1 /*
2 * Copyright (c) 2018, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <immintrin.h> // AVX2
13 #include "aom_dsp/x86/mem_sse2.h"
14 #include "aom_dsp/x86/synonyms.h"
15 #include "aom_dsp/x86/synonyms_avx2.h"
16 #include "aom_dsp/x86/transpose_sse2.h"
17
18 #include "config/av1_rtcd.h"
19 #include "av1/common/restoration.h"
20 #include "av1/encoder/pickrst.h"
21
22 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_avx2(int64_t * dst,const uint16_t * dgd,const __m256i * shuffle,const __m256i * dgd_ijkl)23 static inline void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd,
24 const __m256i *shuffle,
25 const __m256i *dgd_ijkl) {
26 // Load two 128-bit chunks from dgd
27 const __m256i s0 = _mm256_inserti128_si256(
28 _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)),
29 _mm_loadu_si128((__m128i *)(dgd + 4)), 1);
30 // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices)
31 // The weird order is so the shuffle stays within 128-bit lanes
32
33 // Shuffle 16x u16 values within lanes according to the mask:
34 // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4]
35 // (Actually we shuffle u8 values as there's no 16-bit shuffle)
36 const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle);
37 // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices)
38
39 // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit
40 // integers then horizontally add pairs of these integers resulting in 8x
41 // 32-bit integers
42 const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1);
43 // d0 = [a b c d] [e f g h] as u32
44
45 // Take the lower-half of d0, extend to u64, add it on to dst (H)
46 const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0));
47 // d0l = [a b] [c d] as u64
48 const __m256i dst0 = yy_load_256(dst);
49 yy_store_256(dst, _mm256_add_epi64(d0l, dst0));
50
51 // Take the upper-half of d0, extend to u64, add it on to dst (H)
52 const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1));
53 // d0h = [e f] [g h] as u64
54 const __m256i dst1 = yy_load_256(dst + 4);
55 yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1));
56 }
57
acc_stat_highbd_win7_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])58 static inline void acc_stat_highbd_win7_one_line_avx2(
59 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
60 int dgd_stride, const __m256i *shuffle, int32_t *sumX,
61 int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
62 int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
63 int j, k, l;
64 const int wiener_win = WIENER_WIN;
65 // Main loop handles two pixels at a time
66 // We can assume that h_start is even, since it will always be aligned to
67 // a tile edge + some number of restoration units, and both of those will
68 // be 64-pixel aligned.
69 // However, at the edge of the image, h_end may be odd, so we need to handle
70 // that case correctly.
71 assert(h_start % 2 == 0);
72 const int h_end_even = h_end & ~1;
73 const int has_odd_pixel = h_end & 1;
74 for (j = h_start; j < h_end_even; j += 2) {
75 const uint16_t X1 = src[j];
76 const uint16_t X2 = src[j + 1];
77 *sumX += X1 + X2;
78 const uint16_t *dgd_ij = dgd + j;
79 for (k = 0; k < wiener_win; k++) {
80 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
81 for (l = 0; l < wiener_win; l++) {
82 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
83 const uint16_t D1 = dgd_ijk[l];
84 const uint16_t D2 = dgd_ijk[l + 1];
85 sumY[k][l] += D1 + D2;
86 M_int[k][l] += D1 * X1 + D2 * X2;
87
88 // Load two u16 values from dgd_ijkl combined as a u32,
89 // then broadcast to 8x u32 slots of a 256
90 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
91 // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16
92
93 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
94 &dgd_ijkl);
95 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
96 &dgd_ijkl);
97 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
98 &dgd_ijkl);
99 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
100 &dgd_ijkl);
101 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
102 &dgd_ijkl);
103 acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
104 &dgd_ijkl);
105 acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
106 &dgd_ijkl);
107 }
108 }
109 }
110 // If the width is odd, add in the final pixel
111 if (has_odd_pixel) {
112 const uint16_t X1 = src[j];
113 *sumX += X1;
114 const uint16_t *dgd_ij = dgd + j;
115 for (k = 0; k < wiener_win; k++) {
116 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
117 for (l = 0; l < wiener_win; l++) {
118 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
119 const uint16_t D1 = dgd_ijk[l];
120 sumY[k][l] += D1;
121 M_int[k][l] += D1 * X1;
122
123 // The `acc_stat_highbd_avx2` function wants its input to have
124 // interleaved copies of two pixels, but we only have one. However, the
125 // pixels are (effectively) used as inputs to a multiply-accumulate. So
126 // if we set the extra pixel slot to 0, then it is effectively ignored.
127 const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
128
129 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
130 &dgd_ijkl);
131 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
132 &dgd_ijkl);
133 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
134 &dgd_ijkl);
135 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
136 &dgd_ijkl);
137 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
138 &dgd_ijkl);
139 acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
140 &dgd_ijkl);
141 acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
142 &dgd_ijkl);
143 }
144 }
145 }
146 }
147
compute_stats_highbd_win7_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)148 static inline void compute_stats_highbd_win7_opt_avx2(
149 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
150 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
151 int64_t *H, aom_bit_depth_t bit_depth) {
152 int i, j, k, l, m, n;
153 const int wiener_win = WIENER_WIN;
154 const int pixel_count = (h_end - h_start) * (v_end - v_start);
155 const int wiener_win2 = wiener_win * wiener_win;
156 const int wiener_halfwin = (wiener_win >> 1);
157 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
158 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
159 const uint16_t avg =
160 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
161
162 int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
163 DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
164 int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
165 int32_t sumX = 0;
166 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
167
168 const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
169 for (j = v_start; j < v_end; j += 64) {
170 const int vert_end = AOMMIN(64, v_end - j) + j;
171 for (i = j; i < vert_end; i++) {
172 acc_stat_highbd_win7_one_line_avx2(
173 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
174 dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
175 }
176 }
177
178 uint8_t bit_depth_divider = 1;
179 if (bit_depth == AOM_BITS_12)
180 bit_depth_divider = 16;
181 else if (bit_depth == AOM_BITS_10)
182 bit_depth_divider = 4;
183
184 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
185 for (k = 0; k < wiener_win; k++) {
186 for (l = 0; l < wiener_win; l++) {
187 const int32_t idx0 = l * wiener_win + k;
188 M[idx0] = (M_int[k][l] +
189 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
190 bit_depth_divider;
191 int64_t *H_ = H + idx0 * wiener_win2;
192 int64_t *H_int_ = &H_int[idx0][0];
193 for (m = 0; m < wiener_win; m++) {
194 for (n = 0; n < wiener_win; n++) {
195 H_[m * wiener_win + n] =
196 (H_int_[n * 8 + m] +
197 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
198 bit_depth_divider;
199 }
200 }
201 }
202 }
203 }
204
acc_stat_highbd_win5_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])205 static inline void acc_stat_highbd_win5_one_line_avx2(
206 const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
207 int dgd_stride, const __m256i *shuffle, int32_t *sumX,
208 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
209 int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
210 int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
211 int j, k, l;
212 const int wiener_win = WIENER_WIN_CHROMA;
213 // Main loop handles two pixels at a time
214 // We can assume that h_start is even, since it will always be aligned to
215 // a tile edge + some number of restoration units, and both of those will
216 // be 64-pixel aligned.
217 // However, at the edge of the image, h_end may be odd, so we need to handle
218 // that case correctly.
219 assert(h_start % 2 == 0);
220 const int h_end_even = h_end & ~1;
221 const int has_odd_pixel = h_end & 1;
222 for (j = h_start; j < h_end_even; j += 2) {
223 const uint16_t X1 = src[j];
224 const uint16_t X2 = src[j + 1];
225 *sumX += X1 + X2;
226 const uint16_t *dgd_ij = dgd + j;
227 for (k = 0; k < wiener_win; k++) {
228 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
229 for (l = 0; l < wiener_win; l++) {
230 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
231 const uint16_t D1 = dgd_ijk[l];
232 const uint16_t D2 = dgd_ijk[l + 1];
233 sumY[k][l] += D1 + D2;
234 M_int[k][l] += D1 * X1 + D2 * X2;
235
236 // Load two u16 values from dgd_ijkl combined as a u32,
237 // then broadcast to 8x u32 slots of a 256
238 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
239 // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16
240
241 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
242 &dgd_ijkl);
243 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
244 &dgd_ijkl);
245 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
246 &dgd_ijkl);
247 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
248 &dgd_ijkl);
249 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
250 &dgd_ijkl);
251 }
252 }
253 }
254 // If the width is odd, add in the final pixel
255 if (has_odd_pixel) {
256 const uint16_t X1 = src[j];
257 *sumX += X1;
258 const uint16_t *dgd_ij = dgd + j;
259 for (k = 0; k < wiener_win; k++) {
260 const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
261 for (l = 0; l < wiener_win; l++) {
262 int64_t *H_ = &H_int[(l * wiener_win + k)][0];
263 const uint16_t D1 = dgd_ijk[l];
264 sumY[k][l] += D1;
265 M_int[k][l] += D1 * X1;
266
267 // The `acc_stat_highbd_avx2` function wants its input to have
268 // interleaved copies of two pixels, but we only have one. However, the
269 // pixels are (effectively) used as inputs to a multiply-accumulate. So
270 // if we set the extra pixel slot to 0, then it is effectively ignored.
271 const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
272
273 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
274 &dgd_ijkl);
275 acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
276 &dgd_ijkl);
277 acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
278 &dgd_ijkl);
279 acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
280 &dgd_ijkl);
281 acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
282 &dgd_ijkl);
283 }
284 }
285 }
286 }
287
compute_stats_highbd_win5_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)288 static inline void compute_stats_highbd_win5_opt_avx2(
289 const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
290 int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
291 int64_t *H, aom_bit_depth_t bit_depth) {
292 int i, j, k, l, m, n;
293 const int wiener_win = WIENER_WIN_CHROMA;
294 const int pixel_count = (h_end - h_start) * (v_end - v_start);
295 const int wiener_win2 = wiener_win * wiener_win;
296 const int wiener_halfwin = (wiener_win >> 1);
297 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
298 const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
299 const uint16_t avg =
300 find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
301
302 int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
303 DECLARE_ALIGNED(
304 32, int64_t,
305 H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
306 int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
307 int32_t sumX = 0;
308 const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
309
310 const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
311 for (j = v_start; j < v_end; j += 64) {
312 const int vert_end = AOMMIN(64, v_end - j) + j;
313 for (i = j; i < vert_end; i++) {
314 acc_stat_highbd_win5_one_line_avx2(
315 dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
316 dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64);
317 }
318 }
319
320 uint8_t bit_depth_divider = 1;
321 if (bit_depth == AOM_BITS_12)
322 bit_depth_divider = 16;
323 else if (bit_depth == AOM_BITS_10)
324 bit_depth_divider = 4;
325
326 const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
327 for (k = 0; k < wiener_win; k++) {
328 for (l = 0; l < wiener_win; l++) {
329 const int32_t idx0 = l * wiener_win + k;
330 M[idx0] = (M_int64[k][l] +
331 (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
332 bit_depth_divider;
333 int64_t *H_ = H + idx0 * wiener_win2;
334 int64_t *H_int_ = &H_int64[idx0][0];
335 for (m = 0; m < wiener_win; m++) {
336 for (n = 0; n < wiener_win; n++) {
337 H_[m * wiener_win + n] =
338 (H_int_[n * 8 + m] +
339 (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
340 bit_depth_divider;
341 }
342 }
343 }
344 }
345 }
346
av1_compute_stats_highbd_avx2(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)347 void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8,
348 const uint8_t *src8, int16_t *dgd_avg,
349 int16_t *src_avg, int h_start, int h_end,
350 int v_start, int v_end, int dgd_stride,
351 int src_stride, int64_t *M, int64_t *H,
352 aom_bit_depth_t bit_depth) {
353 if (wiener_win == WIENER_WIN) {
354 (void)dgd_avg;
355 (void)src_avg;
356 compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start,
357 v_end, dgd_stride, src_stride, M, H,
358 bit_depth);
359 } else if (wiener_win == WIENER_WIN_CHROMA) {
360 (void)dgd_avg;
361 (void)src_avg;
362 compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start,
363 v_end, dgd_stride, src_stride, M, H,
364 bit_depth);
365 } else {
366 av1_compute_stats_highbd_c(wiener_win, dgd8, src8, dgd_avg, src_avg,
367 h_start, h_end, v_start, v_end, dgd_stride,
368 src_stride, M, H, bit_depth);
369 }
370 }
371 #endif // CONFIG_AV1_HIGHBITDEPTH
372
madd_and_accum_avx2(__m256i src,__m256i dgd,__m256i * sum)373 static inline void madd_and_accum_avx2(__m256i src, __m256i dgd, __m256i *sum) {
374 *sum = _mm256_add_epi32(*sum, _mm256_madd_epi16(src, dgd));
375 }
376
convert_and_add_avx2(__m256i src)377 static inline __m256i convert_and_add_avx2(__m256i src) {
378 const __m256i s0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(src));
379 const __m256i s1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(src, 1));
380 return _mm256_add_epi64(s0, s1);
381 }
382
hadd_four_32_to_64_avx2(__m256i src0,__m256i src1,__m256i * src2,__m256i * src3)383 static inline __m256i hadd_four_32_to_64_avx2(__m256i src0, __m256i src1,
384 __m256i *src2, __m256i *src3) {
385 // 00 01 10 11 02 03 12 13
386 const __m256i s_0 = _mm256_hadd_epi32(src0, src1);
387 // 20 21 30 31 22 23 32 33
388 const __m256i s_1 = _mm256_hadd_epi32(*src2, *src3);
389 // 00+01 10+11 20+21 30+31 02+03 12+13 22+23 32+33
390 const __m256i s_2 = _mm256_hadd_epi32(s_0, s_1);
391 return convert_and_add_avx2(s_2);
392 }
393
add_64bit_lvl_avx2(__m256i src0,__m256i src1)394 static inline __m128i add_64bit_lvl_avx2(__m256i src0, __m256i src1) {
395 // 00 10 02 12
396 const __m256i t0 = _mm256_unpacklo_epi64(src0, src1);
397 // 01 11 03 13
398 const __m256i t1 = _mm256_unpackhi_epi64(src0, src1);
399 // 00+01 10+11 02+03 12+13
400 const __m256i sum = _mm256_add_epi64(t0, t1);
401 // 00+01 10+11
402 const __m128i sum0 = _mm256_castsi256_si128(sum);
403 // 02+03 12+13
404 const __m128i sum1 = _mm256_extracti128_si256(sum, 1);
405 // 00+01+02+03 10+11+12+13
406 return _mm_add_epi64(sum0, sum1);
407 }
408
convert_32_to_64_add_avx2(__m256i src0,__m256i src1)409 static inline __m128i convert_32_to_64_add_avx2(__m256i src0, __m256i src1) {
410 // 00 01 02 03
411 const __m256i s0 = convert_and_add_avx2(src0);
412 // 10 11 12 13
413 const __m256i s1 = convert_and_add_avx2(src1);
414 return add_64bit_lvl_avx2(s0, s1);
415 }
416
calc_sum_of_register(__m256i src)417 static inline int32_t calc_sum_of_register(__m256i src) {
418 const __m128i src_l = _mm256_castsi256_si128(src);
419 const __m128i src_h = _mm256_extracti128_si256(src, 1);
420 const __m128i sum = _mm_add_epi32(src_l, src_h);
421 const __m128i dst0 = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
422 const __m128i dst1 = _mm_add_epi32(dst0, _mm_srli_si128(dst0, 4));
423 return _mm_cvtsi128_si32(dst1);
424 }
425
transpose_64bit_4x4_avx2(const __m256i * const src,__m256i * const dst)426 static inline void transpose_64bit_4x4_avx2(const __m256i *const src,
427 __m256i *const dst) {
428 // Unpack 64 bit elements. Goes from:
429 // src[0]: 00 01 02 03
430 // src[1]: 10 11 12 13
431 // src[2]: 20 21 22 23
432 // src[3]: 30 31 32 33
433 // to:
434 // reg0: 00 10 02 12
435 // reg1: 20 30 22 32
436 // reg2: 01 11 03 13
437 // reg3: 21 31 23 33
438 const __m256i reg0 = _mm256_unpacklo_epi64(src[0], src[1]);
439 const __m256i reg1 = _mm256_unpacklo_epi64(src[2], src[3]);
440 const __m256i reg2 = _mm256_unpackhi_epi64(src[0], src[1]);
441 const __m256i reg3 = _mm256_unpackhi_epi64(src[2], src[3]);
442
443 // Unpack 64 bit elements resulting in:
444 // dst[0]: 00 10 20 30
445 // dst[1]: 01 11 21 31
446 // dst[2]: 02 12 22 32
447 // dst[3]: 03 13 23 33
448 dst[0] = _mm256_inserti128_si256(reg0, _mm256_castsi256_si128(reg1), 1);
449 dst[1] = _mm256_inserti128_si256(reg2, _mm256_castsi256_si128(reg3), 1);
450 dst[2] = _mm256_inserti128_si256(reg1, _mm256_extracti128_si256(reg0, 1), 0);
451 dst[3] = _mm256_inserti128_si256(reg3, _mm256_extracti128_si256(reg2, 1), 0);
452 }
453
454 // When we load 32 values of int8_t type and need less than 32 values for
455 // processing, the below mask is used to make the extra values zero.
456 static const int8_t mask_8bit[32] = {
457 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes
458 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes
459 };
460
461 // When we load 16 values of int16_t type and need less than 16 values for
462 // processing, the below mask is used to make the extra values zero.
463 static const int16_t mask_16bit[32] = {
464 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes
465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes
466 };
467
calc_dgd_buf_avg_avx2(const uint8_t * src,int32_t h_start,int32_t h_end,int32_t v_start,int32_t v_end,int32_t stride)468 static inline uint8_t calc_dgd_buf_avg_avx2(const uint8_t *src, int32_t h_start,
469 int32_t h_end, int32_t v_start,
470 int32_t v_end, int32_t stride) {
471 const uint8_t *src_temp = src + v_start * stride + h_start;
472 const __m256i zero = _mm256_setzero_si256();
473 const int32_t width = h_end - h_start;
474 const int32_t height = v_end - v_start;
475 const int32_t wd_beyond_mul32 = width & 31;
476 const int32_t wd_mul32 = width - wd_beyond_mul32;
477 __m128i mask_low, mask_high;
478 __m256i ss = zero;
479
480 // When width is not multiple of 32, it still loads 32 and to make the data
481 // which is extra (beyond required) as zero using the below mask.
482 if (wd_beyond_mul32 >= 16) {
483 mask_low = _mm_set1_epi8(-1);
484 mask_high = _mm_loadu_si128((__m128i *)(&mask_8bit[32 - wd_beyond_mul32]));
485 } else {
486 mask_low = _mm_loadu_si128((__m128i *)(&mask_8bit[16 - wd_beyond_mul32]));
487 mask_high = _mm_setzero_si128();
488 }
489 const __m256i mask =
490 _mm256_inserti128_si256(_mm256_castsi128_si256(mask_low), mask_high, 1);
491
492 int32_t proc_ht = 0;
493 do {
494 // Process width in multiple of 32.
495 int32_t proc_wd = 0;
496 while (proc_wd < wd_mul32) {
497 const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
498 const __m256i sad_0 = _mm256_sad_epu8(s_0, zero);
499 ss = _mm256_add_epi32(ss, sad_0);
500 proc_wd += 32;
501 }
502
503 // Process the remaining width.
504 if (wd_beyond_mul32) {
505 const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
506 const __m256i s_m_0 = _mm256_and_si256(s_0, mask);
507 const __m256i sad_0 = _mm256_sad_epu8(s_m_0, zero);
508 ss = _mm256_add_epi32(ss, sad_0);
509 }
510 src_temp += stride;
511 proc_ht++;
512 } while (proc_ht < height);
513
514 const uint32_t sum = calc_sum_of_register(ss);
515 const uint8_t avg = sum / (width * height);
516 return avg;
517 }
518
519 // Fill (src-avg) or (dgd-avg) buffers. Note that when n = (width % 16) is not
520 // 0, it writes (16 - n) more data than required.
sub_avg_block_avx2(const uint8_t * src,int32_t src_stride,uint8_t avg,int32_t width,int32_t height,int16_t * dst,int32_t dst_stride,int use_downsampled_wiener_stats)521 static inline void sub_avg_block_avx2(const uint8_t *src, int32_t src_stride,
522 uint8_t avg, int32_t width,
523 int32_t height, int16_t *dst,
524 int32_t dst_stride,
525 int use_downsampled_wiener_stats) {
526 const __m256i avg_reg = _mm256_set1_epi16(avg);
527
528 int32_t proc_ht = 0;
529 do {
530 int ds_factor =
531 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
532 if (use_downsampled_wiener_stats &&
533 (height - proc_ht < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
534 ds_factor = height - proc_ht;
535 }
536
537 int32_t proc_wd = 0;
538 while (proc_wd < width) {
539 const __m128i s = _mm_loadu_si128((__m128i *)(src + proc_wd));
540 const __m256i ss = _mm256_cvtepu8_epi16(s);
541 const __m256i d = _mm256_sub_epi16(ss, avg_reg);
542 _mm256_storeu_si256((__m256i *)(dst + proc_wd), d);
543 proc_wd += 16;
544 }
545
546 src += ds_factor * src_stride;
547 dst += ds_factor * dst_stride;
548 proc_ht += ds_factor;
549 } while (proc_ht < height);
550 }
551
552 // Fills lower-triangular elements of H buffer from upper triangular elements of
553 // the same
fill_lower_triag_elements_avx2(const int32_t wiener_win2,int64_t * const H)554 static inline void fill_lower_triag_elements_avx2(const int32_t wiener_win2,
555 int64_t *const H) {
556 for (int32_t i = 0; i < wiener_win2 - 1; i += 4) {
557 __m256i in[4], out[4];
558
559 in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + i + 1));
560 in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + i + 1));
561 in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + i + 1));
562 in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i + 1));
563
564 transpose_64bit_4x4_avx2(in, out);
565
566 _mm_storel_epi64((__m128i *)(H + (i + 1) * wiener_win2 + i),
567 _mm256_castsi256_si128(out[0]));
568 _mm_storeu_si128((__m128i *)(H + (i + 2) * wiener_win2 + i),
569 _mm256_castsi256_si128(out[1]));
570 _mm256_storeu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i), out[2]);
571 _mm256_storeu_si256((__m256i *)(H + (i + 4) * wiener_win2 + i), out[3]);
572
573 for (int32_t j = i + 5; j < wiener_win2; j += 4) {
574 in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + j));
575 in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + j));
576 in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + j));
577 in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + j));
578
579 transpose_64bit_4x4_avx2(in, out);
580
581 _mm256_storeu_si256((__m256i *)(H + (j + 0) * wiener_win2 + i), out[0]);
582 _mm256_storeu_si256((__m256i *)(H + (j + 1) * wiener_win2 + i), out[1]);
583 _mm256_storeu_si256((__m256i *)(H + (j + 2) * wiener_win2 + i), out[2]);
584 _mm256_storeu_si256((__m256i *)(H + (j + 3) * wiener_win2 + i), out[3]);
585 }
586 }
587 }
588
589 // Fill H buffer based on loop_count.
590 #define INIT_H_VALUES(d, loop_count) \
591 for (int g = 0; g < (loop_count); g++) { \
592 const __m256i dgd0 = \
593 _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
594 madd_and_accum_avx2(dgd_mul_df, dgd0, &sum_h[g]); \
595 }
596
597 // Fill M & H buffer.
598 #define INIT_MH_VALUES(d) \
599 for (int g = 0; g < wiener_win; g++) { \
600 const __m256i dgds_0 = \
601 _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
602 madd_and_accum_avx2(src_mul_df, dgds_0, &sum_m[g]); \
603 madd_and_accum_avx2(dgd_mul_df, dgds_0, &sum_h[g]); \
604 }
605
606 // Update the dgd pointers appropriately.
607 #define INITIALIZATION(wiener_window_sz) \
608 j = i / (wiener_window_sz); \
609 const int16_t *d_window = d + j; \
610 const int16_t *d_current_row = \
611 d + j + ((i % (wiener_window_sz)) * d_stride); \
612 int proc_ht = v_start; \
613 downsample_factor = \
614 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
615 __m256i sum_h[wiener_window_sz]; \
616 memset(sum_h, 0, sizeof(sum_h));
617
618 // Update the downsample factor appropriately.
619 #define UPDATE_DOWNSAMPLE_FACTOR \
620 int proc_wd = 0; \
621 if (use_downsampled_wiener_stats && \
622 ((v_end - proc_ht) < WIENER_STATS_DOWNSAMPLE_FACTOR)) { \
623 downsample_factor = v_end - proc_ht; \
624 } \
625 const __m256i df_reg = _mm256_set1_epi16(downsample_factor);
626
627 #define CALCULATE_REMAINING_H_WIN5 \
628 while (j < wiener_win) { \
629 d_window = d; \
630 d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \
631 const __m256i zero = _mm256_setzero_si256(); \
632 sum_h[0] = zero; \
633 sum_h[1] = zero; \
634 sum_h[2] = zero; \
635 sum_h[3] = zero; \
636 sum_h[4] = zero; \
637 \
638 proc_ht = v_start; \
639 downsample_factor = \
640 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
641 do { \
642 UPDATE_DOWNSAMPLE_FACTOR; \
643 \
644 /* Process the amount of width multiple of 16.*/ \
645 while (proc_wd < wd_mul16) { \
646 const __m256i dgd = \
647 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
648 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \
649 INIT_H_VALUES(d_window + j + proc_wd, 5) \
650 \
651 proc_wd += 16; \
652 }; \
653 \
654 /* Process the remaining width here. */ \
655 if (wd_beyond_mul16) { \
656 const __m256i dgd = \
657 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
658 const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \
659 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \
660 INIT_H_VALUES(d_window + j + proc_wd, 5) \
661 } \
662 proc_ht += downsample_factor; \
663 d_window += downsample_factor * d_stride; \
664 d_current_row += downsample_factor * d_stride; \
665 } while (proc_ht < v_end); \
666 const __m256i s_h0 = \
667 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \
668 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
669 s_h0); \
670 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]); \
671 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h); \
672 _mm_storel_epi64( \
673 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0); \
674 j++; \
675 }
676
677 #define CALCULATE_REMAINING_H_WIN7 \
678 while (j < wiener_win) { \
679 d_window = d; \
680 d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \
681 const __m256i zero = _mm256_setzero_si256(); \
682 sum_h[0] = zero; \
683 sum_h[1] = zero; \
684 sum_h[2] = zero; \
685 sum_h[3] = zero; \
686 sum_h[4] = zero; \
687 sum_h[5] = zero; \
688 sum_h[6] = zero; \
689 \
690 proc_ht = v_start; \
691 downsample_factor = \
692 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
693 do { \
694 UPDATE_DOWNSAMPLE_FACTOR; \
695 \
696 /* Process the amount of width multiple of 16.*/ \
697 while (proc_wd < wd_mul16) { \
698 const __m256i dgd = \
699 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
700 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \
701 INIT_H_VALUES(d_window + j + proc_wd, 7) \
702 \
703 proc_wd += 16; \
704 }; \
705 \
706 /* Process the remaining width here. */ \
707 if (wd_beyond_mul16) { \
708 const __m256i dgd = \
709 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \
710 const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \
711 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \
712 INIT_H_VALUES(d_window + j + proc_wd, 7) \
713 } \
714 proc_ht += downsample_factor; \
715 d_window += downsample_factor * d_stride; \
716 d_current_row += downsample_factor * d_stride; \
717 } while (proc_ht < v_end); \
718 const __m256i s_h1 = \
719 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \
720 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
721 s_h1); \
722 const __m256i s_h2 = \
723 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]); \
724 _mm256_storeu_si256( \
725 (__m256i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_h2); \
726 j++; \
727 }
728
729 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
730 // the filter tap values required for wiener filtering. Here, the buffer H is of
731 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
732 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
733 // value above the diagonal (upper triangle) are equal to the values below the
734 // diagonal (lower triangle). The calculation of elements/stats of H(upper
735 // triangle) and M is done in steps as described below where each step fills
736 // specific values of H and M.
737 // Once the upper triangular elements of H matrix are derived, the same will be
738 // copied to lower triangular using the function
739 // fill_lower_triag_elements_avx2().
740 // Example: Wiener window size =
741 // WIENER_WIN_CHROMA (5) M buffer = [M0 M1 M2 ---- M23 M24] H buffer = Hxy
742 // (x-row, y-column) [H00 H01 H02 ---- H023 H024] [H10 H11 H12 ---- H123 H124]
743 // [H30 H31 H32 ---- H323 H324]
744 // [H40 H41 H42 ---- H423 H424]
745 // [H50 H51 H52 ---- H523 H524]
746 // [H60 H61 H62 ---- H623 H624]
747 // ||
748 // ||
749 // [H230 H231 H232 ---- H2323 H2324]
750 // [H240 H241 H242 ---- H2423 H2424]
751 // In Step 1, whole M buffers (i.e., M0 to M24) and the first row of H (i.e.,
752 // H00 to H024) is filled. The remaining rows of H buffer are filled through
753 // steps 2 to 6.
compute_stats_win5_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)754 static void compute_stats_win5_avx2(const int16_t *const d, int32_t d_stride,
755 const int16_t *const s, int32_t s_stride,
756 int32_t width, int v_start, int v_end,
757 int64_t *const M, int64_t *const H,
758 int use_downsampled_wiener_stats) {
759 const int32_t wiener_win = WIENER_WIN_CHROMA;
760 const int32_t wiener_win2 = wiener_win * wiener_win;
761 // Amount of width which is beyond multiple of 16. This case is handled
762 // appropriately to process only the required width towards the end.
763 const int32_t wd_mul16 = width & ~15;
764 const int32_t wd_beyond_mul16 = width - wd_mul16;
765 const __m256i mask =
766 _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
767 int downsample_factor;
768
769 // Step 1: Full M (i.e., M0 to M24) and first row H (i.e., H00 to H024)
770 // values are filled here. Here, the loop over 'j' is executed for values 0
771 // to 4 (wiener_win-1). When the loop executed for a specific 'j', 5 values of
772 // M and H are filled as shown below.
773 // j=0: M0-M4 and H00-H04, j=1: M5-M9 and H05-H09 are filled etc,.
774 int j = 0;
775 do {
776 const int16_t *s_t = s;
777 const int16_t *d_t = d;
778 __m256i sum_m[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
779 __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
780 downsample_factor =
781 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
782 int proc_ht = v_start;
783 do {
784 UPDATE_DOWNSAMPLE_FACTOR
785
786 // Process the amount of width multiple of 16.
787 while (proc_wd < wd_mul16) {
788 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
789 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
790 const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
791 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
792 INIT_MH_VALUES(d_t + j + proc_wd)
793
794 proc_wd += 16;
795 }
796
797 // Process the remaining width here.
798 if (wd_beyond_mul16) {
799 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
800 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
801 const __m256i src_mask = _mm256_and_si256(src, mask);
802 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
803 const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
804 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
805 INIT_MH_VALUES(d_t + j + proc_wd)
806 }
807 proc_ht += downsample_factor;
808 s_t += downsample_factor * s_stride;
809 d_t += downsample_factor * d_stride;
810 } while (proc_ht < v_end);
811
812 const __m256i s_m =
813 hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
814 const __m128i s_m_h = convert_32_to_64_add_avx2(sum_m[4], sum_h[4]);
815 _mm256_storeu_si256((__m256i *)(M + wiener_win * j), s_m);
816 _mm_storel_epi64((__m128i *)&M[wiener_win * j + 4], s_m_h);
817
818 const __m256i s_h =
819 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
820 _mm256_storeu_si256((__m256i *)(H + wiener_win * j), s_h);
821 _mm_storeh_epi64((__m128i *)&H[wiener_win * j + 4], s_m_h);
822 } while (++j < wiener_win);
823
824 // The below steps are designed to fill remaining rows of H buffer. Here, aim
825 // is to fill only upper triangle elements correspond to each row and lower
826 // triangle elements are copied from upper-triangle elements. Also, as
827 // mentioned in Step 1, the core function is designed to fill 5
828 // elements/stats/values of H buffer.
829 //
830 // Step 2: Here, the rows 1, 6, 11, 16 and 21 are filled. As we need to fill
831 // only upper-triangle elements, H10 from row1, H60-H64 and H65 from row6,etc,
832 // are need not be filled. As the core function process 5 values, in first
833 // iteration of 'j' only 4 values to be filled i.e., H11-H14 from row1,H66-H69
834 // from row6, etc.
835 for (int i = 1; i < wiener_win2; i += wiener_win) {
836 // Update the dgd pointers appropriately and also derive the 'j'th iteration
837 // from where the H buffer filling needs to be started.
838 INITIALIZATION(WIENER_WIN_CHROMA)
839
840 do {
841 UPDATE_DOWNSAMPLE_FACTOR
842
843 // Process the amount of width multiple of 16.
844 while (proc_wd < wd_mul16) {
845 const __m256i dgd =
846 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
847 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
848 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
849
850 proc_wd += 16;
851 }
852
853 // Process the remaining width here.
854 if (wd_beyond_mul16) {
855 const __m256i dgd =
856 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
857 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
858 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
859 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
860 }
861 proc_ht += downsample_factor;
862 d_window += downsample_factor * d_stride;
863 d_current_row += downsample_factor * d_stride;
864 } while (proc_ht < v_end);
865 const __m256i s_h =
866 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
867 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
868
869 // process the remaining 'j' iterations.
870 j++;
871 CALCULATE_REMAINING_H_WIN5
872 }
873
874 // Step 3: Here, the rows 2, 7, 12, 17 and 22 are filled. As we need to fill
875 // only upper-triangle elements, H20-H21 from row2, H70-H74 and H75-H76 from
876 // row7, etc, are need not be filled. As the core function process 5 values,
877 // in first iteration of 'j' only 3 values to be filled i.e., H22-H24 from
878 // row2, H77-H79 from row7, etc.
879 for (int i = 2; i < wiener_win2; i += wiener_win) {
880 // Update the dgd pointers appropriately and also derive the 'j'th iteration
881 // from where the H buffer filling needs to be started.
882 INITIALIZATION(WIENER_WIN_CHROMA)
883
884 do {
885 UPDATE_DOWNSAMPLE_FACTOR
886
887 // Process the amount of width multiple of 16.
888 while (proc_wd < wd_mul16) {
889 const __m256i dgd =
890 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
891 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
892 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
893
894 proc_wd += 16;
895 }
896
897 // Process the remaining width here.
898 if (wd_beyond_mul16) {
899 const __m256i dgd =
900 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
901 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
902 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
903 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
904 }
905 proc_ht += downsample_factor;
906 d_window += downsample_factor * d_stride;
907 d_current_row += downsample_factor * d_stride;
908 } while (proc_ht < v_end);
909 const __m256i s_h =
910 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
911 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
912
913 // process the remaining 'j' iterations.
914 j++;
915 CALCULATE_REMAINING_H_WIN5
916 }
917
918 // Step 4: Here, the rows 3, 8, 13, 18 and 23 are filled. As we need to fill
919 // only upper-triangle elements, H30-H32 from row3, H80-H84 and H85-H87 from
920 // row8, etc, are need not be filled. As the core function process 5 values,
921 // in first iteration of 'j' only 2 values to be filled i.e., H33-H34 from
922 // row3, H88-89 from row8, etc.
923 for (int i = 3; i < wiener_win2; i += wiener_win) {
924 // Update the dgd pointers appropriately and also derive the 'j'th iteration
925 // from where the H buffer filling needs to be started.
926 INITIALIZATION(WIENER_WIN_CHROMA)
927
928 do {
929 UPDATE_DOWNSAMPLE_FACTOR
930
931 // Process the amount of width multiple of 16.
932 while (proc_wd < wd_mul16) {
933 const __m256i dgd =
934 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
935 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
936 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
937
938 proc_wd += 16;
939 }
940
941 // Process the remaining width here.
942 if (wd_beyond_mul16) {
943 const __m256i dgd =
944 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
945 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
946 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
947 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
948 }
949 proc_ht += downsample_factor;
950 d_window += downsample_factor * d_stride;
951 d_current_row += downsample_factor * d_stride;
952 } while (proc_ht < v_end);
953 const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
954 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
955
956 // process the remaining 'j' iterations.
957 j++;
958 CALCULATE_REMAINING_H_WIN5
959 }
960
961 // Step 5: Here, the rows 4, 9, 14, 19 and 24 are filled. As we need to fill
962 // only upper-triangle elements, H40-H43 from row4, H90-H94 and H95-H98 from
963 // row9, etc, are need not be filled. As the core function process 5 values,
964 // in first iteration of 'j' only 1 values to be filled i.e., H44 from row4,
965 // H99 from row9, etc.
966 for (int i = 4; i < wiener_win2; i += wiener_win) {
967 // Update the dgd pointers appropriately and also derive the 'j'th iteration
968 // from where the H buffer filling needs to be started.
969 INITIALIZATION(WIENER_WIN_CHROMA)
970 do {
971 UPDATE_DOWNSAMPLE_FACTOR
972
973 // Process the amount of width multiple of 16.
974 while (proc_wd < wd_mul16) {
975 const __m256i dgd =
976 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
977 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
978 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
979
980 proc_wd += 16;
981 }
982
983 // Process the remaining width here.
984 if (wd_beyond_mul16) {
985 const __m256i dgd =
986 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
987 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
988 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
989 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
990 }
991 proc_ht += downsample_factor;
992 d_window += downsample_factor * d_stride;
993 d_current_row += downsample_factor * d_stride;
994 } while (proc_ht < v_end);
995 const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
996 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
997
998 // process the remaining 'j' iterations.
999 j++;
1000 CALCULATE_REMAINING_H_WIN5
1001 }
1002
1003 // Step 6: Here, the rows 5, 10, 15 and 20 are filled. As we need to fill only
1004 // upper-triangle elements, H50-H54 from row5, H100-H104 and H105-H109 from
1005 // row10,etc, are need not be filled. The first iteration of 'j' fills H55-H59
1006 // from row5 and H1010-H1014 from row10, etc.
1007 for (int i = 5; i < wiener_win2; i += wiener_win) {
1008 // Derive j'th iteration from where the H buffer filling needs to be
1009 // started.
1010 j = i / wiener_win;
1011 int shift = 0;
1012 do {
1013 // Update the dgd pointers appropriately.
1014 int proc_ht = v_start;
1015 const int16_t *d_window = d + (i / wiener_win);
1016 const int16_t *d_current_row =
1017 d + (i / wiener_win) + ((i % wiener_win) * d_stride);
1018 downsample_factor =
1019 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1020 __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
1021 do {
1022 UPDATE_DOWNSAMPLE_FACTOR
1023
1024 // Process the amount of width multiple of 16.
1025 while (proc_wd < wd_mul16) {
1026 const __m256i dgd =
1027 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1028 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1029 INIT_H_VALUES(d_window + shift + proc_wd, 5)
1030
1031 proc_wd += 16;
1032 }
1033
1034 // Process the remaining width here.
1035 if (wd_beyond_mul16) {
1036 const __m256i dgd =
1037 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1038 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1039 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1040 INIT_H_VALUES(d_window + shift + proc_wd, 5)
1041 }
1042 proc_ht += downsample_factor;
1043 d_window += downsample_factor * d_stride;
1044 d_current_row += downsample_factor * d_stride;
1045 } while (proc_ht < v_end);
1046
1047 const __m256i s_h =
1048 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1049 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1050 s_h);
1051 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1052 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1053 _mm_storel_epi64(
1054 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0);
1055 shift++;
1056 } while (++j < wiener_win);
1057 }
1058
1059 fill_lower_triag_elements_avx2(wiener_win2, H);
1060 }
1061
1062 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
1063 // the filter tap values required for wiener filtering. Here, the buffer H is of
1064 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
1065 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
1066 // value above the diagonal (upper triangle) are equal to the values below the
1067 // diagonal (lower triangle). The calculation of elements/stats of H(upper
1068 // triangle) and M is done in steps as described below where each step fills
1069 // specific values of H and M.
1070 // Example:
1071 // Wiener window size = WIENER_WIN (7)
1072 // M buffer = [M0 M1 M2 ---- M47 M48]
1073 // H buffer = Hxy (x-row, y-column)
1074 // [H00 H01 H02 ---- H047 H048]
1075 // [H10 H11 H12 ---- H147 H148]
1076 // [H30 H31 H32 ---- H347 H348]
1077 // [H40 H41 H42 ---- H447 H448]
1078 // [H50 H51 H52 ---- H547 H548]
1079 // [H60 H61 H62 ---- H647 H648]
1080 // ||
1081 // ||
1082 // [H470 H471 H472 ---- H4747 H4748]
1083 // [H480 H481 H482 ---- H4847 H4848]
1084 // In Step 1, whole M buffers (i.e., M0 to M48) and the first row of H (i.e.,
1085 // H00 to H048) is filled. The remaining rows of H buffer are filled through
1086 // steps 2 to 8.
compute_stats_win7_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)1087 static void compute_stats_win7_avx2(const int16_t *const d, int32_t d_stride,
1088 const int16_t *const s, int32_t s_stride,
1089 int32_t width, int v_start, int v_end,
1090 int64_t *const M, int64_t *const H,
1091 int use_downsampled_wiener_stats) {
1092 const int32_t wiener_win = WIENER_WIN;
1093 const int32_t wiener_win2 = wiener_win * wiener_win;
1094 // Amount of width which is beyond multiple of 16. This case is handled
1095 // appropriately to process only the required width towards the end.
1096 const int32_t wd_mul16 = width & ~15;
1097 const int32_t wd_beyond_mul16 = width - wd_mul16;
1098 const __m256i mask =
1099 _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
1100 int downsample_factor;
1101
1102 // Step 1: Full M (i.e., M0 to M48) and first row H (i.e., H00 to H048)
1103 // values are filled here. Here, the loop over 'j' is executed for values 0
1104 // to 6. When the loop executed for a specific 'j', 7 values of M and H are
1105 // filled as shown below.
1106 // j=0: M0-M6 and H00-H06, j=1: M7-M13 and H07-H013 are filled etc,.
1107 int j = 0;
1108 do {
1109 const int16_t *s_t = s;
1110 const int16_t *d_t = d;
1111 __m256i sum_m[WIENER_WIN] = { _mm256_setzero_si256() };
1112 __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1113 downsample_factor =
1114 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1115 int proc_ht = v_start;
1116 do {
1117 UPDATE_DOWNSAMPLE_FACTOR
1118
1119 // Process the amount of width multiple of 16.
1120 while (proc_wd < wd_mul16) {
1121 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1122 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1123 const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
1124 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1125 INIT_MH_VALUES(d_t + j + proc_wd)
1126
1127 proc_wd += 16;
1128 }
1129
1130 if (wd_beyond_mul16) {
1131 const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1132 const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1133 const __m256i src_mask = _mm256_and_si256(src, mask);
1134 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1135 const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
1136 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1137 INIT_MH_VALUES(d_t + j + proc_wd)
1138 }
1139 proc_ht += downsample_factor;
1140 s_t += downsample_factor * s_stride;
1141 d_t += downsample_factor * d_stride;
1142 } while (proc_ht < v_end);
1143
1144 const __m256i s_m0 =
1145 hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
1146 const __m256i s_m1 =
1147 hadd_four_32_to_64_avx2(sum_m[4], sum_m[5], &sum_m[6], &sum_m[6]);
1148 _mm256_storeu_si256((__m256i *)(M + wiener_win * j + 0), s_m0);
1149 _mm_storeu_si128((__m128i *)(M + wiener_win * j + 4),
1150 _mm256_castsi256_si128(s_m1));
1151 _mm_storel_epi64((__m128i *)&M[wiener_win * j + 6],
1152 _mm256_extracti128_si256(s_m1, 1));
1153
1154 const __m256i sh_0 =
1155 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1156 const __m256i sh_1 =
1157 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1158 _mm256_storeu_si256((__m256i *)(H + wiener_win * j + 0), sh_0);
1159 _mm_storeu_si128((__m128i *)(H + wiener_win * j + 4),
1160 _mm256_castsi256_si128(sh_1));
1161 _mm_storel_epi64((__m128i *)&H[wiener_win * j + 6],
1162 _mm256_extracti128_si256(sh_1, 1));
1163 } while (++j < wiener_win);
1164
1165 // The below steps are designed to fill remaining rows of H buffer. Here, aim
1166 // is to fill only upper triangle elements correspond to each row and lower
1167 // triangle elements are copied from upper-triangle elements. Also, as
1168 // mentioned in Step 1, the core function is designed to fill 7
1169 // elements/stats/values of H buffer.
1170 //
1171 // Step 2: Here, the rows 1, 8, 15, 22, 29, 36 and 43 are filled. As we need
1172 // to fill only upper-triangle elements, H10 from row1, H80-H86 and H87 from
1173 // row8, etc. are need not be filled. As the core function process 7 values,
1174 // in first iteration of 'j' only 6 values to be filled i.e., H11-H16 from
1175 // row1 and H88-H813 from row8, etc.
1176 for (int i = 1; i < wiener_win2; i += wiener_win) {
1177 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1178 // from where the H buffer filling needs to be started.
1179 INITIALIZATION(WIENER_WIN)
1180
1181 do {
1182 UPDATE_DOWNSAMPLE_FACTOR
1183
1184 // Process the amount of width multiple of 16.
1185 while (proc_wd < wd_mul16) {
1186 const __m256i dgd =
1187 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1188 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1189 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1190
1191 proc_wd += 16;
1192 }
1193
1194 // Process the remaining width here.
1195 if (wd_beyond_mul16) {
1196 const __m256i dgd =
1197 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1198 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1199 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1200 INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1201 }
1202 proc_ht += downsample_factor;
1203 d_window += downsample_factor * d_stride;
1204 d_current_row += downsample_factor * d_stride;
1205 } while (proc_ht < v_end);
1206 const __m256i s_h =
1207 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1208 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1209 const __m128i s_h0 = convert_32_to_64_add_avx2(sum_h[4], sum_h[5]);
1210 _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i + 4), s_h0);
1211
1212 // process the remaining 'j' iterations.
1213 j++;
1214 CALCULATE_REMAINING_H_WIN7
1215 }
1216
1217 // Step 3: Here, the rows 2, 9, 16, 23, 30, 37 and 44 are filled. As we need
1218 // to fill only upper-triangle elements, H20-H21 from row2, H90-H96 and
1219 // H97-H98 from row9, etc. are need not be filled. As the core function
1220 // process 7 values, in first iteration of 'j' only 5 values to be filled
1221 // i.e., H22-H26 from row2 and H99-H913 from row9, etc.
1222 for (int i = 2; i < wiener_win2; i += wiener_win) {
1223 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1224 // from where the H buffer filling needs to be started.
1225 INITIALIZATION(WIENER_WIN)
1226 do {
1227 UPDATE_DOWNSAMPLE_FACTOR
1228
1229 // Process the amount of width multiple of 16.
1230 while (proc_wd < wd_mul16) {
1231 const __m256i dgd =
1232 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1233 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1234 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1235
1236 proc_wd += 16;
1237 }
1238
1239 // Process the remaining width here.
1240 if (wd_beyond_mul16) {
1241 const __m256i dgd =
1242 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1243 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1244 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1245 INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1246 }
1247 proc_ht += downsample_factor;
1248 d_window += downsample_factor * d_stride;
1249 d_current_row += downsample_factor * d_stride;
1250 } while (proc_ht < v_end);
1251 const __m256i s_h =
1252 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1253 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1254 const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1255 const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1256 _mm_storel_epi64((__m128i *)(H + (i * wiener_win2) + i + 4), s_m_h0);
1257
1258 // process the remaining 'j' iterations.
1259 j++;
1260 CALCULATE_REMAINING_H_WIN7
1261 }
1262
1263 // Step 4: Here, the rows 3, 10, 17, 24, 31, 38 and 45 are filled. As we need
1264 // to fill only upper-triangle elements, H30-H32 from row3, H100-H106 and
1265 // H107-H109 from row10, etc. are need not be filled. As the core function
1266 // process 7 values, in first iteration of 'j' only 4 values to be filled
1267 // i.e., H33-H36 from row3 and H1010-H1013 from row10, etc.
1268 for (int i = 3; i < wiener_win2; i += wiener_win) {
1269 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1270 // from where the H buffer filling needs to be started.
1271 INITIALIZATION(WIENER_WIN)
1272
1273 do {
1274 UPDATE_DOWNSAMPLE_FACTOR
1275
1276 // Process the amount of width multiple of 16.
1277 while (proc_wd < wd_mul16) {
1278 const __m256i dgd =
1279 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1280 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1281 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1282
1283 proc_wd += 16;
1284 }
1285
1286 // Process the remaining width here.
1287 if (wd_beyond_mul16) {
1288 const __m256i dgd =
1289 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1290 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1291 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1292 INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1293 }
1294 proc_ht += downsample_factor;
1295 d_window += downsample_factor * d_stride;
1296 d_current_row += downsample_factor * d_stride;
1297 } while (proc_ht < v_end);
1298 const __m256i s_h =
1299 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1300 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1301
1302 // process the remaining 'j' iterations.
1303 j++;
1304 CALCULATE_REMAINING_H_WIN7
1305 }
1306
1307 // Step 5: Here, the rows 4, 11, 18, 25, 32, 39 and 46 are filled. As we need
1308 // to fill only upper-triangle elements, H40-H43 from row4, H110-H116 and
1309 // H117-H1110 from row10, etc. are need not be filled. As the core function
1310 // process 7 values, in first iteration of 'j' only 3 values to be filled
1311 // i.e., H44-H46 from row4 and H1111-H1113 from row11, etc.
1312 for (int i = 4; i < wiener_win2; i += wiener_win) {
1313 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1314 // from where the H buffer filling needs to be started.
1315 INITIALIZATION(WIENER_WIN)
1316
1317 do {
1318 UPDATE_DOWNSAMPLE_FACTOR
1319
1320 // Process the amount of width multiple of 16.
1321 while (proc_wd < wd_mul16) {
1322 const __m256i dgd =
1323 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1324 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1325 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1326
1327 proc_wd += 16;
1328 }
1329
1330 // Process the remaining width here.
1331 if (wd_beyond_mul16) {
1332 const __m256i dgd =
1333 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1334 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1335 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1336 INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1337 }
1338 proc_ht += downsample_factor;
1339 d_window += downsample_factor * d_stride;
1340 d_current_row += downsample_factor * d_stride;
1341 } while (proc_ht < v_end);
1342 const __m256i s_h =
1343 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1344 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1345
1346 // process the remaining 'j' iterations.
1347 j++;
1348 CALCULATE_REMAINING_H_WIN7
1349 }
1350
1351 // Step 6: Here, the rows 5, 12, 19, 26, 33, 40 and 47 are filled. As we need
1352 // to fill only upper-triangle elements, H50-H54 from row5, H120-H126 and
1353 // H127-H1211 from row12, etc. are need not be filled. As the core function
1354 // process 7 values, in first iteration of 'j' only 2 values to be filled
1355 // i.e., H55-H56 from row5 and H1212-H1213 from row12, etc.
1356 for (int i = 5; i < wiener_win2; i += wiener_win) {
1357 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1358 // from where the H buffer filling needs to be started.
1359 INITIALIZATION(WIENER_WIN)
1360 do {
1361 UPDATE_DOWNSAMPLE_FACTOR
1362
1363 // Process the amount of width multiple of 16.
1364 while (proc_wd < wd_mul16) {
1365 const __m256i dgd =
1366 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1367 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1368 INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1369
1370 proc_wd += 16;
1371 }
1372
1373 // Process the remaining width here.
1374 if (wd_beyond_mul16) {
1375 const __m256i dgd =
1376 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1377 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1378 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1379 INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1380 }
1381 proc_ht += downsample_factor;
1382 d_window += downsample_factor * d_stride;
1383 d_current_row += downsample_factor * d_stride;
1384 } while (proc_ht < v_end);
1385 const __m256i s_h =
1386 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1387 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1388
1389 // process the remaining 'j' iterations.
1390 j++;
1391 CALCULATE_REMAINING_H_WIN7
1392 }
1393
1394 // Step 7: Here, the rows 6, 13, 20, 27, 34, 41 and 48 are filled. As we need
1395 // to fill only upper-triangle elements, H60-H65 from row6, H130-H136 and
1396 // H137-H1312 from row13, etc. are need not be filled. As the core function
1397 // process 7 values, in first iteration of 'j' only 1 value to be filled
1398 // i.e., H66 from row6 and H1313 from row13, etc.
1399 for (int i = 6; i < wiener_win2; i += wiener_win) {
1400 // Update the dgd pointers appropriately and also derive the 'j'th iteration
1401 // from where the H buffer filling needs to be started.
1402 INITIALIZATION(WIENER_WIN)
1403 do {
1404 UPDATE_DOWNSAMPLE_FACTOR
1405
1406 // Process the amount of width multiple of 16.
1407 while (proc_wd < wd_mul16) {
1408 const __m256i dgd =
1409 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1410 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1411 INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1412
1413 proc_wd += 16;
1414 }
1415
1416 // Process the remaining width here.
1417 if (wd_beyond_mul16) {
1418 const __m256i dgd =
1419 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1420 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1421 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1422 INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1423 }
1424 proc_ht += downsample_factor;
1425 d_window += downsample_factor * d_stride;
1426 d_current_row += downsample_factor * d_stride;
1427 } while (proc_ht < v_end);
1428 const __m256i s_h =
1429 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1430 xx_storel_64(&H[(i * wiener_win2) + i], _mm256_castsi256_si128(s_h));
1431
1432 // process the remaining 'j' iterations.
1433 j++;
1434 CALCULATE_REMAINING_H_WIN7
1435 }
1436
1437 // Step 8: Here, the rows 7, 14, 21, 28, 35 and 42 are filled. As we need
1438 // to fill only upper-triangle elements, H70-H75 from row7, H140-H146 and
1439 // H147-H1413 from row14, etc. are need not be filled. The first iteration of
1440 // 'j' fills H77-H713 from row7 and H1414-H1420 from row14, etc.
1441 for (int i = 7; i < wiener_win2; i += wiener_win) {
1442 // Derive j'th iteration from where the H buffer filling needs to be
1443 // started.
1444 j = i / wiener_win;
1445 int shift = 0;
1446 do {
1447 // Update the dgd pointers appropriately.
1448 int proc_ht = v_start;
1449 const int16_t *d_window = d + (i / WIENER_WIN);
1450 const int16_t *d_current_row =
1451 d + (i / WIENER_WIN) + ((i % WIENER_WIN) * d_stride);
1452 downsample_factor =
1453 use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1454 __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1455 do {
1456 UPDATE_DOWNSAMPLE_FACTOR
1457
1458 // Process the amount of width multiple of 16.
1459 while (proc_wd < wd_mul16) {
1460 const __m256i dgd =
1461 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1462 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1463 INIT_H_VALUES(d_window + shift + proc_wd, 7)
1464
1465 proc_wd += 16;
1466 }
1467
1468 // Process the remaining width here.
1469 if (wd_beyond_mul16) {
1470 const __m256i dgd =
1471 _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1472 const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1473 const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1474 INIT_H_VALUES(d_window + shift + proc_wd, 7)
1475 }
1476 proc_ht += downsample_factor;
1477 d_window += downsample_factor * d_stride;
1478 d_current_row += downsample_factor * d_stride;
1479 } while (proc_ht < v_end);
1480
1481 const __m256i sh_0 =
1482 hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1483 const __m256i sh_1 =
1484 hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1485 _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1486 sh_0);
1487 _mm_storeu_si128(
1488 (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4),
1489 _mm256_castsi256_si128(sh_1));
1490 _mm_storel_epi64((__m128i *)&H[(i * wiener_win2) + (wiener_win * j) + 6],
1491 _mm256_extracti128_si256(sh_1, 1));
1492 shift++;
1493 } while (++j < wiener_win);
1494 }
1495
1496 fill_lower_triag_elements_avx2(wiener_win2, H);
1497 }
1498
av1_compute_stats_avx2(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)1499 void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
1500 const uint8_t *src, int16_t *dgd_avg,
1501 int16_t *src_avg, int h_start, int h_end,
1502 int v_start, int v_end, int dgd_stride,
1503 int src_stride, int64_t *M, int64_t *H,
1504 int use_downsampled_wiener_stats) {
1505 if (wiener_win != WIENER_WIN && wiener_win != WIENER_WIN_CHROMA) {
1506 // Currently, libaom supports Wiener filter processing with window sizes as
1507 // WIENER_WIN_CHROMA(5) and WIENER_WIN(7). For any other window size, SIMD
1508 // support is not facilitated. Hence, invoke C function for the same.
1509 av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
1510 v_start, v_end, dgd_stride, src_stride, M, H,
1511 use_downsampled_wiener_stats);
1512 return;
1513 }
1514
1515 const int32_t wiener_halfwin = wiener_win >> 1;
1516 const uint8_t avg =
1517 calc_dgd_buf_avg_avx2(dgd, h_start, h_end, v_start, v_end, dgd_stride);
1518 const int32_t width = h_end - h_start;
1519 const int32_t height = v_end - v_start;
1520 const int32_t d_stride = (width + 2 * wiener_halfwin + 15) & ~15;
1521 const int32_t s_stride = (width + 15) & ~15;
1522
1523 // Based on the sf 'use_downsampled_wiener_stats', process either once for
1524 // UPDATE_DOWNSAMPLE_FACTOR or for each row.
1525 sub_avg_block_avx2(src + v_start * src_stride + h_start, src_stride, avg,
1526 width, height, src_avg, s_stride,
1527 use_downsampled_wiener_stats);
1528
1529 // Compute (dgd-avg) buffer here which is used to fill H buffer.
1530 sub_avg_block_avx2(
1531 dgd + (v_start - wiener_halfwin) * dgd_stride + h_start - wiener_halfwin,
1532 dgd_stride, avg, width + 2 * wiener_halfwin, height + 2 * wiener_halfwin,
1533 dgd_avg, d_stride, 0);
1534 if (wiener_win == WIENER_WIN) {
1535 compute_stats_win7_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1536 v_start, v_end, M, H, use_downsampled_wiener_stats);
1537 } else if (wiener_win == WIENER_WIN_CHROMA) {
1538 compute_stats_win5_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1539 v_start, v_end, M, H, use_downsampled_wiener_stats);
1540 }
1541 }
1542
pair_set_epi16(int a,int b)1543 static inline __m256i pair_set_epi16(int a, int b) {
1544 return _mm256_set1_epi32(
1545 (int32_t)(((uint16_t)(a)) | (((uint32_t)(uint16_t)(b)) << 16)));
1546 }
1547
av1_lowbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)1548 int64_t av1_lowbd_pixel_proj_error_avx2(
1549 const uint8_t *src8, int width, int height, int src_stride,
1550 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1551 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
1552 int i, j, k;
1553 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
1554 const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
1555 __m256i sum64 = _mm256_setzero_si256();
1556 const uint8_t *src = src8;
1557 const uint8_t *dat = dat8;
1558 int64_t err = 0;
1559 if (params->r[0] > 0 && params->r[1] > 0) {
1560 __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]);
1561 for (i = 0; i < height; ++i) {
1562 __m256i sum32 = _mm256_setzero_si256();
1563 for (j = 0; j <= width - 16; j += 16) {
1564 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1565 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1566 const __m256i flt0_16b = _mm256_permute4x64_epi64(
1567 _mm256_packs_epi32(yy_loadu_256(flt0 + j),
1568 yy_loadu_256(flt0 + j + 8)),
1569 0xd8);
1570 const __m256i flt1_16b = _mm256_permute4x64_epi64(
1571 _mm256_packs_epi32(yy_loadu_256(flt1 + j),
1572 yy_loadu_256(flt1 + j + 8)),
1573 0xd8);
1574 const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
1575 const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0);
1576 const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0);
1577 const __m256i v0 = _mm256_madd_epi16(
1578 xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
1579 const __m256i v1 = _mm256_madd_epi16(
1580 xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
1581 const __m256i vr0 =
1582 _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1583 const __m256i vr1 =
1584 _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1585 const __m256i e0 = _mm256_sub_epi16(
1586 _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1587 const __m256i err0 = _mm256_madd_epi16(e0, e0);
1588 sum32 = _mm256_add_epi32(sum32, err0);
1589 }
1590 for (k = j; k < width; ++k) {
1591 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1592 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
1593 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1594 err += ((int64_t)e * e);
1595 }
1596 dat += dat_stride;
1597 src += src_stride;
1598 flt0 += flt0_stride;
1599 flt1 += flt1_stride;
1600 const __m256i sum64_0 =
1601 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1602 const __m256i sum64_1 =
1603 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1604 sum64 = _mm256_add_epi64(sum64, sum64_0);
1605 sum64 = _mm256_add_epi64(sum64, sum64_1);
1606 }
1607 } else if (params->r[0] > 0 || params->r[1] > 0) {
1608 const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
1609 const __m256i xq_coeff =
1610 pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
1611 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
1612 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
1613 for (i = 0; i < height; ++i) {
1614 __m256i sum32 = _mm256_setzero_si256();
1615 for (j = 0; j <= width - 16; j += 16) {
1616 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1617 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1618 const __m256i flt_16b = _mm256_permute4x64_epi64(
1619 _mm256_packs_epi32(yy_loadu_256(flt + j),
1620 yy_loadu_256(flt + j + 8)),
1621 0xd8);
1622 const __m256i v0 =
1623 _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0));
1624 const __m256i v1 =
1625 _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0));
1626 const __m256i vr0 =
1627 _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1628 const __m256i vr1 =
1629 _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1630 const __m256i e0 = _mm256_sub_epi16(
1631 _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1632 const __m256i err0 = _mm256_madd_epi16(e0, e0);
1633 sum32 = _mm256_add_epi32(sum32, err0);
1634 }
1635 for (k = j; k < width; ++k) {
1636 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1637 int32_t v = xq_active * (flt[k] - u);
1638 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1639 err += ((int64_t)e * e);
1640 }
1641 dat += dat_stride;
1642 src += src_stride;
1643 flt += flt_stride;
1644 const __m256i sum64_0 =
1645 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1646 const __m256i sum64_1 =
1647 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1648 sum64 = _mm256_add_epi64(sum64, sum64_0);
1649 sum64 = _mm256_add_epi64(sum64, sum64_1);
1650 }
1651 } else {
1652 __m256i sum32 = _mm256_setzero_si256();
1653 for (i = 0; i < height; ++i) {
1654 for (j = 0; j <= width - 16; j += 16) {
1655 const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1656 const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1657 const __m256i diff0 = _mm256_sub_epi16(d0, s0);
1658 const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
1659 sum32 = _mm256_add_epi32(sum32, err0);
1660 }
1661 for (k = j; k < width; ++k) {
1662 const int32_t e = (int32_t)(dat[k]) - src[k];
1663 err += ((int64_t)e * e);
1664 }
1665 dat += dat_stride;
1666 src += src_stride;
1667 }
1668 const __m256i sum64_0 =
1669 _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1670 const __m256i sum64_1 =
1671 _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1672 sum64 = _mm256_add_epi64(sum64_0, sum64_1);
1673 }
1674 int64_t sum[4];
1675 yy_storeu_256(sum, sum64);
1676 err += sum[0] + sum[1] + sum[2] + sum[3];
1677 return err;
1678 }
1679
1680 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
1681 // C and H need to be computed.
calc_proj_params_r0_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1682 static inline void calc_proj_params_r0_r1_avx2(
1683 const uint8_t *src8, int width, int height, int src_stride,
1684 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1685 int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1686 const int size = width * height;
1687 const uint8_t *src = src8;
1688 const uint8_t *dat = dat8;
1689 __m256i h00, h01, h11, c0, c1;
1690 const __m256i zero = _mm256_setzero_si256();
1691 h01 = h11 = c0 = c1 = h00 = zero;
1692
1693 for (int i = 0; i < height; ++i) {
1694 for (int j = 0; j < width; j += 8) {
1695 const __m256i u_load = _mm256_cvtepu8_epi32(
1696 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1697 const __m256i s_load = _mm256_cvtepu8_epi32(
1698 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1699 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1700 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1701 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1702 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1703 s = _mm256_sub_epi32(s, d);
1704 f1 = _mm256_sub_epi32(f1, d);
1705 f2 = _mm256_sub_epi32(f2, d);
1706
1707 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1708 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1709 _mm256_srli_epi64(f1, 32));
1710 h00 = _mm256_add_epi64(h00, h00_even);
1711 h00 = _mm256_add_epi64(h00, h00_odd);
1712
1713 const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1714 const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1715 _mm256_srli_epi64(f2, 32));
1716 h01 = _mm256_add_epi64(h01, h01_even);
1717 h01 = _mm256_add_epi64(h01, h01_odd);
1718
1719 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1720 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1721 _mm256_srli_epi64(f2, 32));
1722 h11 = _mm256_add_epi64(h11, h11_even);
1723 h11 = _mm256_add_epi64(h11, h11_odd);
1724
1725 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1726 const __m256i c0_odd =
1727 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1728 c0 = _mm256_add_epi64(c0, c0_even);
1729 c0 = _mm256_add_epi64(c0, c0_odd);
1730
1731 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1732 const __m256i c1_odd =
1733 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1734 c1 = _mm256_add_epi64(c1, c1_even);
1735 c1 = _mm256_add_epi64(c1, c1_odd);
1736 }
1737 }
1738
1739 __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1740 const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1741 c_low = _mm256_add_epi64(c_low, c_high);
1742 const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1743 _mm256_castsi256_si128(c_low));
1744
1745 __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1746 const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1747 h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1748 const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1749 _mm256_castsi256_si128(h0x_low));
1750
1751 // Using the symmetric properties of H, calculations of H[1][0] are not
1752 // needed.
1753 __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1754 const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1755 h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1756 const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1757 _mm256_castsi256_si128(h1x_low));
1758
1759 xx_storeu_128(C, c_128bit);
1760 xx_storeu_128(H[0], h0x_128bit);
1761 xx_storeu_128(H[1], h1x_128bit);
1762
1763 H[0][0] /= size;
1764 H[0][1] /= size;
1765 H[1][1] /= size;
1766
1767 // Since H is a symmetric matrix
1768 H[1][0] = H[0][1];
1769 C[0] /= size;
1770 C[1] /= size;
1771 }
1772
1773 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
1774 // non-zero and need to be computed.
calc_proj_params_r0_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1775 static inline void calc_proj_params_r0_avx2(const uint8_t *src8, int width,
1776 int height, int src_stride,
1777 const uint8_t *dat8, int dat_stride,
1778 int32_t *flt0, int flt0_stride,
1779 int64_t H[2][2], int64_t C[2]) {
1780 const int size = width * height;
1781 const uint8_t *src = src8;
1782 const uint8_t *dat = dat8;
1783 __m256i h00, c0;
1784 const __m256i zero = _mm256_setzero_si256();
1785 c0 = h00 = zero;
1786
1787 for (int i = 0; i < height; ++i) {
1788 for (int j = 0; j < width; j += 8) {
1789 const __m256i u_load = _mm256_cvtepu8_epi32(
1790 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1791 const __m256i s_load = _mm256_cvtepu8_epi32(
1792 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1793 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1794 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1795 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1796 s = _mm256_sub_epi32(s, d);
1797 f1 = _mm256_sub_epi32(f1, d);
1798
1799 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1800 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1801 _mm256_srli_epi64(f1, 32));
1802 h00 = _mm256_add_epi64(h00, h00_even);
1803 h00 = _mm256_add_epi64(h00, h00_odd);
1804
1805 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1806 const __m256i c0_odd =
1807 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1808 c0 = _mm256_add_epi64(c0, c0_even);
1809 c0 = _mm256_add_epi64(c0, c0_odd);
1810 }
1811 }
1812 const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
1813 _mm256_castsi256_si128(h00));
1814 const __m128i h00_val =
1815 _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
1816
1817 const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
1818 _mm256_castsi256_si128(c0));
1819 const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
1820
1821 const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
1822 const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
1823
1824 xx_storeu_128(C, c);
1825 xx_storeu_128(H[0], h0x);
1826
1827 H[0][0] /= size;
1828 C[0] /= size;
1829 }
1830
1831 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1832 // non-zero and need to be computed.
calc_proj_params_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1833 static inline void calc_proj_params_r1_avx2(const uint8_t *src8, int width,
1834 int height, int src_stride,
1835 const uint8_t *dat8, int dat_stride,
1836 int32_t *flt1, int flt1_stride,
1837 int64_t H[2][2], int64_t C[2]) {
1838 const int size = width * height;
1839 const uint8_t *src = src8;
1840 const uint8_t *dat = dat8;
1841 __m256i h11, c1;
1842 const __m256i zero = _mm256_setzero_si256();
1843 c1 = h11 = zero;
1844
1845 for (int i = 0; i < height; ++i) {
1846 for (int j = 0; j < width; j += 8) {
1847 const __m256i u_load = _mm256_cvtepu8_epi32(
1848 _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1849 const __m256i s_load = _mm256_cvtepu8_epi32(
1850 _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1851 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1852 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1853 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1854 s = _mm256_sub_epi32(s, d);
1855 f2 = _mm256_sub_epi32(f2, d);
1856
1857 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1858 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1859 _mm256_srli_epi64(f2, 32));
1860 h11 = _mm256_add_epi64(h11, h11_even);
1861 h11 = _mm256_add_epi64(h11, h11_odd);
1862
1863 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1864 const __m256i c1_odd =
1865 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1866 c1 = _mm256_add_epi64(c1, c1_even);
1867 c1 = _mm256_add_epi64(c1, c1_odd);
1868 }
1869 }
1870
1871 const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
1872 _mm256_castsi256_si128(h11));
1873 const __m128i h11_val =
1874 _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
1875
1876 const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
1877 _mm256_castsi256_si128(c1));
1878 const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
1879
1880 const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
1881 const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
1882
1883 xx_storeu_128(C, c);
1884 xx_storeu_128(H[1], h1x);
1885
1886 H[1][1] /= size;
1887 C[1] /= size;
1888 }
1889
1890 // AVX2 variant of av1_calc_proj_params_c.
av1_calc_proj_params_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1891 void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height,
1892 int src_stride, const uint8_t *dat8,
1893 int dat_stride, int32_t *flt0, int flt0_stride,
1894 int32_t *flt1, int flt1_stride, int64_t H[2][2],
1895 int64_t C[2], const sgr_params_type *params) {
1896 if ((params->r[0] > 0) && (params->r[1] > 0)) {
1897 calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8,
1898 dat_stride, flt0, flt0_stride, flt1,
1899 flt1_stride, H, C);
1900 } else if (params->r[0] > 0) {
1901 calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride,
1902 flt0, flt0_stride, H, C);
1903 } else if (params->r[1] > 0) {
1904 calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride,
1905 flt1, flt1_stride, H, C);
1906 }
1907 }
1908
1909 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r0_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1910 static inline void calc_proj_params_r0_r1_high_bd_avx2(
1911 const uint8_t *src8, int width, int height, int src_stride,
1912 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1913 int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1914 const int size = width * height;
1915 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1916 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1917 __m256i h00, h01, h11, c0, c1;
1918 const __m256i zero = _mm256_setzero_si256();
1919 h01 = h11 = c0 = c1 = h00 = zero;
1920
1921 for (int i = 0; i < height; ++i) {
1922 for (int j = 0; j < width; j += 8) {
1923 const __m256i u_load = _mm256_cvtepu16_epi32(
1924 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
1925 const __m256i s_load = _mm256_cvtepu16_epi32(
1926 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
1927 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1928 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1929 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1930 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1931 s = _mm256_sub_epi32(s, d);
1932 f1 = _mm256_sub_epi32(f1, d);
1933 f2 = _mm256_sub_epi32(f2, d);
1934
1935 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1936 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1937 _mm256_srli_epi64(f1, 32));
1938 h00 = _mm256_add_epi64(h00, h00_even);
1939 h00 = _mm256_add_epi64(h00, h00_odd);
1940
1941 const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1942 const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1943 _mm256_srli_epi64(f2, 32));
1944 h01 = _mm256_add_epi64(h01, h01_even);
1945 h01 = _mm256_add_epi64(h01, h01_odd);
1946
1947 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1948 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1949 _mm256_srli_epi64(f2, 32));
1950 h11 = _mm256_add_epi64(h11, h11_even);
1951 h11 = _mm256_add_epi64(h11, h11_odd);
1952
1953 const __m256i c0_even = _mm256_mul_epi32(f1, s);
1954 const __m256i c0_odd =
1955 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1956 c0 = _mm256_add_epi64(c0, c0_even);
1957 c0 = _mm256_add_epi64(c0, c0_odd);
1958
1959 const __m256i c1_even = _mm256_mul_epi32(f2, s);
1960 const __m256i c1_odd =
1961 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1962 c1 = _mm256_add_epi64(c1, c1_even);
1963 c1 = _mm256_add_epi64(c1, c1_odd);
1964 }
1965 }
1966
1967 __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1968 const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1969 c_low = _mm256_add_epi64(c_low, c_high);
1970 const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1971 _mm256_castsi256_si128(c_low));
1972
1973 __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1974 const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1975 h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1976 const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1977 _mm256_castsi256_si128(h0x_low));
1978
1979 // Using the symmetric properties of H, calculations of H[1][0] are not
1980 // needed.
1981 __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1982 const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1983 h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1984 const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1985 _mm256_castsi256_si128(h1x_low));
1986
1987 xx_storeu_128(C, c_128bit);
1988 xx_storeu_128(H[0], h0x_128bit);
1989 xx_storeu_128(H[1], h1x_128bit);
1990
1991 H[0][0] /= size;
1992 H[0][1] /= size;
1993 H[1][1] /= size;
1994
1995 // Since H is a symmetric matrix
1996 H[1][0] = H[0][1];
1997 C[0] /= size;
1998 C[1] /= size;
1999 }
2000
calc_proj_params_r0_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])2001 static inline void calc_proj_params_r0_high_bd_avx2(
2002 const uint8_t *src8, int width, int height, int src_stride,
2003 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
2004 int64_t H[2][2], int64_t C[2]) {
2005 const int size = width * height;
2006 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2007 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2008 __m256i h00, c0;
2009 const __m256i zero = _mm256_setzero_si256();
2010 c0 = h00 = zero;
2011
2012 for (int i = 0; i < height; ++i) {
2013 for (int j = 0; j < width; j += 8) {
2014 const __m256i u_load = _mm256_cvtepu16_epi32(
2015 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2016 const __m256i s_load = _mm256_cvtepu16_epi32(
2017 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2018 __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
2019 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2020 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2021 s = _mm256_sub_epi32(s, d);
2022 f1 = _mm256_sub_epi32(f1, d);
2023
2024 const __m256i h00_even = _mm256_mul_epi32(f1, f1);
2025 const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
2026 _mm256_srli_epi64(f1, 32));
2027 h00 = _mm256_add_epi64(h00, h00_even);
2028 h00 = _mm256_add_epi64(h00, h00_odd);
2029
2030 const __m256i c0_even = _mm256_mul_epi32(f1, s);
2031 const __m256i c0_odd =
2032 _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
2033 c0 = _mm256_add_epi64(c0, c0_even);
2034 c0 = _mm256_add_epi64(c0, c0_odd);
2035 }
2036 }
2037 const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
2038 _mm256_castsi256_si128(h00));
2039 const __m128i h00_val =
2040 _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
2041
2042 const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
2043 _mm256_castsi256_si128(c0));
2044 const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
2045
2046 const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
2047 const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
2048
2049 xx_storeu_128(C, c);
2050 xx_storeu_128(H[0], h0x);
2051
2052 H[0][0] /= size;
2053 C[0] /= size;
2054 }
2055
calc_proj_params_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])2056 static inline void calc_proj_params_r1_high_bd_avx2(
2057 const uint8_t *src8, int width, int height, int src_stride,
2058 const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
2059 int64_t H[2][2], int64_t C[2]) {
2060 const int size = width * height;
2061 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2062 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2063 __m256i h11, c1;
2064 const __m256i zero = _mm256_setzero_si256();
2065 c1 = h11 = zero;
2066
2067 for (int i = 0; i < height; ++i) {
2068 for (int j = 0; j < width; j += 8) {
2069 const __m256i u_load = _mm256_cvtepu16_epi32(
2070 _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2071 const __m256i s_load = _mm256_cvtepu16_epi32(
2072 _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2073 __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
2074 __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2075 __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2076 s = _mm256_sub_epi32(s, d);
2077 f2 = _mm256_sub_epi32(f2, d);
2078
2079 const __m256i h11_even = _mm256_mul_epi32(f2, f2);
2080 const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
2081 _mm256_srli_epi64(f2, 32));
2082 h11 = _mm256_add_epi64(h11, h11_even);
2083 h11 = _mm256_add_epi64(h11, h11_odd);
2084
2085 const __m256i c1_even = _mm256_mul_epi32(f2, s);
2086 const __m256i c1_odd =
2087 _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
2088 c1 = _mm256_add_epi64(c1, c1_even);
2089 c1 = _mm256_add_epi64(c1, c1_odd);
2090 }
2091 }
2092
2093 const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
2094 _mm256_castsi256_si128(h11));
2095 const __m128i h11_val =
2096 _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
2097
2098 const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
2099 _mm256_castsi256_si128(c1));
2100 const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
2101
2102 const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
2103 const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
2104
2105 xx_storeu_128(C, c);
2106 xx_storeu_128(H[1], h1x);
2107
2108 H[1][1] /= size;
2109 C[1] /= size;
2110 }
2111
2112 // AVX2 variant of av1_calc_proj_params_high_bd_c.
av1_calc_proj_params_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)2113 void av1_calc_proj_params_high_bd_avx2(const uint8_t *src8, int width,
2114 int height, int src_stride,
2115 const uint8_t *dat8, int dat_stride,
2116 int32_t *flt0, int flt0_stride,
2117 int32_t *flt1, int flt1_stride,
2118 int64_t H[2][2], int64_t C[2],
2119 const sgr_params_type *params) {
2120 if ((params->r[0] > 0) && (params->r[1] > 0)) {
2121 calc_proj_params_r0_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2122 dat_stride, flt0, flt0_stride, flt1,
2123 flt1_stride, H, C);
2124 } else if (params->r[0] > 0) {
2125 calc_proj_params_r0_high_bd_avx2(src8, width, height, src_stride, dat8,
2126 dat_stride, flt0, flt0_stride, H, C);
2127 } else if (params->r[1] > 0) {
2128 calc_proj_params_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2129 dat_stride, flt1, flt1_stride, H, C);
2130 }
2131 }
2132
av1_highbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)2133 int64_t av1_highbd_pixel_proj_error_avx2(
2134 const uint8_t *src8, int width, int height, int src_stride,
2135 const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
2136 int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
2137 int i, j, k;
2138 const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
2139 const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
2140 __m256i sum64 = _mm256_setzero_si256();
2141 const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2142 const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2143 int64_t err = 0;
2144 if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
2145 const __m256i xq0 = _mm256_set1_epi32(xq[0]);
2146 const __m256i xq1 = _mm256_set1_epi32(xq[1]);
2147 for (i = 0; i < height; ++i) {
2148 __m256i sum32 = _mm256_setzero_si256();
2149 for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time
2150 // Load 16 pixels each from source image and corrupted image
2151 const __m256i s0 = yy_loadu_256(src + j);
2152 const __m256i d0 = yy_loadu_256(dat + j);
2153 // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices)
2154
2155 // Shift-up each pixel to match filtered image scaling
2156 const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
2157
2158 // Split u0 into two halves and pad each from u16 to i32
2159 const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0));
2160 const __m256i u0h =
2161 _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1));
2162 // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2163
2164 // Load 16 pixels from each filtered image
2165 const __m256i flt0l = yy_loadu_256(flt0 + j);
2166 const __m256i flt0h = yy_loadu_256(flt0 + j + 8);
2167 const __m256i flt1l = yy_loadu_256(flt1 + j);
2168 const __m256i flt1h = yy_loadu_256(flt1 + j + 8);
2169 // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2170
2171 // Subtract shifted corrupt image from each filtered image
2172 const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l);
2173 const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h);
2174 const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l);
2175 const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h);
2176
2177 // Multiply basis vectors by appropriate coefficients
2178 const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0);
2179 const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0);
2180 const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1);
2181 const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1);
2182
2183 // Add together the contributions from the two basis vectors
2184 const __m256i vl = _mm256_add_epi32(v0l, v1l);
2185 const __m256i vh = _mm256_add_epi32(v0h, v1h);
2186
2187 // Right-shift v with appropriate rounding
2188 const __m256i vrl =
2189 _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2190 const __m256i vrh =
2191 _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2192 // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0]
2193
2194 // Saturate each i32 to an i16 then combine both halves
2195 // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2196 const __m256i vr =
2197 _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2198 // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0]
2199 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0]
2200
2201 // Add twin-subspace-sgr-filter to corrupt image then subtract source
2202 const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2203
2204 // Calculate squared error and add adjacent values
2205 const __m256i err0 = _mm256_madd_epi16(e0, e0);
2206
2207 sum32 = _mm256_add_epi32(sum32, err0);
2208 }
2209
2210 const __m256i sum32l =
2211 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2212 sum64 = _mm256_add_epi64(sum64, sum32l);
2213 const __m256i sum32h =
2214 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2215 sum64 = _mm256_add_epi64(sum64, sum32h);
2216
2217 // Process remaining pixels in this row (modulo 16)
2218 for (k = j; k < width; ++k) {
2219 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2220 int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
2221 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2222 err += ((int64_t)e * e);
2223 }
2224 dat += dat_stride;
2225 src += src_stride;
2226 flt0 += flt0_stride;
2227 flt1 += flt1_stride;
2228 }
2229 } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
2230 const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
2231 const __m256i xq_active = _mm256_set1_epi32(xq_on);
2232 const __m256i xq_inactive =
2233 _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
2234 const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
2235 const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
2236 for (i = 0; i < height; ++i) {
2237 __m256i sum32 = _mm256_setzero_si256();
2238 for (j = 0; j <= width - 16; j += 16) {
2239 // Load 16 pixels from source image
2240 const __m256i s0 = yy_loadu_256(src + j);
2241 // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2242
2243 // Load 16 pixels from corrupted image and pad each u16 to i32
2244 const __m256i d0 = yy_loadu_256(dat + j);
2245 const __m256i d0h =
2246 _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1));
2247 const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0));
2248 // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2249 // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2250
2251 // Load 16 pixels from the filtered image
2252 const __m256i flth = yy_loadu_256(flt + j + 8);
2253 const __m256i fltl = yy_loadu_256(flt + j);
2254 // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2255
2256 const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active);
2257 const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active);
2258 const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive);
2259 const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive);
2260
2261 const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq);
2262 const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq);
2263
2264 // Shift this down with appropriate rounding
2265 const __m256i vrh =
2266 _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2267 const __m256i vrl =
2268 _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2269 // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2270
2271 // Saturate each i32 to an i16 then combine both halves
2272 // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2273 const __m256i vr =
2274 _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2275 // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16
2276 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2277
2278 // Subtract twin-subspace-sgr filtered from source image to get error
2279 const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2280
2281 // Calculate squared error and add adjacent values
2282 const __m256i err0 = _mm256_madd_epi16(e0, e0);
2283
2284 sum32 = _mm256_add_epi32(sum32, err0);
2285 }
2286
2287 const __m256i sum32l =
2288 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2289 sum64 = _mm256_add_epi64(sum64, sum32l);
2290 const __m256i sum32h =
2291 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2292 sum64 = _mm256_add_epi64(sum64, sum32h);
2293
2294 // Process remaining pixels in this row (modulo 16)
2295 for (k = j; k < width; ++k) {
2296 const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2297 int32_t v = xq_on * (flt[k] - u);
2298 const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2299 err += ((int64_t)e * e);
2300 }
2301 dat += dat_stride;
2302 src += src_stride;
2303 flt += flt_stride;
2304 }
2305 } else { // Neither filter is enabled
2306 for (i = 0; i < height; ++i) {
2307 __m256i sum32 = _mm256_setzero_si256();
2308 for (j = 0; j <= width - 32; j += 32) {
2309 // Load 2x16 u16 from source image
2310 const __m256i s0l = yy_loadu_256(src + j);
2311 const __m256i s0h = yy_loadu_256(src + j + 16);
2312
2313 // Load 2x16 u16 from corrupted image
2314 const __m256i d0l = yy_loadu_256(dat + j);
2315 const __m256i d0h = yy_loadu_256(dat + j + 16);
2316
2317 // Subtract corrupted image from source image
2318 const __m256i diffl = _mm256_sub_epi16(d0l, s0l);
2319 const __m256i diffh = _mm256_sub_epi16(d0h, s0h);
2320
2321 // Square error and add adjacent values
2322 const __m256i err0l = _mm256_madd_epi16(diffl, diffl);
2323 const __m256i err0h = _mm256_madd_epi16(diffh, diffh);
2324
2325 sum32 = _mm256_add_epi32(sum32, err0l);
2326 sum32 = _mm256_add_epi32(sum32, err0h);
2327 }
2328
2329 const __m256i sum32l =
2330 _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2331 sum64 = _mm256_add_epi64(sum64, sum32l);
2332 const __m256i sum32h =
2333 _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2334 sum64 = _mm256_add_epi64(sum64, sum32h);
2335
2336 // Process remaining pixels (modulu 16)
2337 for (k = j; k < width; ++k) {
2338 const int32_t e = (int32_t)(dat[k]) - src[k];
2339 err += ((int64_t)e * e);
2340 }
2341 dat += dat_stride;
2342 src += src_stride;
2343 }
2344 }
2345
2346 // Sum 4 values from sum64l and sum64h into err
2347 int64_t sum[4];
2348 yy_storeu_256(sum, sum64);
2349 err += sum[0] + sum[1] + sum[2] + sum[3];
2350 return err;
2351 }
2352 #endif // CONFIG_AV1_HIGHBITDEPTH
2353