1 //! Graph algorithms.
2 //!
3 //! It is a goal to gradually migrate the algorithms to be based on graph traits
4 //! so that they are generally applicable. For now, some of these still require
5 //! the `Graph` type.
6
7 pub mod astar;
8 pub mod bellman_ford;
9 pub mod dijkstra;
10 pub mod dominators;
11 pub mod feedback_arc_set;
12 pub mod floyd_warshall;
13 pub mod ford_fulkerson;
14 pub mod isomorphism;
15 pub mod k_shortest_path;
16 pub mod matching;
17 pub mod min_spanning_tree;
18 pub mod page_rank;
19 pub mod simple_paths;
20 pub mod tred;
21
22 use std::num::NonZeroUsize;
23
24 use crate::prelude::*;
25
26 use super::graph::IndexType;
27 use super::unionfind::UnionFind;
28 use super::visit::{
29 GraphBase, GraphRef, IntoEdgeReferences, IntoNeighbors, IntoNeighborsDirected,
30 IntoNodeIdentifiers, NodeCompactIndexable, NodeIndexable, Reversed, VisitMap, Visitable,
31 };
32 use super::EdgeType;
33 use crate::visit::Walker;
34
35 pub use astar::astar;
36 pub use bellman_ford::{bellman_ford, find_negative_cycle};
37 pub use dijkstra::dijkstra;
38 pub use feedback_arc_set::greedy_feedback_arc_set;
39 pub use floyd_warshall::floyd_warshall;
40 pub use ford_fulkerson::ford_fulkerson;
41 pub use isomorphism::{
42 is_isomorphic, is_isomorphic_matching, is_isomorphic_subgraph, is_isomorphic_subgraph_matching,
43 subgraph_isomorphisms_iter,
44 };
45 pub use k_shortest_path::k_shortest_path;
46 pub use matching::{greedy_matching, maximum_matching, Matching};
47 pub use min_spanning_tree::min_spanning_tree;
48 pub use page_rank::page_rank;
49 pub use simple_paths::all_simple_paths;
50
51 /// \[Generic\] Return the number of connected components of the graph.
52 ///
53 /// For a directed graph, this is the *weakly* connected components.
54 /// # Example
55 /// ```rust
56 /// use petgraph::Graph;
57 /// use petgraph::algo::connected_components;
58 /// use petgraph::prelude::*;
59 ///
60 /// let mut graph : Graph<(),(),Directed>= Graph::new();
61 /// let a = graph.add_node(()); // node with no weight
62 /// let b = graph.add_node(());
63 /// let c = graph.add_node(());
64 /// let d = graph.add_node(());
65 /// let e = graph.add_node(());
66 /// let f = graph.add_node(());
67 /// let g = graph.add_node(());
68 /// let h = graph.add_node(());
69 ///
70 /// graph.extend_with_edges(&[
71 /// (a, b),
72 /// (b, c),
73 /// (c, d),
74 /// (d, a),
75 /// (e, f),
76 /// (f, g),
77 /// (g, h),
78 /// (h, e)
79 /// ]);
80 /// // a ----> b e ----> f
81 /// // ^ | ^ |
82 /// // | v | v
83 /// // d <---- c h <---- g
84 ///
85 /// assert_eq!(connected_components(&graph),2);
86 /// graph.add_edge(b,e,());
87 /// assert_eq!(connected_components(&graph),1);
88 /// ```
connected_components<G>(g: G) -> usize where G: NodeCompactIndexable + IntoEdgeReferences,89 pub fn connected_components<G>(g: G) -> usize
90 where
91 G: NodeCompactIndexable + IntoEdgeReferences,
92 {
93 let mut vertex_sets = UnionFind::new(g.node_bound());
94 for edge in g.edge_references() {
95 let (a, b) = (edge.source(), edge.target());
96
97 // union the two vertices of the edge
98 vertex_sets.union(g.to_index(a), g.to_index(b));
99 }
100 let mut labels = vertex_sets.into_labeling();
101 labels.sort_unstable();
102 labels.dedup();
103 labels.len()
104 }
105
106 /// \[Generic\] Return `true` if the input graph contains a cycle.
107 ///
108 /// Always treats the input graph as if undirected.
is_cyclic_undirected<G>(g: G) -> bool where G: NodeIndexable + IntoEdgeReferences,109 pub fn is_cyclic_undirected<G>(g: G) -> bool
110 where
111 G: NodeIndexable + IntoEdgeReferences,
112 {
113 let mut edge_sets = UnionFind::new(g.node_bound());
114 for edge in g.edge_references() {
115 let (a, b) = (edge.source(), edge.target());
116
117 // union the two vertices of the edge
118 // -- if they were already the same, then we have a cycle
119 if !edge_sets.union(g.to_index(a), g.to_index(b)) {
120 return true;
121 }
122 }
123 false
124 }
125
126 /// \[Generic\] Perform a topological sort of a directed graph.
127 ///
128 /// If the graph was acyclic, return a vector of nodes in topological order:
129 /// each node is ordered before its successors.
130 /// Otherwise, it will return a `Cycle` error. Self loops are also cycles.
131 ///
132 /// To handle graphs with cycles, use the scc algorithms or `DfsPostOrder`
133 /// instead of this function.
134 ///
135 /// If `space` is not `None`, it is used instead of creating a new workspace for
136 /// graph traversal. The implementation is iterative.
toposort<G>( g: G, space: Option<&mut DfsSpace<G::NodeId, G::Map>>, ) -> Result<Vec<G::NodeId>, Cycle<G::NodeId>> where G: IntoNeighborsDirected + IntoNodeIdentifiers + Visitable,137 pub fn toposort<G>(
138 g: G,
139 space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
140 ) -> Result<Vec<G::NodeId>, Cycle<G::NodeId>>
141 where
142 G: IntoNeighborsDirected + IntoNodeIdentifiers + Visitable,
143 {
144 // based on kosaraju scc
145 with_dfs(g, space, |dfs| {
146 dfs.reset(g);
147 let mut finished = g.visit_map();
148
149 let mut finish_stack = Vec::new();
150 for i in g.node_identifiers() {
151 if dfs.discovered.is_visited(&i) {
152 continue;
153 }
154 dfs.stack.push(i);
155 while let Some(&nx) = dfs.stack.last() {
156 if dfs.discovered.visit(nx) {
157 // First time visiting `nx`: Push neighbors, don't pop `nx`
158 for succ in g.neighbors(nx) {
159 if succ == nx {
160 // self cycle
161 return Err(Cycle(nx));
162 }
163 if !dfs.discovered.is_visited(&succ) {
164 dfs.stack.push(succ);
165 }
166 }
167 } else {
168 dfs.stack.pop();
169 if finished.visit(nx) {
170 // Second time: All reachable nodes must have been finished
171 finish_stack.push(nx);
172 }
173 }
174 }
175 }
176 finish_stack.reverse();
177
178 dfs.reset(g);
179 for &i in &finish_stack {
180 dfs.move_to(i);
181 let mut cycle = false;
182 while let Some(j) = dfs.next(Reversed(g)) {
183 if cycle {
184 return Err(Cycle(j));
185 }
186 cycle = true;
187 }
188 }
189
190 Ok(finish_stack)
191 })
192 }
193
194 /// \[Generic\] Return `true` if the input directed graph contains a cycle.
195 ///
196 /// This implementation is recursive; use `toposort` if an alternative is
197 /// needed.
is_cyclic_directed<G>(g: G) -> bool where G: IntoNodeIdentifiers + IntoNeighbors + Visitable,198 pub fn is_cyclic_directed<G>(g: G) -> bool
199 where
200 G: IntoNodeIdentifiers + IntoNeighbors + Visitable,
201 {
202 use crate::visit::{depth_first_search, DfsEvent};
203
204 depth_first_search(g, g.node_identifiers(), |event| match event {
205 DfsEvent::BackEdge(_, _) => Err(()),
206 _ => Ok(()),
207 })
208 .is_err()
209 }
210
211 type DfsSpaceType<G> = DfsSpace<<G as GraphBase>::NodeId, <G as Visitable>::Map>;
212
213 /// Workspace for a graph traversal.
214 #[derive(Clone, Debug)]
215 pub struct DfsSpace<N, VM> {
216 dfs: Dfs<N, VM>,
217 }
218
219 impl<N, VM> DfsSpace<N, VM>
220 where
221 N: Copy + PartialEq,
222 VM: VisitMap<N>,
223 {
new<G>(g: G) -> Self where G: GraphRef + Visitable<NodeId = N, Map = VM>,224 pub fn new<G>(g: G) -> Self
225 where
226 G: GraphRef + Visitable<NodeId = N, Map = VM>,
227 {
228 DfsSpace { dfs: Dfs::empty(g) }
229 }
230 }
231
232 impl<N, VM> Default for DfsSpace<N, VM>
233 where
234 VM: VisitMap<N> + Default,
235 {
default() -> Self236 fn default() -> Self {
237 DfsSpace {
238 dfs: Dfs {
239 stack: <_>::default(),
240 discovered: <_>::default(),
241 },
242 }
243 }
244 }
245
246 /// Create a Dfs if it's needed
with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R where G: GraphRef + Visitable, F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R,247 fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R
248 where
249 G: GraphRef + Visitable,
250 F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R,
251 {
252 let mut local_visitor;
253 let dfs = if let Some(v) = space {
254 &mut v.dfs
255 } else {
256 local_visitor = Dfs::empty(g);
257 &mut local_visitor
258 };
259 f(dfs)
260 }
261
262 /// \[Generic\] Check if there exists a path starting at `from` and reaching `to`.
263 ///
264 /// If `from` and `to` are equal, this function returns true.
265 ///
266 /// If `space` is not `None`, it is used instead of creating a new workspace for
267 /// graph traversal.
has_path_connecting<G>( g: G, from: G::NodeId, to: G::NodeId, space: Option<&mut DfsSpace<G::NodeId, G::Map>>, ) -> bool where G: IntoNeighbors + Visitable,268 pub fn has_path_connecting<G>(
269 g: G,
270 from: G::NodeId,
271 to: G::NodeId,
272 space: Option<&mut DfsSpace<G::NodeId, G::Map>>,
273 ) -> bool
274 where
275 G: IntoNeighbors + Visitable,
276 {
277 with_dfs(g, space, |dfs| {
278 dfs.reset(g);
279 dfs.move_to(from);
280 dfs.iter(g).any(|x| x == to)
281 })
282 }
283
284 /// Renamed to `kosaraju_scc`.
285 #[deprecated(note = "renamed to kosaraju_scc")]
scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,286 pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>>
287 where
288 G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
289 {
290 kosaraju_scc(g)
291 }
292
293 /// \[Generic\] Compute the *strongly connected components* using [Kosaraju's algorithm][1].
294 ///
295 /// [1]: https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
296 ///
297 /// Return a vector where each element is a strongly connected component (scc).
298 /// The order of node ids within each scc is arbitrary, but the order of
299 /// the sccs is their postorder (reverse topological sort).
300 ///
301 /// For an undirected graph, the sccs are simply the connected components.
302 ///
303 /// This implementation is iterative and does two passes over the nodes.
kosaraju_scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,304 pub fn kosaraju_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
305 where
306 G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
307 {
308 let mut dfs = DfsPostOrder::empty(g);
309
310 // First phase, reverse dfs pass, compute finishing times.
311 // http://stackoverflow.com/a/26780899/161659
312 let mut finish_order = Vec::with_capacity(0);
313 for i in g.node_identifiers() {
314 if dfs.discovered.is_visited(&i) {
315 continue;
316 }
317
318 dfs.move_to(i);
319 while let Some(nx) = dfs.next(Reversed(g)) {
320 finish_order.push(nx);
321 }
322 }
323
324 let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered);
325 dfs.reset(g);
326 let mut sccs = Vec::new();
327
328 // Second phase
329 // Process in decreasing finishing time order
330 for i in finish_order.into_iter().rev() {
331 if dfs.discovered.is_visited(&i) {
332 continue;
333 }
334 // Move to the leader node `i`.
335 dfs.move_to(i);
336 let mut scc = Vec::new();
337 while let Some(nx) = dfs.next(g) {
338 scc.push(nx);
339 }
340 sccs.push(scc);
341 }
342 sccs
343 }
344
345 #[derive(Copy, Clone, Debug)]
346 struct NodeData {
347 rootindex: Option<NonZeroUsize>,
348 }
349
350 /// A reusable state for computing the *strongly connected components* using [Tarjan's algorithm][1].
351 ///
352 /// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
353 #[derive(Debug)]
354 pub struct TarjanScc<N> {
355 index: usize,
356 componentcount: usize,
357 nodes: Vec<NodeData>,
358 stack: Vec<N>,
359 }
360
361 impl<N> Default for TarjanScc<N> {
default() -> Self362 fn default() -> Self {
363 Self::new()
364 }
365 }
366
367 impl<N> TarjanScc<N> {
368 /// Creates a new `TarjanScc`
new() -> Self369 pub fn new() -> Self {
370 TarjanScc {
371 index: 1, // Invariant: index < componentcount at all times.
372 componentcount: std::usize::MAX, // Will hold if componentcount is initialized to number of nodes - 1 or higher.
373 nodes: Vec::new(),
374 stack: Vec::new(),
375 }
376 }
377
378 /// \[Generic\] Compute the *strongly connected components* using Algorithm 3 in
379 /// [A Space-Efficient Algorithm for Finding Strongly Connected Components][1] by David J. Pierce,
380 /// which is a memory-efficient variation of [Tarjan's algorithm][2].
381 ///
382 ///
383 /// [1]: https://homepages.ecs.vuw.ac.nz/~djp/files/P05.pdf
384 /// [2]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
385 ///
386 /// Calls `f` for each strongly strongly connected component (scc).
387 /// The order of node ids within each scc is arbitrary, but the order of
388 /// the sccs is their postorder (reverse topological sort).
389 ///
390 /// For an undirected graph, the sccs are simply the connected components.
391 ///
392 /// This implementation is recursive and does one pass over the nodes.
run<G, F>(&mut self, g: G, mut f: F) where G: IntoNodeIdentifiers<NodeId = N> + IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>, F: FnMut(&[N]), N: Copy + PartialEq,393 pub fn run<G, F>(&mut self, g: G, mut f: F)
394 where
395 G: IntoNodeIdentifiers<NodeId = N> + IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
396 F: FnMut(&[N]),
397 N: Copy + PartialEq,
398 {
399 self.nodes.clear();
400 self.nodes
401 .resize(g.node_bound(), NodeData { rootindex: None });
402
403 for n in g.node_identifiers() {
404 let visited = self.nodes[g.to_index(n)].rootindex.is_some();
405 if !visited {
406 self.visit(n, g, &mut f);
407 }
408 }
409
410 debug_assert!(self.stack.is_empty());
411 }
412
visit<G, F>(&mut self, v: G::NodeId, g: G, f: &mut F) where G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>, F: FnMut(&[N]), N: Copy + PartialEq,413 fn visit<G, F>(&mut self, v: G::NodeId, g: G, f: &mut F)
414 where
415 G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
416 F: FnMut(&[N]),
417 N: Copy + PartialEq,
418 {
419 macro_rules! node {
420 ($node:expr) => {
421 self.nodes[g.to_index($node)]
422 };
423 }
424
425 let node_v = &mut node![v];
426 debug_assert!(node_v.rootindex.is_none());
427
428 let mut v_is_local_root = true;
429 let v_index = self.index;
430 node_v.rootindex = NonZeroUsize::new(v_index);
431 self.index += 1;
432
433 for w in g.neighbors(v) {
434 if node![w].rootindex.is_none() {
435 self.visit(w, g, f);
436 }
437 if node![w].rootindex < node![v].rootindex {
438 node![v].rootindex = node![w].rootindex;
439 v_is_local_root = false
440 }
441 }
442
443 if v_is_local_root {
444 // Pop the stack and generate an SCC.
445 let mut indexadjustment = 1;
446 let c = NonZeroUsize::new(self.componentcount);
447 let nodes = &mut self.nodes;
448 let start = self
449 .stack
450 .iter()
451 .rposition(|&w| {
452 if nodes[g.to_index(v)].rootindex > nodes[g.to_index(w)].rootindex {
453 true
454 } else {
455 nodes[g.to_index(w)].rootindex = c;
456 indexadjustment += 1;
457 false
458 }
459 })
460 .map(|x| x + 1)
461 .unwrap_or_default();
462 nodes[g.to_index(v)].rootindex = c;
463 self.stack.push(v); // Pushing the component root to the back right before getting rid of it is somewhat ugly, but it lets it be included in f.
464 f(&self.stack[start..]);
465 self.stack.truncate(start);
466 self.index -= indexadjustment; // Backtrack index back to where it was before we ever encountered the component.
467 self.componentcount -= 1;
468 } else {
469 self.stack.push(v); // Stack is filled up when backtracking, unlike in Tarjans original algorithm.
470 }
471 }
472
473 /// Returns the index of the component in which v has been assigned. Allows for using self as a lookup table for an scc decomposition produced by self.run().
node_component_index<G>(&self, g: G, v: N) -> usize where G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>, N: Copy + PartialEq,474 pub fn node_component_index<G>(&self, g: G, v: N) -> usize
475 where
476 G: IntoNeighbors<NodeId = N> + NodeIndexable<NodeId = N>,
477 N: Copy + PartialEq,
478 {
479 let rindex: usize = self.nodes[g.to_index(v)]
480 .rootindex
481 .map(NonZeroUsize::get)
482 .unwrap_or(0); // Compiles to no-op.
483 debug_assert!(
484 rindex != 0,
485 "Tried to get the component index of an unvisited node."
486 );
487 debug_assert!(
488 rindex > self.componentcount,
489 "Given node has been visited but not yet assigned to a component."
490 );
491 std::usize::MAX - rindex
492 }
493 }
494
495 /// \[Generic\] Compute the *strongly connected components* using [Tarjan's algorithm][1].
496 ///
497 /// [1]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
498 /// [2]: https://homepages.ecs.vuw.ac.nz/~djp/files/P05.pdf
499 ///
500 /// Return a vector where each element is a strongly connected component (scc).
501 /// The order of node ids within each scc is arbitrary, but the order of
502 /// the sccs is their postorder (reverse topological sort).
503 ///
504 /// For an undirected graph, the sccs are simply the connected components.
505 ///
506 /// This implementation is recursive and does one pass over the nodes. It is based on
507 /// [A Space-Efficient Algorithm for Finding Strongly Connected Components][2] by David J. Pierce,
508 /// to provide a memory-efficient implementation of [Tarjan's algorithm][1].
tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>> where G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,509 pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
510 where
511 G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable,
512 {
513 let mut sccs = Vec::new();
514 {
515 let mut tarjan_scc = TarjanScc::new();
516 tarjan_scc.run(g, |scc| sccs.push(scc.to_vec()));
517 }
518 sccs
519 }
520
521 /// [Graph] Condense every strongly connected component into a single node and return the result.
522 ///
523 /// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that
524 /// the output is acyclic.
525 /// # Example
526 /// ```rust
527 /// use petgraph::Graph;
528 /// use petgraph::algo::condensation;
529 /// use petgraph::prelude::*;
530 ///
531 /// let mut graph : Graph<(),(),Directed> = Graph::new();
532 /// let a = graph.add_node(()); // node with no weight
533 /// let b = graph.add_node(());
534 /// let c = graph.add_node(());
535 /// let d = graph.add_node(());
536 /// let e = graph.add_node(());
537 /// let f = graph.add_node(());
538 /// let g = graph.add_node(());
539 /// let h = graph.add_node(());
540 ///
541 /// graph.extend_with_edges(&[
542 /// (a, b),
543 /// (b, c),
544 /// (c, d),
545 /// (d, a),
546 /// (b, e),
547 /// (e, f),
548 /// (f, g),
549 /// (g, h),
550 /// (h, e)
551 /// ]);
552 ///
553 /// // a ----> b ----> e ----> f
554 /// // ^ | ^ |
555 /// // | v | v
556 /// // d <---- c h <---- g
557 ///
558 /// let condensed_graph = condensation(graph,false);
559 /// let A = NodeIndex::new(0);
560 /// let B = NodeIndex::new(1);
561 /// assert_eq!(condensed_graph.node_count(), 2);
562 /// assert_eq!(condensed_graph.edge_count(), 9);
563 /// assert_eq!(condensed_graph.neighbors(A).collect::<Vec<_>>(), vec![A, A, A, A]);
564 /// assert_eq!(condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A, B, B, B, B]);
565 /// ```
566 /// If `make_acyclic` is true, self-loops and multi edges are ignored:
567 ///
568 /// ```rust
569 /// # use petgraph::Graph;
570 /// # use petgraph::algo::condensation;
571 /// # use petgraph::prelude::*;
572 /// #
573 /// # let mut graph : Graph<(),(),Directed> = Graph::new();
574 /// # let a = graph.add_node(()); // node with no weight
575 /// # let b = graph.add_node(());
576 /// # let c = graph.add_node(());
577 /// # let d = graph.add_node(());
578 /// # let e = graph.add_node(());
579 /// # let f = graph.add_node(());
580 /// # let g = graph.add_node(());
581 /// # let h = graph.add_node(());
582 /// #
583 /// # graph.extend_with_edges(&[
584 /// # (a, b),
585 /// # (b, c),
586 /// # (c, d),
587 /// # (d, a),
588 /// # (b, e),
589 /// # (e, f),
590 /// # (f, g),
591 /// # (g, h),
592 /// # (h, e)
593 /// # ]);
594 /// let acyclic_condensed_graph = condensation(graph, true);
595 /// let A = NodeIndex::new(0);
596 /// let B = NodeIndex::new(1);
597 /// assert_eq!(acyclic_condensed_graph.node_count(), 2);
598 /// assert_eq!(acyclic_condensed_graph.edge_count(), 1);
599 /// assert_eq!(acyclic_condensed_graph.neighbors(B).collect::<Vec<_>>(), vec![A]);
600 /// ```
condensation<N, E, Ty, Ix>( g: Graph<N, E, Ty, Ix>, make_acyclic: bool, ) -> Graph<Vec<N>, E, Ty, Ix> where Ty: EdgeType, Ix: IndexType,601 pub fn condensation<N, E, Ty, Ix>(
602 g: Graph<N, E, Ty, Ix>,
603 make_acyclic: bool,
604 ) -> Graph<Vec<N>, E, Ty, Ix>
605 where
606 Ty: EdgeType,
607 Ix: IndexType,
608 {
609 let sccs = kosaraju_scc(&g);
610 let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());
611
612 // Build a map from old indices to new ones.
613 let mut node_map = vec![NodeIndex::end(); g.node_count()];
614 for comp in sccs {
615 let new_nix = condensed.add_node(Vec::new());
616 for nix in comp {
617 node_map[nix.index()] = new_nix;
618 }
619 }
620
621 // Consume nodes and edges of the old graph and insert them into the new one.
622 let (nodes, edges) = g.into_nodes_edges();
623 for (nix, node) in nodes.into_iter().enumerate() {
624 condensed[node_map[nix]].push(node.weight);
625 }
626 for edge in edges {
627 let source = node_map[edge.source().index()];
628 let target = node_map[edge.target().index()];
629 if make_acyclic {
630 if source != target {
631 condensed.update_edge(source, target, edge.weight);
632 }
633 } else {
634 condensed.add_edge(source, target, edge.weight);
635 }
636 }
637 condensed
638 }
639
640 /// An algorithm error: a cycle was found in the graph.
641 #[derive(Clone, Debug, PartialEq)]
642 pub struct Cycle<N>(N);
643
644 impl<N> Cycle<N> {
645 /// Return a node id that participates in the cycle
node_id(&self) -> N where N: Copy,646 pub fn node_id(&self) -> N
647 where
648 N: Copy,
649 {
650 self.0
651 }
652 }
653
654 /// An algorithm error: a cycle of negative weights was found in the graph.
655 #[derive(Clone, Debug, PartialEq)]
656 pub struct NegativeCycle(pub ());
657
658 /// Return `true` if the graph is bipartite. A graph is bipartite if its nodes can be divided into
659 /// two disjoint and indepedent sets U and V such that every edge connects U to one in V. This
660 /// algorithm implements 2-coloring algorithm based on the BFS algorithm.
661 ///
662 /// Always treats the input graph as if undirected.
is_bipartite_undirected<G, N, VM>(g: G, start: N) -> bool where G: GraphRef + Visitable<NodeId = N, Map = VM> + IntoNeighbors<NodeId = N>, N: Copy + PartialEq + std::fmt::Debug, VM: VisitMap<N>,663 pub fn is_bipartite_undirected<G, N, VM>(g: G, start: N) -> bool
664 where
665 G: GraphRef + Visitable<NodeId = N, Map = VM> + IntoNeighbors<NodeId = N>,
666 N: Copy + PartialEq + std::fmt::Debug,
667 VM: VisitMap<N>,
668 {
669 let mut red = g.visit_map();
670 red.visit(start);
671 let mut blue = g.visit_map();
672
673 let mut stack = ::std::collections::VecDeque::new();
674 stack.push_front(start);
675
676 while let Some(node) = stack.pop_front() {
677 let is_red = red.is_visited(&node);
678 let is_blue = blue.is_visited(&node);
679
680 assert!(is_red ^ is_blue);
681
682 for neighbour in g.neighbors(node) {
683 let is_neigbour_red = red.is_visited(&neighbour);
684 let is_neigbour_blue = blue.is_visited(&neighbour);
685
686 if (is_red && is_neigbour_red) || (is_blue && is_neigbour_blue) {
687 return false;
688 }
689
690 if !is_neigbour_red && !is_neigbour_blue {
691 //hasn't been visited yet
692
693 match (is_red, is_blue) {
694 (true, false) => {
695 blue.visit(neighbour);
696 }
697 (false, true) => {
698 red.visit(neighbour);
699 }
700 (_, _) => {
701 panic!("Invariant doesn't hold");
702 }
703 }
704
705 stack.push_back(neighbour);
706 }
707 }
708 }
709
710 true
711 }
712
713 use std::fmt::Debug;
714 use std::ops::Add;
715
716 /// Associated data that can be used for measures (such as length).
717 pub trait Measure: Debug + PartialOrd + Add<Self, Output = Self> + Default + Clone {}
718
719 impl<M> Measure for M where M: Debug + PartialOrd + Add<M, Output = M> + Default + Clone {}
720
721 /// A floating-point measure.
722 pub trait FloatMeasure: Measure + Copy {
zero() -> Self723 fn zero() -> Self;
infinite() -> Self724 fn infinite() -> Self;
725 }
726
727 impl FloatMeasure for f32 {
zero() -> Self728 fn zero() -> Self {
729 0.
730 }
infinite() -> Self731 fn infinite() -> Self {
732 1. / 0.
733 }
734 }
735
736 impl FloatMeasure for f64 {
zero() -> Self737 fn zero() -> Self {
738 0.
739 }
infinite() -> Self740 fn infinite() -> Self {
741 1. / 0.
742 }
743 }
744
745 pub trait BoundedMeasure: Measure + std::ops::Sub<Self, Output = Self> {
min() -> Self746 fn min() -> Self;
max() -> Self747 fn max() -> Self;
overflowing_add(self, rhs: Self) -> (Self, bool)748 fn overflowing_add(self, rhs: Self) -> (Self, bool);
749 }
750
751 macro_rules! impl_bounded_measure_integer(
752 ( $( $t:ident ),* ) => {
753 $(
754 impl BoundedMeasure for $t {
755 fn min() -> Self {
756 std::$t::MIN
757 }
758
759 fn max() -> Self {
760 std::$t::MAX
761 }
762
763 fn overflowing_add(self, rhs: Self) -> (Self, bool) {
764 self.overflowing_add(rhs)
765 }
766 }
767 )*
768 };
769 );
770
771 impl_bounded_measure_integer!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
772
773 macro_rules! impl_bounded_measure_float(
774 ( $( $t:ident ),* ) => {
775 $(
776 impl BoundedMeasure for $t {
777 fn min() -> Self {
778 std::$t::MIN
779 }
780
781 fn max() -> Self {
782 std::$t::MAX
783 }
784
785 fn overflowing_add(self, rhs: Self) -> (Self, bool) {
786 // for an overflow: a + b > max: both values need to be positive and a > max - b must be satisfied
787 let overflow = self > Self::default() && rhs > Self::default() && self > std::$t::MAX - rhs;
788
789 // for an underflow: a + b < min: overflow can not happen and both values must be negative and a < min - b must be satisfied
790 let underflow = !overflow && self < Self::default() && rhs < Self::default() && self < std::$t::MIN - rhs;
791
792 (self + rhs, overflow || underflow)
793 }
794 }
795 )*
796 };
797 );
798
799 impl_bounded_measure_float!(f32, f64);
800
801 /// A floating-point measure that can be computed from `usize`
802 /// and with a default measure of proximity.
803 pub trait UnitMeasure:
804 Measure
805 + std::ops::Sub<Self, Output = Self>
806 + std::ops::Mul<Self, Output = Self>
807 + std::ops::Div<Self, Output = Self>
808 + std::iter::Sum
809 {
zero() -> Self810 fn zero() -> Self;
one() -> Self811 fn one() -> Self;
from_usize(nb: usize) -> Self812 fn from_usize(nb: usize) -> Self;
default_tol() -> Self813 fn default_tol() -> Self;
814 }
815
816 macro_rules! impl_unit_measure(
817 ( $( $t:ident ),* )=> {
818 $(
819 impl UnitMeasure for $t {
820 fn zero() -> Self {
821 0 as $t
822 }
823 fn one() -> Self {
824 1 as $t
825 }
826
827 fn from_usize(nb: usize) -> Self {
828 nb as $t
829 }
830
831 fn default_tol() -> Self {
832 1e-6 as $t
833 }
834
835 }
836
837 )*
838 }
839 );
840 impl_unit_measure!(f32, f64);
841
842 /// Some measure of positive numbers, assuming positive
843 /// float-pointing numbers
844 pub trait PositiveMeasure: Measure + Copy {
zero() -> Self845 fn zero() -> Self;
max() -> Self846 fn max() -> Self;
847 }
848
849 macro_rules! impl_positive_measure(
850 ( $( $t:ident ),* )=> {
851 $(
852 impl PositiveMeasure for $t {
853 fn zero() -> Self {
854 0 as $t
855 }
856 fn max() -> Self {
857 std::$t::MAX
858 }
859 }
860
861 )*
862 }
863 );
864
865 impl_positive_measure!(u8, u16, u32, u64, u128, usize, f32, f64);
866