external/libaom/av1/common/blockd.h (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43 
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45 
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47 
48 /*!\cond */
49 
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52   DIFFWTD_38 = 0,
53   DIFFWTD_38_INV,
54   DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56 
57 enum {
58   KEY_FRAME = 0,
59   INTER_FRAME = 1,
60   INTRA_ONLY_FRAME = 2,  // replaces intra-only
61   S_FRAME = 3,
62   FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64 
is_comp_ref_allowed(BLOCK_SIZE bsize)65 static inline int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68 
is_inter_mode(PREDICTION_MODE mode)69 static inline int is_inter_mode(PREDICTION_MODE mode) {
70   return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72 
73 typedef struct {
74   uint8_t *plane[MAX_MB_PLANE];
75   int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77 
is_inter_singleref_mode(PREDICTION_MODE mode)78 static inline int is_inter_singleref_mode(PREDICTION_MODE mode) {
79   return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
is_inter_compound_mode(PREDICTION_MODE mode)81 static inline int is_inter_compound_mode(PREDICTION_MODE mode) {
82   return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84 
compound_ref0_mode(PREDICTION_MODE mode)85 static inline PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86   static const PREDICTION_MODE lut[] = {
87     DC_PRED,        // DC_PRED
88     V_PRED,         // V_PRED
89     H_PRED,         // H_PRED
90     D45_PRED,       // D45_PRED
91     D135_PRED,      // D135_PRED
92     D113_PRED,      // D113_PRED
93     D157_PRED,      // D157_PRED
94     D203_PRED,      // D203_PRED
95     D67_PRED,       // D67_PRED
96     SMOOTH_PRED,    // SMOOTH_PRED
97     SMOOTH_V_PRED,  // SMOOTH_V_PRED
98     SMOOTH_H_PRED,  // SMOOTH_H_PRED
99     PAETH_PRED,     // PAETH_PRED
100     NEARESTMV,      // NEARESTMV
101     NEARMV,         // NEARMV
102     GLOBALMV,       // GLOBALMV
103     NEWMV,          // NEWMV
104     NEARESTMV,      // NEAREST_NEARESTMV
105     NEARMV,         // NEAR_NEARMV
106     NEARESTMV,      // NEAREST_NEWMV
107     NEWMV,          // NEW_NEARESTMV
108     NEARMV,         // NEAR_NEWMV
109     NEWMV,          // NEW_NEARMV
110     GLOBALMV,       // GLOBAL_GLOBALMV
111     NEWMV,          // NEW_NEWMV
112   };
113   assert(NELEMENTS(lut) == MB_MODE_COUNT);
114   assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115   return lut[mode];
116 }
117 
compound_ref1_mode(PREDICTION_MODE mode)118 static inline PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119   static const PREDICTION_MODE lut[] = {
120     MB_MODE_COUNT,  // DC_PRED
121     MB_MODE_COUNT,  // V_PRED
122     MB_MODE_COUNT,  // H_PRED
123     MB_MODE_COUNT,  // D45_PRED
124     MB_MODE_COUNT,  // D135_PRED
125     MB_MODE_COUNT,  // D113_PRED
126     MB_MODE_COUNT,  // D157_PRED
127     MB_MODE_COUNT,  // D203_PRED
128     MB_MODE_COUNT,  // D67_PRED
129     MB_MODE_COUNT,  // SMOOTH_PRED
130     MB_MODE_COUNT,  // SMOOTH_V_PRED
131     MB_MODE_COUNT,  // SMOOTH_H_PRED
132     MB_MODE_COUNT,  // PAETH_PRED
133     MB_MODE_COUNT,  // NEARESTMV
134     MB_MODE_COUNT,  // NEARMV
135     MB_MODE_COUNT,  // GLOBALMV
136     MB_MODE_COUNT,  // NEWMV
137     NEARESTMV,      // NEAREST_NEARESTMV
138     NEARMV,         // NEAR_NEARMV
139     NEWMV,          // NEAREST_NEWMV
140     NEARESTMV,      // NEW_NEARESTMV
141     NEWMV,          // NEAR_NEWMV
142     NEARMV,         // NEW_NEARMV
143     GLOBALMV,       // GLOBAL_GLOBALMV
144     NEWMV,          // NEW_NEWMV
145   };
146   assert(NELEMENTS(lut) == MB_MODE_COUNT);
147   assert(is_inter_compound_mode(mode));
148   return lut[mode];
149 }
150 
have_nearmv_in_inter_mode(PREDICTION_MODE mode)151 static inline int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152   return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153           mode == NEW_NEARMV);
154 }
155 
have_newmv_in_inter_mode(PREDICTION_MODE mode)156 static inline int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157   return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158           mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160 
is_masked_compound_type(COMPOUND_TYPE type)161 static inline int is_masked_compound_type(COMPOUND_TYPE type) {
162   return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164 
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166    modes for the Y blocks to the left and above us; for interframes, there
167    is a single probability table. */
168 
169 typedef struct {
170   // Value of base colors for Y, U, and V
171   uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172   // Number of base colors for Y (0) and UV (1)
173   uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175 
176 typedef struct {
177   FILTER_INTRA_MODE filter_intra_mode;
178   uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180 
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182   DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184 
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188 
189 typedef struct RD_STATS {
190   int rate;
191   int zero_rate;
192   int64_t dist;
193   // Please be careful of using rdcost, it's not guaranteed to be set all the
194   // time.
195   // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196   // these functions, make sure rdcost is always up-to-date according to
197   // rate/dist.
198   int64_t rdcost;
199   int64_t sse;
200   uint8_t skip_txfm;  // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202   int txb_coeff_cost[MAX_MB_PLANE];
203 #endif  // CONFIG_RD_DEBUG
204 } RD_STATS;
205 
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209   uint8_t *seg_mask;
210   int8_t wedge_index;
211   int8_t wedge_sign;
212   DIFFWTD_MASK_TYPE mask_type;
213   COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215 
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 /*!\endcond */
219 
220 /*! \brief Stores the prediction/txfm mode of the current coding block
221  */
222 typedef struct MB_MODE_INFO {
223   /*****************************************************************************
224    * \name General Info of the Coding Block
225    ****************************************************************************/
226   /**@{*/
227   /*! \brief The block size of the current coding block */
228   BLOCK_SIZE bsize;
229   /*! \brief The partition type of the current coding block. */
230   PARTITION_TYPE partition;
231   /*! \brief The prediction mode used */
232   PREDICTION_MODE mode;
233   /*! \brief The UV mode when intra is used */
234   UV_PREDICTION_MODE uv_mode;
235   /*! \brief The q index for the current coding block. */
236   int current_qindex;
237   /**@}*/
238 
239   /*****************************************************************************
240    * \name Inter Mode Info
241    ****************************************************************************/
242   /**@{*/
243   /*! \brief The motion vectors used by the current inter mode */
244   int_mv mv[2];
245   /*! \brief The reference frames for the MV */
246   MV_REFERENCE_FRAME ref_frame[2];
247   /*! \brief Filter used in subpel interpolation. */
248   int_interpfilters interp_filters;
249   /*! \brief The motion mode used by the inter prediction. */
250   MOTION_MODE motion_mode;
251   /*! \brief Number of samples used by warp causal */
252   uint8_t num_proj_ref;
253   /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
254    * mode. */
255   uint8_t overlappable_neighbors;
256   /*! \brief The parameters used in warp motion mode. */
257   WarpedMotionParams wm_params;
258   /*! \brief The type of intra mode used by inter-intra */
259   INTERINTRA_MODE interintra_mode;
260   /*! \brief The type of wedge used in interintra mode. */
261   int8_t interintra_wedge_index;
262   /*! \brief Struct that stores the data used in interinter compound mode. */
263   INTERINTER_COMPOUND_DATA interinter_comp;
264   /**@}*/
265 
266   /*****************************************************************************
267    * \name Intra Mode Info
268    ****************************************************************************/
269   /**@{*/
270   /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
271    * step). */
272   int8_t angle_delta[PLANE_TYPES];
273   /*! \brief The type of filter intra mode used (if applicable). */
274   FILTER_INTRA_MODE_INFO filter_intra_mode_info;
275   /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
276   int8_t cfl_alpha_signs;
277   /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
278   uint8_t cfl_alpha_idx;
279   /*! \brief Stores the size and colors of palette mode */
280   PALETTE_MODE_INFO palette_mode_info;
281   /**@}*/
282 
283   /*****************************************************************************
284    * \name Transform Info
285    ****************************************************************************/
286   /**@{*/
287   /*! \brief Whether to skip transforming and sending. */
288   uint8_t skip_txfm;
289   /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
290   TX_SIZE tx_size;
291   /*! \brief Transform size when recursive txfm tree is on. */
292   TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
293   /**@}*/
294 
295   /*****************************************************************************
296    * \name Loop Filter Info
297    ****************************************************************************/
298   /**@{*/
299   /*! \copydoc MACROBLOCKD::delta_lf_from_base */
300   int8_t delta_lf_from_base;
301   /*! \copydoc MACROBLOCKD::delta_lf */
302   int8_t delta_lf[FRAME_LF_COUNT];
303   /**@}*/
304 
305   /*****************************************************************************
306    * \name Bitfield for Memory Reduction
307    ****************************************************************************/
308   /**@{*/
309   /*! \brief The segment id */
310   uint8_t segment_id : 3;
311   /*! \brief Only valid when temporal update if off. */
312   uint8_t seg_id_predicted : 1;
313   /*! \brief Which ref_mv to use */
314   uint8_t ref_mv_idx : 2;
315   /*! \brief Inter skip mode */
316   uint8_t skip_mode : 1;
317   /*! \brief Whether intrabc is used. */
318   uint8_t use_intrabc : 1;
319   /*! \brief Indicates if masked compound is used(1) or not (0). */
320   uint8_t comp_group_idx : 1;
321   /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
322   uint8_t compound_idx : 1;
323   /*! \brief Whether to use interintra wedge */
324   uint8_t use_wedge_interintra : 1;
325   /*! \brief CDEF strength per BLOCK_64X64 */
326   int8_t cdef_strength : 4;
327   /**@}*/
328 
329 #if CONFIG_RD_DEBUG
330   /*! \brief RD info used for debugging */
331   RD_STATS rd_stats;
332   /*! \brief The current row in unit of 4x4 blocks for debugging */
333   int mi_row;
334   /*! \brief The current col in unit of 4x4 blocks for debugging */
335   int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
338   /*! \brief Whether we are skipping the current rows or columns. */
339   int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342 
343 /*!\cond */
344 
is_intrabc_block(const MB_MODE_INFO * mbmi)345 static inline int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346   return mbmi->use_intrabc;
347 }
348 
get_uv_mode(UV_PREDICTION_MODE mode)349 static inline PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350   assert(mode < UV_INTRA_MODES);
351   static const PREDICTION_MODE uv2y[] = {
352     DC_PRED,        // UV_DC_PRED
353     V_PRED,         // UV_V_PRED
354     H_PRED,         // UV_H_PRED
355     D45_PRED,       // UV_D45_PRED
356     D135_PRED,      // UV_D135_PRED
357     D113_PRED,      // UV_D113_PRED
358     D157_PRED,      // UV_D157_PRED
359     D203_PRED,      // UV_D203_PRED
360     D67_PRED,       // UV_D67_PRED
361     SMOOTH_PRED,    // UV_SMOOTH_PRED
362     SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED
363     SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED
364     PAETH_PRED,     // UV_PAETH_PRED
365     DC_PRED,        // UV_CFL_PRED
366     INTRA_INVALID,  // UV_INTRA_MODES
367     INTRA_INVALID,  // UV_MODE_INVALID
368   };
369   return uv2y[mode];
370 }
371 
is_inter_block(const MB_MODE_INFO * mbmi)372 static inline int is_inter_block(const MB_MODE_INFO *mbmi) {
373   return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375 
has_second_ref(const MB_MODE_INFO * mbmi)376 static inline int has_second_ref(const MB_MODE_INFO *mbmi) {
377   return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379 
has_uni_comp_refs(const MB_MODE_INFO * mbmi)380 static inline int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381   return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382                                     (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384 
comp_ref0(int ref_idx)385 static inline MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386   static const MV_REFERENCE_FRAME lut[] = {
387     LAST_FRAME,     // LAST_LAST2_FRAMES,
388     LAST_FRAME,     // LAST_LAST3_FRAMES,
389     LAST_FRAME,     // LAST_GOLDEN_FRAMES,
390     BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES,
391     LAST2_FRAME,    // LAST2_LAST3_FRAMES
392     LAST2_FRAME,    // LAST2_GOLDEN_FRAMES,
393     LAST3_FRAME,    // LAST3_GOLDEN_FRAMES,
394     BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES,
395     ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES,
396   };
397   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398   return lut[ref_idx];
399 }
400 
comp_ref1(int ref_idx)401 static inline MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402   static const MV_REFERENCE_FRAME lut[] = {
403     LAST2_FRAME,    // LAST_LAST2_FRAMES,
404     LAST3_FRAME,    // LAST_LAST3_FRAMES,
405     GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES,
406     ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES,
407     LAST3_FRAME,    // LAST2_LAST3_FRAMES
408     GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES,
409     GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES,
410     ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES,
411     ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES,
412   };
413   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414   return lut[ref_idx];
415 }
416 
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418 
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420 
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)421 static inline int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422                                      TransformationType type) {
423   const PREDICTION_MODE mode = mbmi->mode;
424   const BLOCK_SIZE bsize = mbmi->bsize;
425   const int block_size_allowed =
426       AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427   return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428          block_size_allowed;
429 }
430 
431 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)432 static inline void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433                                    int mi_row, int tx_blk_col, int tx_blk_row,
434                                    int subsampling_x, int subsampling_y) {
435   *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436              (tx_blk_col << MI_SIZE_LOG2);
437   *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438              (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441 
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443 
444 struct buf_2d {
445   uint8_t *buf;
446   uint8_t *buf0;
447   int width;
448   int height;
449   int stride;
450 };
451 
452 typedef struct eob_info {
453   uint16_t eob;
454   uint16_t max_scan_line;
455 } eob_info;
456 
457 typedef struct {
458   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459   eob_info eob_data[MAX_MB_PLANE]
460                    [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461   DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463 
464 typedef struct macroblockd_plane {
465   PLANE_TYPE plane_type;
466   int subsampling_x;
467   int subsampling_y;
468   struct buf_2d dst;
469   struct buf_2d pre[2];
470   ENTROPY_CONTEXT *above_entropy_context;
471   ENTROPY_CONTEXT *left_entropy_context;
472 
473   // The dequantizers below are true dequantizers used only in the
474   // dequantization process.  They have the same coefficient
475   // shift/scale as TX.
476   int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477   // Pointer to color index map of:
478   // - Current coding block, on encoder side.
479   // - Current superblock, on decoder side.
480   uint8_t *color_index_map;
481 
482   // block size in pixels
483   uint8_t width, height;
484 
485   qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486   qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488 
489 #define BLOCK_OFFSET(i) ((i) << 4)
490 
491 /*!\endcond */
492 
493 /*!\brief Parameters related to Wiener Filter */
494 typedef struct {
495   /*!
496    * Vertical filter kernel.
497    */
498   DECLARE_ALIGNED(16, InterpKernel, vfilter);
499 
500   /*!
501    * Horizontal filter kernel.
502    */
503   DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505 
506 /*!\brief Parameters related to Sgrproj Filter */
507 typedef struct {
508   /*!
509    * Parameter index.
510    */
511   int ep;
512 
513   /*!
514    * Weights for linear combination of filtered versions
515    */
516   int xqd[2];
517 } SgrprojInfo;
518 
519 /*!\cond */
520 
521 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
522 #define CFL_BUF_LINE (32)
523 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
524 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
525 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
526 typedef struct cfl_ctx {
527   // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
528   // shifts)
529   uint16_t recon_buf_q3[CFL_BUF_SQUARE];
530   // Q3 AC contributions (reconstructed luma pixels - tx block avg)
531   int16_t ac_buf_q3[CFL_BUF_SQUARE];
532 
533   // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
534   // for every scaling parameter
535   bool dc_pred_is_cached[CFL_PRED_PLANES];
536   // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when
537   // decoding.
538   bool use_dc_pred_cache;
539   // Only cache the first row of the DC_PRED
540   int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
541 
542   // Height and width currently used in the CfL prediction buffer.
543   int buf_height, buf_width;
544 
545   int are_parameters_computed;
546 
547   // Chroma subsampling
548   int subsampling_x, subsampling_y;
549 
550   // Whether the reconstructed luma pixels need to be stored
551   int store_y;
552 } CFL_CTX;
553 
554 typedef struct dist_wtd_comp_params {
555   int use_dist_wtd_comp_avg;
556   int fwd_offset;
557   int bck_offset;
558 } DIST_WTD_COMP_PARAMS;
559 
560 struct scale_factors;
561 
562 /*!\endcond */
563 
564 /*! \brief Variables related to current coding block.
565  *
566  * This is a common set of variables used by both encoder and decoder.
567  * Most/all of the pointers are mere pointers to actual arrays are allocated
568  * elsewhere. This is mostly for coding convenience.
569  */
570 typedef struct macroblockd {
571   /**
572    * \name Position of current macroblock in mi units
573    */
574   /**@{*/
575   int mi_row; /*!< Row position in mi units. */
576   int mi_col; /*!< Column position in mi units. */
577   /**@}*/
578 
579   /*!
580    * Same as cm->mi_params.mi_stride, copied here for convenience.
581    */
582   int mi_stride;
583 
584   /*!
585    * True if current block transmits chroma information.
586    * More detail:
587    * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
588    * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
589    * blocks smaller than 8x8 maybe combined into one chroma block.
590    * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
591    * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
592    * these four luma blocks. This is implemented in bitstream as follows:
593    * - There are four MB_MODE_INFO structs for the four luma blocks.
594    * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
595    * any information for chroma planes.
596    * - Last block will have is_chroma_ref = true and transmits chroma
597    * information for the 4x4 chroma block that covers whole 8x8 area covered by
598    * four luma blocks.
599    * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
600    */
601   bool is_chroma_ref;
602 
603   /*!
604    * Info specific to each plane.
605    */
606   struct macroblockd_plane plane[MAX_MB_PLANE];
607 
608   /*!
609    * Tile related info.
610    */
611   TileInfo tile;
612 
613   /*!
614    * Appropriate offset inside cm->mi_params.mi_grid_base based on current
615    * mi_row and mi_col.
616    */
617   MB_MODE_INFO **mi;
618 
619   /*!
620    * True if 4x4 block above the current block is available.
621    */
622   bool up_available;
623   /*!
624    * True if 4x4 block to the left of the current block is available.
625    */
626   bool left_available;
627   /*!
628    * True if the above chrome reference block is available.
629    */
630   bool chroma_up_available;
631   /*!
632    * True if the left chrome reference block is available.
633    */
634   bool chroma_left_available;
635 
636   /*!
637    * MB_MODE_INFO for 4x4 block to the left of the current block, if
638    * left_available == true; otherwise NULL.
639    */
640   MB_MODE_INFO *left_mbmi;
641   /*!
642    * MB_MODE_INFO for 4x4 block above the current block, if
643    * up_available == true; otherwise NULL.
644    */
645   MB_MODE_INFO *above_mbmi;
646   /*!
647    * Above chroma reference block if is_chroma_ref == true for the current block
648    * and chroma_up_available == true; otherwise NULL.
649    * See also: the special case logic when current chroma block covers more than
650    * one luma blocks in set_mi_row_col().
651    */
652   MB_MODE_INFO *chroma_left_mbmi;
653   /*!
654    * Left chroma reference block if is_chroma_ref == true for the current block
655    * and chroma_left_available == true; otherwise NULL.
656    * See also: the special case logic when current chroma block covers more than
657    * one luma blocks in set_mi_row_col().
658    */
659   MB_MODE_INFO *chroma_above_mbmi;
660 
661   /*!
662    * Appropriate offset based on current 'mi_row' and 'mi_col', inside
663    * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
664    * 'MACROBLOCK' structs.
665    */
666   uint8_t *tx_type_map;
667   /*!
668    * Stride for 'tx_type_map'. Note that this may / may not be same as
669    * 'mi_stride', depending on which actual array 'tx_type_map' points to.
670    */
671   int tx_type_map_stride;
672 
673   /**
674    * \name Distance of this macroblock from frame edges in 1/8th pixel units.
675    */
676   /**@{*/
677   int mb_to_left_edge;   /*!< Distance from left edge */
678   int mb_to_right_edge;  /*!< Distance from right edge */
679   int mb_to_top_edge;    /*!< Distance from top edge */
680   int mb_to_bottom_edge; /*!< Distance from bottom edge */
681   /**@}*/
682 
683   /*!
684    * Scale factors for reference frames of the current block.
685    * These are pointers into 'cm->ref_scale_factors'.
686    */
687   const struct scale_factors *block_ref_scale_factors[2];
688 
689   /*!
690    * - On encoder side: points to cpi->source, which is the buffer containing
691    * the current *source* frame (maybe filtered).
692    * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
693    * which current frame is being *decoded*.
694    */
695   const YV12_BUFFER_CONFIG *cur_buf;
696 
697   /*!
698    * Entropy contexts for the above blocks.
699    * above_entropy_context[i][j] corresponds to above entropy context for ith
700    * plane and jth mi column of this *frame*, wrt current 'mi_row'.
701    * These are pointers into 'cm->above_contexts.entropy'.
702    */
703   ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
704   /*!
705    * Entropy contexts for the left blocks.
706    * left_entropy_context[i][j] corresponds to left entropy context for ith
707    * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
708    * Note: These contain actual data, NOT pointers.
709    */
710   ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
711 
712   /*!
713    * Partition contexts for the above blocks.
714    * above_partition_context[i] corresponds to above partition context for ith
715    * mi column of this *frame*, wrt current 'mi_row'.
716    * This is a pointer into 'cm->above_contexts.partition'.
717    */
718   PARTITION_CONTEXT *above_partition_context;
719   /*!
720    * Partition contexts for the left blocks.
721    * left_partition_context[i] corresponds to left partition context for ith
722    * mi row of this *superblock*, wrt current 'mi_col'.
723    * Note: These contain actual data, NOT pointers.
724    */
725   PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
726 
727   /*!
728    * Transform contexts for the above blocks.
729    * above_txfm_context[i] corresponds to above transform context for ith mi col
730    * from the current position (mi row and mi column) for this *frame*.
731    * This is a pointer into 'cm->above_contexts.txfm'.
732    */
733   TXFM_CONTEXT *above_txfm_context;
734   /*!
735    * Transform contexts for the left blocks.
736    * left_txfm_context[i] corresponds to left transform context for ith mi row
737    * from the current position (mi_row and mi_col) for this *superblock*.
738    * This is a pointer into 'left_txfm_context_buffer'.
739    */
740   TXFM_CONTEXT *left_txfm_context;
741   /*!
742    * left_txfm_context_buffer[i] is the left transform context for ith mi_row
743    * in this *superblock*.
744    * Behaves like an internal actual buffer which 'left_txt_context' points to,
745    * and never accessed directly except to fill in initial default values.
746    */
747   TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
748 
749   /**
750    * \name Default values for the two restoration filters for each plane.
751    * Default values for the two restoration filters for each plane.
752    * These values are used as reference values when writing the bitstream. That
753    * is, we transmit the delta between the actual values in
754    * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
755    */
756   /**@{*/
757   WienerInfo wiener_info[MAX_MB_PLANE];   /*!< Defaults for Wiener filter*/
758   SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
759   /**@}*/
760 
761   /**
762    * \name Block dimensions in MB_MODE_INFO units.
763    */
764   /**@{*/
765   uint8_t width;  /*!< Block width in MB_MODE_INFO units */
766   uint8_t height; /*!< Block height in MB_MODE_INFO units */
767   /**@}*/
768 
769   /*!
770    * Contains the motion vector candidates found during motion vector prediction
771    * process. ref_mv_stack[i] contains the candidates for ith type of
772    * reference frame (single/compound). The actual number of candidates found in
773    * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
774    * or mbmi_ext->ref_mv_count[i] (encoder side).
775    */
776   CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
777   /*!
778    * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
779    * DRL (dynamic reference list) mode contexts.
780    */
781   uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
782 
783   /*!
784    * True if this is the last vertical rectangular block in a VERTICAL or
785    * VERTICAL_4 partition.
786    */
787   bool is_last_vertical_rect;
788   /*!
789    * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
790    * HORIZONTAL_4 partition.
791    */
792   bool is_first_horizontal_rect;
793 
794   /*!
795    * Counts of each reference frame in the above and left neighboring blocks.
796    * NOTE: Take into account both single and comp references.
797    */
798   uint8_t neighbors_ref_counts[REF_FRAMES];
799 
800   /*!
801    * Current CDFs of all the symbols for the current tile.
802    */
803   FRAME_CONTEXT *tile_ctx;
804 
805   /*!
806    * Bit depth: copied from cm->seq_params->bit_depth for convenience.
807    */
808   int bd;
809 
810   /*!
811    * Quantizer index for each segment (base qindex + delta for each segment).
812    */
813   int qindex[MAX_SEGMENTS];
814   /*!
815    * lossless[s] is true if segment 's' is coded losslessly.
816    */
817   int lossless[MAX_SEGMENTS];
818   /*!
819    * Q index for the coding blocks in this superblock will be stored in
820    * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
821    * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
822    * the base, and adding any transmitted delta qindex on top of it.
823    * Precisely, this is the latest qindex used by the first coding block of a
824    * non-skip superblock in the current tile; OR
825    * same as cm->quant_params.base_qindex (if not explicitly set yet).
826    * Note: This is 'CurrentQIndex' in the AV1 spec.
827    */
828   int current_base_qindex;
829 
830   /*!
831    * Same as cm->features.cur_frame_force_integer_mv.
832    */
833   int cur_frame_force_integer_mv;
834 
835   /*!
836    * Pointer to cm->error.
837    */
838   struct aom_internal_error_info *error_info;
839 
840   /*!
841    * Same as cm->global_motion.
842    */
843   const WarpedMotionParams *global_motion;
844 
845   /*!
846    * Since actual frame level loop filtering level value is not available
847    * at the beginning of the tile (only available during actual filtering)
848    * at encoder side.we record the delta_lf (against the frame level loop
849    * filtering level) and code the delta between previous superblock's delta
850    * lf and current delta lf. It is equivalent to the delta between previous
851    * superblock's actual lf and current lf.
852    */
853   int8_t delta_lf_from_base;
854   /*!
855    * We have four frame filter levels for different plane and direction. So, to
856    * support the per superblock update, we need to add a few more params:
857    * 0. delta loop filter level for y plane vertical
858    * 1. delta loop filter level for y plane horizontal
859    * 2. delta loop filter level for u plane
860    * 3. delta loop filter level for v plane
861    * To make it consistent with the reference to each filter level in segment,
862    * we need to -1, since
863    * - SEG_LVL_ALT_LF_Y_V = 1;
864    * - SEG_LVL_ALT_LF_Y_H = 2;
865    * - SEG_LVL_ALT_LF_U   = 3;
866    * - SEG_LVL_ALT_LF_V   = 4;
867    */
868   int8_t delta_lf[FRAME_LF_COUNT];
869   /*!
870    * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
871    * current superblock has already been read from (decoder) / written to
872    * (encoder) the bitstream; and false otherwise.
873    * More detail:
874    * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
875    * non-skip coding block. So, we need this array to keep track of whether CDEF
876    * strengths for the given CDEF units have been transmitted yet or not.
877    * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
878    * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
879    * superblock size is 128x128). Hence the array size is 4.
880    * 3. In the current implementation, CDEF strength for this CDEF unit is
881    * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
882    * cm->mi_params.mi_grid_base).
883    */
884   bool cdef_transmitted[4];
885 
886   /*!
887    * Mask for this block used for compound prediction.
888    */
889   uint8_t *seg_mask;
890 
891   /*!
892    * CFL (chroma from luma) related parameters.
893    */
894   CFL_CTX cfl;
895 
896   /*!
897    * Offset to plane[p].color_index_map.
898    * Currently:
899    * - On encoder side, this is always 0 as 'color_index_map' is allocated per
900    * *coding block* there.
901    * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
902    * memory pointing to the base of a *superblock* there, and we need an offset
903    * to it to get the color index map for current coding block.
904    */
905   uint16_t color_index_map_offset[2];
906 
907   /*!
908    * Temporary buffer used for convolution in case of compound reference only
909    * for (weighted or uniform) averaging operation.
910    * There are pointers to actual buffers allocated elsewhere: e.g.
911    * - In decoder, 'pbi->td.tmp_conv_dst' or
912    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
913    * - In encoder, 'x->tmp_conv_dst' or
914    * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
915    */
916   CONV_BUF_TYPE *tmp_conv_dst;
917   /*!
918    * Temporary buffers used to build OBMC prediction by above (index 0) and left
919    * (index 1) predictors respectively.
920    * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
921    * There are pointers to actual buffers allocated elsewhere: e.g.
922    * - In decoder, 'pbi->td.tmp_obmc_bufs' or
923    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
924    * -In encoder, 'x->tmp_pred_bufs' or
925    * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
926    */
927   uint8_t *tmp_obmc_bufs[2];
928 } MACROBLOCKD;
929 
930 /*!\cond */
931 
is_cur_buf_hbd(const MACROBLOCKD * xd)932 static inline int is_cur_buf_hbd(const MACROBLOCKD *xd) {
933 #if CONFIG_AV1_HIGHBITDEPTH
934   return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
935 #else
936   (void)xd;
937   return 0;
938 #endif
939 }
940 
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)941 static inline uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
942 #if CONFIG_AV1_HIGHBITDEPTH
943   return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
944              ? CONVERT_TO_BYTEPTR(buf16)
945              : buf16;
946 #else
947   (void)xd;
948   return buf16;
949 #endif
950 }
951 
952 typedef struct BitDepthInfo {
953   int bit_depth;
954   /*! Is the image buffer high bit depth?
955    * Low bit depth buffer uses uint8_t.
956    * High bit depth buffer uses uint16_t.
957    * Equivalent to cm->seq_params->use_highbitdepth
958    */
959   int use_highbitdepth_buf;
960 } BitDepthInfo;
961 
get_bit_depth_info(const MACROBLOCKD * xd)962 static inline BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
963   BitDepthInfo bit_depth_info;
964   bit_depth_info.bit_depth = xd->bd;
965   bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
966   assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
967                  bit_depth_info.bit_depth == 8));
968   return bit_depth_info;
969 }
970 
get_sqr_bsize_idx(BLOCK_SIZE bsize)971 static inline int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
972   switch (bsize) {
973     case BLOCK_4X4: return 0;
974     case BLOCK_8X8: return 1;
975     case BLOCK_16X16: return 2;
976     case BLOCK_32X32: return 3;
977     case BLOCK_64X64: return 4;
978     case BLOCK_128X128: return 5;
979     default: return SQR_BLOCK_SIZES;
980   }
981 }
982 
983 // For a square block size 'bsize', returns the size of the sub-blocks used by
984 // the given partition type. If the partition produces sub-blocks of different
985 // sizes, then the function returns the largest sub-block size.
986 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
987 // Conversion tables).
988 // Note: the input block size should be square.
989 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)990 static inline BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
991                                                PARTITION_TYPE partition) {
992   if (partition == PARTITION_INVALID) {
993     return BLOCK_INVALID;
994   } else {
995     const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
996     return sqr_bsize_idx >= SQR_BLOCK_SIZES
997                ? BLOCK_INVALID
998                : subsize_lookup[partition][sqr_bsize_idx];
999   }
1000 }
1001 
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)1002 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1003                                      PLANE_TYPE plane_type) {
1004   static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1005     DCT_DCT,    // DC_PRED
1006     ADST_DCT,   // V_PRED
1007     DCT_ADST,   // H_PRED
1008     DCT_DCT,    // D45_PRED
1009     ADST_ADST,  // D135_PRED
1010     ADST_DCT,   // D113_PRED
1011     DCT_ADST,   // D157_PRED
1012     DCT_ADST,   // D203_PRED
1013     ADST_DCT,   // D67_PRED
1014     ADST_ADST,  // SMOOTH_PRED
1015     ADST_DCT,   // SMOOTH_V_PRED
1016     DCT_ADST,   // SMOOTH_H_PRED
1017     ADST_ADST,  // PAETH_PRED
1018   };
1019   const PREDICTION_MODE mode =
1020       (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1021   assert(mode < INTRA_MODES);
1022   return _intra_mode_to_tx_type[mode];
1023 }
1024 
is_rect_tx(TX_SIZE tx_size)1025 static inline int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1026 
block_signals_txsize(BLOCK_SIZE bsize)1027 static inline int block_signals_txsize(BLOCK_SIZE bsize) {
1028   return bsize > BLOCK_4X4;
1029 }
1030 
1031 // Number of transform types in each set type
1032 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1033   1, 2, 5, 7, 12, 16,
1034 };
1035 
1036 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1037   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1038   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1039   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1040   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1041   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1042   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1043 };
1044 
1045 // The bitmask corresponds to the transform types as defined in
1046 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1047 // the use of the corresponding transform type in that table.
1048 // The av1_derived_intra_tx_used_flag table is used when
1049 // use_reduced_intra_txset is set to 2, where one only searches
1050 // the transform types derived from residual statistics.
1051 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1052   0x0209,  // DC_PRED:       0000 0010 0000 1001
1053   0x0403,  // V_PRED:        0000 0100 0000 0011
1054   0x0805,  // H_PRED:        0000 1000 0000 0101
1055   0x020F,  // D45_PRED:      0000 0010 0000 1111
1056   0x0009,  // D135_PRED:     0000 0000 0000 1001
1057   0x0009,  // D113_PRED:     0000 0000 0000 1001
1058   0x0009,  // D157_PRED:     0000 0000 0000 1001
1059   0x0805,  // D203_PRED:     0000 1000 0000 0101
1060   0x0403,  // D67_PRED:      0000 0100 0000 0011
1061   0x0205,  // SMOOTH_PRED:   0000 0010 0000 1001
1062   0x0403,  // SMOOTH_V_PRED: 0000 0100 0000 0011
1063   0x0805,  // SMOOTH_H_PRED: 0000 1000 0000 0101
1064   0x0209,  // PAETH_PRED:    0000 0010 0000 1001
1065 };
1066 
1067 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1068   0x080F,  // DC_PRED:       0000 1000 0000 1111
1069   0x040F,  // V_PRED:        0000 0100 0000 1111
1070   0x080F,  // H_PRED:        0000 1000 0000 1111
1071   0x020F,  // D45_PRED:      0000 0010 0000 1111
1072   0x080F,  // D135_PRED:     0000 1000 0000 1111
1073   0x040F,  // D113_PRED:     0000 0100 0000 1111
1074   0x080F,  // D157_PRED:     0000 1000 0000 1111
1075   0x080F,  // D203_PRED:     0000 1000 0000 1111
1076   0x040F,  // D67_PRED:      0000 0100 0000 1111
1077   0x080F,  // SMOOTH_PRED:   0000 1000 0000 1111
1078   0x040F,  // SMOOTH_V_PRED: 0000 0100 0000 1111
1079   0x080F,  // SMOOTH_H_PRED: 0000 1000 0000 1111
1080   0x0C0E,  // PAETH_PRED:    0000 1100 0000 1110
1081 };
1082 
1083 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1084   0x0001,  // 0000 0000 0000 0001
1085   0x0201,  // 0000 0010 0000 0001
1086   0x020F,  // 0000 0010 0000 1111
1087   0x0E0F,  // 0000 1110 0000 1111
1088   0x0FFF,  // 0000 1111 1111 1111
1089   0xFFFF,  // 1111 1111 1111 1111
1090 };
1091 
1092 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1093   { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1094   { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1095 };
1096 
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)1097 static inline TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1098                                                 int use_reduced_set) {
1099   const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1100   if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1101   if (tx_size_sqr_up == TX_32X32)
1102     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1103   if (use_reduced_set)
1104     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1105   const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1106   return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1107 }
1108 
1109 // Maps tx set types to the indices.
1110 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1111   { // Intra
1112     0, -1, 2, 1, -1, -1 },
1113   { // Inter
1114     0, 3, -1, -1, 2, 1 },
1115 };
1116 
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)1117 static inline int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1118                                  int use_reduced_set) {
1119   const TxSetType set_type =
1120       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1121   return ext_tx_set_index[is_inter][set_type];
1122 }
1123 
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)1124 static inline int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1125                                    int use_reduced_set) {
1126   const int set_type =
1127       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128   return av1_num_ext_tx_set[set_type];
1129 }
1130 
1131 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1132 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1133 
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)1134 static inline TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1135   const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1136   const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1137   if (bsize == BLOCK_4X4)
1138     return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1139   if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1140     return max_rect_tx_size;
1141   else
1142     return largest_tx_size;
1143 }
1144 
1145 static const uint8_t mode_to_angle_map[INTRA_MODES] = {
1146   0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1147 };
1148 
1149 // Converts block_index for given transform size to index of the block in raster
1150 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)1151 static inline int av1_block_index_to_raster_order(TX_SIZE tx_size,
1152                                                   int block_idx) {
1153   // For transform size 4x8, the possible block_idx values are 0 & 2, because
1154   // block_idx values are incremented in steps of size 'tx_width_unit x
1155   // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1156   // block number 1 in raster order, inside an 8x8 MI block.
1157   // For any other transform size, the two indices are equivalent.
1158   return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1159 }
1160 
1161 // Inverse of above function.
1162 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)1163 static inline int av1_raster_order_to_block_index(TX_SIZE tx_size,
1164                                                   int raster_order) {
1165   assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1166   // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1167   return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1168 }
1169 
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int use_screen_content_tools)1170 static inline TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1171                                           const MACROBLOCKD *xd,
1172                                           TX_SIZE tx_size,
1173                                           int use_screen_content_tools) {
1174   const MB_MODE_INFO *const mbmi = xd->mi[0];
1175 
1176   if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1177       xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1178       use_screen_content_tools)
1179     return DEFAULT_INTER_TX_TYPE;
1180 
1181   return intra_mode_to_tx_type(mbmi, plane_type);
1182 }
1183 
1184 // Implements the get_plane_residual_size() function in the spec (Section
1185 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1186 static inline BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1187                                               int subsampling_x,
1188                                               int subsampling_y) {
1189   assert(bsize < BLOCK_SIZES_ALL);
1190   assert(subsampling_x >= 0 && subsampling_x < 2);
1191   assert(subsampling_y >= 0 && subsampling_y < 2);
1192   return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1193 }
1194 
1195 /*
1196  * Logic to generate the lookup tables:
1197  *
1198  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1199  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1200  *   txs = sub_tx_size_map[txs];
1201  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1202  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1203  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1204  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1205  */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1206 static inline int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1207                                          int blk_col) {
1208   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1209     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1210   };
1211   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1212     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1213   };
1214   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1215     0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1216   };
1217   const int index =
1218       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1219       (blk_col >> tw_w_log2_table[bsize]);
1220   assert(index < INTER_TX_SIZE_BUF_LEN);
1221   return index;
1222 }
1223 
1224 #if CONFIG_INSPECTION
1225 /*
1226  * Here is the logic to generate the lookup tables:
1227  *
1228  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1229  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1230  *   txs = sub_tx_size_map[txs];
1231  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1232  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1233  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1234  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1235  */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1236 static inline int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1237                                          int blk_col) {
1238   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1239     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1240   };
1241   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1242     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1243   };
1244   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1245     0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1246   };
1247   const int index =
1248       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1249       (blk_col >> tw_w_log2_table[bsize]);
1250   assert(index < TXK_TYPE_BUF_LEN);
1251   return index;
1252 }
1253 #endif  // CONFIG_INSPECTION
1254 
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)1255 static inline void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1256                                     int blk_col, TX_SIZE tx_size,
1257                                     TX_TYPE tx_type) {
1258   const int stride = xd->tx_type_map_stride;
1259   xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1260 
1261   const int txw = tx_size_wide_unit[tx_size];
1262   const int txh = tx_size_high_unit[tx_size];
1263   // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1264   // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1265   // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1266   // the intricacy, cover all the 16x16 units inside a 64 level transform.
1267   if (txw == tx_size_wide_unit[TX_64X64] ||
1268       txh == tx_size_high_unit[TX_64X64]) {
1269     const int tx_unit = tx_size_wide_unit[TX_16X16];
1270     for (int idy = 0; idy < txh; idy += tx_unit) {
1271       for (int idx = 0; idx < txw; idx += tx_unit) {
1272         xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1273       }
1274     }
1275   }
1276 }
1277 
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)1278 static inline TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1279                                       PLANE_TYPE plane_type, int blk_row,
1280                                       int blk_col, TX_SIZE tx_size,
1281                                       int reduced_tx_set) {
1282   const MB_MODE_INFO *const mbmi = xd->mi[0];
1283   if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1284     return DCT_DCT;
1285   }
1286 
1287   TX_TYPE tx_type;
1288   if (plane_type == PLANE_TYPE_Y) {
1289     tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1290   } else {
1291     if (is_inter_block(mbmi)) {
1292       // scale back to y plane's coordinate
1293       const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1294       blk_row <<= pd->subsampling_y;
1295       blk_col <<= pd->subsampling_x;
1296       tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297     } else {
1298       // In intra mode, uv planes don't share the same prediction mode as y
1299       // plane, so the tx_type should not be shared
1300       tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1301     }
1302     const TxSetType tx_set_type =
1303         av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1304     if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1305   }
1306   assert(tx_type < TX_TYPES);
1307   assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1308                                                  reduced_tx_set)][tx_type]);
1309   return tx_type;
1310 }
1311 
1312 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1313                             const int num_planes);
1314 
1315 /*
1316  * Logic to generate the lookup table:
1317  *
1318  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1319  * int depth = 0;
1320  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1321  *   depth++;
1322  *   tx_size = sub_tx_size_map[tx_size];
1323  * }
1324  */
bsize_to_max_depth(BLOCK_SIZE bsize)1325 static inline int bsize_to_max_depth(BLOCK_SIZE bsize) {
1326   static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1327     0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1328   };
1329   return bsize_to_max_depth_table[bsize];
1330 }
1331 
1332 /*
1333  * Logic to generate the lookup table:
1334  *
1335  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1336  * assert(tx_size != TX_4X4);
1337  * int depth = 0;
1338  * while (tx_size != TX_4X4) {
1339  *   depth++;
1340  *   tx_size = sub_tx_size_map[tx_size];
1341  * }
1342  * assert(depth < 10);
1343  */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1344 static inline int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1345   assert(bsize < BLOCK_SIZES_ALL);
1346   static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1347     0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1348   };
1349   const int depth = bsize_to_tx_size_depth_table[bsize];
1350   assert(depth <= MAX_TX_CATS);
1351   return depth - 1;
1352 }
1353 
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1354 static inline TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1355   TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1356   TX_SIZE tx_size = max_tx_size;
1357   for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1358   return tx_size;
1359 }
1360 
av1_get_adjusted_tx_size(TX_SIZE tx_size)1361 static inline TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1362   switch (tx_size) {
1363     case TX_64X64:
1364     case TX_64X32:
1365     case TX_32X64: return TX_32X32;
1366     case TX_64X16: return TX_32X16;
1367     case TX_16X64: return TX_16X32;
1368     default: return tx_size;
1369   }
1370 }
1371 
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1372 static inline TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1373                                             int subsampling_y) {
1374   const BLOCK_SIZE plane_bsize =
1375       get_plane_block_size(bsize, subsampling_x, subsampling_y);
1376   assert(plane_bsize < BLOCK_SIZES_ALL);
1377   const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1378   return av1_get_adjusted_tx_size(uv_tx);
1379 }
1380 
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1381 static inline TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1382   const MB_MODE_INFO *mbmi = xd->mi[0];
1383   if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1384   if (plane == 0) return mbmi->tx_size;
1385   const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1386   return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1387                                pd->subsampling_y);
1388 }
1389 
1390 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1391                                const int num_planes);
1392 
1393 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1394 
1395 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1396 
1397 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1398                                                   int blk_row, int blk_col,
1399                                                   BLOCK_SIZE plane_bsize,
1400                                                   TX_SIZE tx_size, void *arg);
1401 
1402 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1403                               struct macroblockd_plane *pd, int plane,
1404                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1405                               int has_eob, int aoff, int loff);
1406 
1407 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1408 static inline int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1409   return (mbmi->ref_frame[0] > INTRA_FRAME &&
1410           mbmi->ref_frame[1] == INTRA_FRAME);
1411 }
1412 
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1413 static inline int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1414   return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1415 }
1416 
is_interintra_allowed_mode(const PREDICTION_MODE mode)1417 static inline int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1418   return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1419 }
1420 
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1421 static inline int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1422   return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1423 }
1424 
is_interintra_allowed(const MB_MODE_INFO * mbmi)1425 static inline int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1426   return is_interintra_allowed_bsize(mbmi->bsize) &&
1427          is_interintra_allowed_mode(mbmi->mode) &&
1428          is_interintra_allowed_ref(mbmi->ref_frame);
1429 }
1430 
is_interintra_allowed_bsize_group(int group)1431 static inline int is_interintra_allowed_bsize_group(int group) {
1432   int i;
1433   for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1434     if (size_group_lookup[i] == group &&
1435         is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1436       return 1;
1437     }
1438   }
1439   return 0;
1440 }
1441 
is_interintra_pred(const MB_MODE_INFO * mbmi)1442 static inline int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1443   return mbmi->ref_frame[0] > INTRA_FRAME &&
1444          mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1445 }
1446 
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1447 static inline int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1448                                        int plane) {
1449   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1450   const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1451   if (plane == 0) return max_txsize;            // luma
1452   return av1_get_adjusted_tx_size(max_txsize);  // chroma
1453 }
1454 
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1455 static inline int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1456   assert(bsize < BLOCK_SIZES_ALL);
1457   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1458 }
1459 
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1460 static inline int is_motion_variation_allowed_compound(
1461     const MB_MODE_INFO *mbmi) {
1462   return !has_second_ref(mbmi);
1463 }
1464 
1465 // input: log2 of length, 0(4), 1(8), ...
1466 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1467 
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1468 static inline int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1469   return mbmi->overlappable_neighbors != 0;
1470 }
1471 
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1472 static inline MOTION_MODE motion_mode_allowed(
1473     const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1474     const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1475   if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1476   if (xd->cur_frame_force_integer_mv == 0) {
1477     const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1478     if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1479   }
1480   if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1481       is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1482       is_motion_variation_allowed_compound(mbmi)) {
1483     assert(!has_second_ref(mbmi));
1484     if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1485         !xd->cur_frame_force_integer_mv &&
1486         !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1487       return WARPED_CAUSAL;
1488     }
1489     return OBMC_CAUSAL;
1490   }
1491   return SIMPLE_TRANSLATION;
1492 }
1493 
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1494 static inline int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1495   return (is_inter_block(mbmi));
1496 }
1497 
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1498 static inline int av1_allow_palette(int allow_screen_content_tools,
1499                                     BLOCK_SIZE sb_type) {
1500   assert(sb_type < BLOCK_SIZES_ALL);
1501   return allow_screen_content_tools &&
1502          block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1503          block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1504          sb_type >= BLOCK_8X8;
1505 }
1506 
1507 // Returns sub-sampled dimensions of the given block.
1508 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1509 // differ from 'height' and 'width' when part of the block is outside the
1510 // right
1511 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1512 static inline void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1513                                             const MACROBLOCKD *xd, int *width,
1514                                             int *height,
1515                                             int *rows_within_bounds,
1516                                             int *cols_within_bounds) {
1517   const int block_height = block_size_high[bsize];
1518   const int block_width = block_size_wide[bsize];
1519   const int block_rows = (xd->mb_to_bottom_edge >= 0)
1520                              ? block_height
1521                              : (xd->mb_to_bottom_edge >> 3) + block_height;
1522   const int block_cols = (xd->mb_to_right_edge >= 0)
1523                              ? block_width
1524                              : (xd->mb_to_right_edge >> 3) + block_width;
1525   const struct macroblockd_plane *const pd = &xd->plane[plane];
1526   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1527   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1528   assert(block_width >= block_cols);
1529   assert(block_height >= block_rows);
1530   const int plane_block_width = block_width >> pd->subsampling_x;
1531   const int plane_block_height = block_height >> pd->subsampling_y;
1532   // Special handling for chroma sub8x8.
1533   const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1534   const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1535   if (width) {
1536     *width = plane_block_width + 2 * is_chroma_sub8_x;
1537     assert(*width >= 0);
1538   }
1539   if (height) {
1540     *height = plane_block_height + 2 * is_chroma_sub8_y;
1541     assert(*height >= 0);
1542   }
1543   if (rows_within_bounds) {
1544     *rows_within_bounds =
1545         (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1546     assert(*rows_within_bounds >= 0);
1547   }
1548   if (cols_within_bounds) {
1549     *cols_within_bounds =
1550         (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1551     assert(*cols_within_bounds >= 0);
1552   }
1553 }
1554 
1555 /* clang-format off */
1556 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1557 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1558                               [CDF_SIZE(PALETTE_COLORS)];
1559 // Pointer to a const three-dimensional array whose first dimension is
1560 // PALETTE_SIZES.
1561 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1562 /* clang-format on */
1563 
1564 typedef struct {
1565   int rows;
1566   int cols;
1567   int n_colors;
1568   int plane_width;
1569   int plane_height;
1570   uint8_t *color_map;
1571   MapCdf map_cdf;
1572   ColorCost color_cost;
1573 } Av1ColorMapParam;
1574 
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1575 static inline int is_nontrans_global_motion(const MACROBLOCKD *xd,
1576                                             const MB_MODE_INFO *mbmi) {
1577   int ref;
1578 
1579   // First check if all modes are GLOBALMV
1580   if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1581 
1582   if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1583     return 0;
1584 
1585   // Now check if all global motion is non translational
1586   for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1587     if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1588   }
1589   return 1;
1590 }
1591 
get_plane_type(int plane)1592 static inline PLANE_TYPE get_plane_type(int plane) {
1593   return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1594 }
1595 
av1_get_max_eob(TX_SIZE tx_size)1596 static inline int av1_get_max_eob(TX_SIZE tx_size) {
1597   if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1598     return 1024;
1599   }
1600   if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1601     return 512;
1602   }
1603   return tx_size_2d[tx_size];
1604 }
1605 
1606 /*!\endcond */
1607 
1608 #ifdef __cplusplus
1609 }  // extern "C"
1610 #endif
1611 
1612 #endif  // AOM_AV1_COMMON_BLOCKD_H_
1613