xref: /aosp_15_r20/external/libaom/av1/encoder/x86/pickrst_avx2.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2018, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <immintrin.h>  // AVX2
13 #include "aom_dsp/x86/mem_sse2.h"
14 #include "aom_dsp/x86/synonyms.h"
15 #include "aom_dsp/x86/synonyms_avx2.h"
16 #include "aom_dsp/x86/transpose_sse2.h"
17 
18 #include "config/av1_rtcd.h"
19 #include "av1/common/restoration.h"
20 #include "av1/encoder/pickrst.h"
21 
22 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_avx2(int64_t * dst,const uint16_t * dgd,const __m256i * shuffle,const __m256i * dgd_ijkl)23 static inline void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd,
24                                         const __m256i *shuffle,
25                                         const __m256i *dgd_ijkl) {
26   // Load two 128-bit chunks from dgd
27   const __m256i s0 = _mm256_inserti128_si256(
28       _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)),
29       _mm_loadu_si128((__m128i *)(dgd + 4)), 1);
30   // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices)
31   // The weird order is so the shuffle stays within 128-bit lanes
32 
33   // Shuffle 16x u16 values within lanes according to the mask:
34   // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4]
35   // (Actually we shuffle u8 values as there's no 16-bit shuffle)
36   const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle);
37   // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices)
38 
39   // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit
40   // integers then horizontally add pairs of these integers resulting in 8x
41   // 32-bit integers
42   const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1);
43   // d0 = [a b c d] [e f g h] as u32
44 
45   // Take the lower-half of d0, extend to u64, add it on to dst (H)
46   const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0));
47   // d0l = [a b] [c d] as u64
48   const __m256i dst0 = yy_load_256(dst);
49   yy_store_256(dst, _mm256_add_epi64(d0l, dst0));
50 
51   // Take the upper-half of d0, extend to u64, add it on to dst (H)
52   const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1));
53   // d0h = [e f] [g h] as u64
54   const __m256i dst1 = yy_load_256(dst + 4);
55   yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1));
56 }
57 
acc_stat_highbd_win7_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])58 static inline void acc_stat_highbd_win7_one_line_avx2(
59     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
60     int dgd_stride, const __m256i *shuffle, int32_t *sumX,
61     int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
62     int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
63   int j, k, l;
64   const int wiener_win = WIENER_WIN;
65   // Main loop handles two pixels at a time
66   // We can assume that h_start is even, since it will always be aligned to
67   // a tile edge + some number of restoration units, and both of those will
68   // be 64-pixel aligned.
69   // However, at the edge of the image, h_end may be odd, so we need to handle
70   // that case correctly.
71   assert(h_start % 2 == 0);
72   const int h_end_even = h_end & ~1;
73   const int has_odd_pixel = h_end & 1;
74   for (j = h_start; j < h_end_even; j += 2) {
75     const uint16_t X1 = src[j];
76     const uint16_t X2 = src[j + 1];
77     *sumX += X1 + X2;
78     const uint16_t *dgd_ij = dgd + j;
79     for (k = 0; k < wiener_win; k++) {
80       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
81       for (l = 0; l < wiener_win; l++) {
82         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
83         const uint16_t D1 = dgd_ijk[l];
84         const uint16_t D2 = dgd_ijk[l + 1];
85         sumY[k][l] += D1 + D2;
86         M_int[k][l] += D1 * X1 + D2 * X2;
87 
88         // Load two u16 values from dgd_ijkl combined as a u32,
89         // then broadcast to 8x u32 slots of a 256
90         const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
91         // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16
92 
93         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
94                              &dgd_ijkl);
95         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
96                              &dgd_ijkl);
97         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
98                              &dgd_ijkl);
99         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
100                              &dgd_ijkl);
101         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
102                              &dgd_ijkl);
103         acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
104                              &dgd_ijkl);
105         acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
106                              &dgd_ijkl);
107       }
108     }
109   }
110   // If the width is odd, add in the final pixel
111   if (has_odd_pixel) {
112     const uint16_t X1 = src[j];
113     *sumX += X1;
114     const uint16_t *dgd_ij = dgd + j;
115     for (k = 0; k < wiener_win; k++) {
116       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
117       for (l = 0; l < wiener_win; l++) {
118         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
119         const uint16_t D1 = dgd_ijk[l];
120         sumY[k][l] += D1;
121         M_int[k][l] += D1 * X1;
122 
123         // The `acc_stat_highbd_avx2` function wants its input to have
124         // interleaved copies of two pixels, but we only have one. However, the
125         // pixels are (effectively) used as inputs to a multiply-accumulate. So
126         // if we set the extra pixel slot to 0, then it is effectively ignored.
127         const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
128 
129         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
130                              &dgd_ijkl);
131         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
132                              &dgd_ijkl);
133         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
134                              &dgd_ijkl);
135         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
136                              &dgd_ijkl);
137         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
138                              &dgd_ijkl);
139         acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
140                              &dgd_ijkl);
141         acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
142                              &dgd_ijkl);
143       }
144     }
145   }
146 }
147 
compute_stats_highbd_win7_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)148 static inline void compute_stats_highbd_win7_opt_avx2(
149     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
150     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
151     int64_t *H, aom_bit_depth_t bit_depth) {
152   int i, j, k, l, m, n;
153   const int wiener_win = WIENER_WIN;
154   const int pixel_count = (h_end - h_start) * (v_end - v_start);
155   const int wiener_win2 = wiener_win * wiener_win;
156   const int wiener_halfwin = (wiener_win >> 1);
157   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
158   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
159   const uint16_t avg =
160       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
161 
162   int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
163   DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } };
164   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
165   int32_t sumX = 0;
166   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
167 
168   const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
169   for (j = v_start; j < v_end; j += 64) {
170     const int vert_end = AOMMIN(64, v_end - j) + j;
171     for (i = j; i < vert_end; i++) {
172       acc_stat_highbd_win7_one_line_avx2(
173           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
174           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
175     }
176   }
177 
178   uint8_t bit_depth_divider = 1;
179   if (bit_depth == AOM_BITS_12)
180     bit_depth_divider = 16;
181   else if (bit_depth == AOM_BITS_10)
182     bit_depth_divider = 4;
183 
184   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
185   for (k = 0; k < wiener_win; k++) {
186     for (l = 0; l < wiener_win; l++) {
187       const int32_t idx0 = l * wiener_win + k;
188       M[idx0] = (M_int[k][l] +
189                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
190                 bit_depth_divider;
191       int64_t *H_ = H + idx0 * wiener_win2;
192       int64_t *H_int_ = &H_int[idx0][0];
193       for (m = 0; m < wiener_win; m++) {
194         for (n = 0; n < wiener_win; n++) {
195           H_[m * wiener_win + n] =
196               (H_int_[n * 8 + m] +
197                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
198               bit_depth_divider;
199         }
200       }
201     }
202   }
203 }
204 
acc_stat_highbd_win5_one_line_avx2(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m256i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])205 static inline void acc_stat_highbd_win5_one_line_avx2(
206     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
207     int dgd_stride, const __m256i *shuffle, int32_t *sumX,
208     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
209     int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
210     int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
211   int j, k, l;
212   const int wiener_win = WIENER_WIN_CHROMA;
213   // Main loop handles two pixels at a time
214   // We can assume that h_start is even, since it will always be aligned to
215   // a tile edge + some number of restoration units, and both of those will
216   // be 64-pixel aligned.
217   // However, at the edge of the image, h_end may be odd, so we need to handle
218   // that case correctly.
219   assert(h_start % 2 == 0);
220   const int h_end_even = h_end & ~1;
221   const int has_odd_pixel = h_end & 1;
222   for (j = h_start; j < h_end_even; j += 2) {
223     const uint16_t X1 = src[j];
224     const uint16_t X2 = src[j + 1];
225     *sumX += X1 + X2;
226     const uint16_t *dgd_ij = dgd + j;
227     for (k = 0; k < wiener_win; k++) {
228       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
229       for (l = 0; l < wiener_win; l++) {
230         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
231         const uint16_t D1 = dgd_ijk[l];
232         const uint16_t D2 = dgd_ijk[l + 1];
233         sumY[k][l] += D1 + D2;
234         M_int[k][l] += D1 * X1 + D2 * X2;
235 
236         // Load two u16 values from dgd_ijkl combined as a u32,
237         // then broadcast to 8x u32 slots of a 256
238         const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l));
239         // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16
240 
241         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
242                              &dgd_ijkl);
243         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
244                              &dgd_ijkl);
245         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
246                              &dgd_ijkl);
247         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
248                              &dgd_ijkl);
249         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
250                              &dgd_ijkl);
251       }
252     }
253   }
254   // If the width is odd, add in the final pixel
255   if (has_odd_pixel) {
256     const uint16_t X1 = src[j];
257     *sumX += X1;
258     const uint16_t *dgd_ij = dgd + j;
259     for (k = 0; k < wiener_win; k++) {
260       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
261       for (l = 0; l < wiener_win; l++) {
262         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
263         const uint16_t D1 = dgd_ijk[l];
264         sumY[k][l] += D1;
265         M_int[k][l] += D1 * X1;
266 
267         // The `acc_stat_highbd_avx2` function wants its input to have
268         // interleaved copies of two pixels, but we only have one. However, the
269         // pixels are (effectively) used as inputs to a multiply-accumulate. So
270         // if we set the extra pixel slot to 0, then it is effectively ignored.
271         const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1);
272 
273         acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
274                              &dgd_ijkl);
275         acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
276                              &dgd_ijkl);
277         acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
278                              &dgd_ijkl);
279         acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
280                              &dgd_ijkl);
281         acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
282                              &dgd_ijkl);
283       }
284     }
285   }
286 }
287 
compute_stats_highbd_win5_opt_avx2(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)288 static inline void compute_stats_highbd_win5_opt_avx2(
289     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
290     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
291     int64_t *H, aom_bit_depth_t bit_depth) {
292   int i, j, k, l, m, n;
293   const int wiener_win = WIENER_WIN_CHROMA;
294   const int pixel_count = (h_end - h_start) * (v_end - v_start);
295   const int wiener_win2 = wiener_win * wiener_win;
296   const int wiener_halfwin = (wiener_win >> 1);
297   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
298   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
299   const uint16_t avg =
300       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
301 
302   int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
303   DECLARE_ALIGNED(
304       32, int64_t,
305       H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } };
306   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
307   int32_t sumX = 0;
308   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
309 
310   const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data);
311   for (j = v_start; j < v_end; j += 64) {
312     const int vert_end = AOMMIN(64, v_end - j) + j;
313     for (i = j; i < vert_end; i++) {
314       acc_stat_highbd_win5_one_line_avx2(
315           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
316           dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64);
317     }
318   }
319 
320   uint8_t bit_depth_divider = 1;
321   if (bit_depth == AOM_BITS_12)
322     bit_depth_divider = 16;
323   else if (bit_depth == AOM_BITS_10)
324     bit_depth_divider = 4;
325 
326   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
327   for (k = 0; k < wiener_win; k++) {
328     for (l = 0; l < wiener_win; l++) {
329       const int32_t idx0 = l * wiener_win + k;
330       M[idx0] = (M_int64[k][l] +
331                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
332                 bit_depth_divider;
333       int64_t *H_ = H + idx0 * wiener_win2;
334       int64_t *H_int_ = &H_int64[idx0][0];
335       for (m = 0; m < wiener_win; m++) {
336         for (n = 0; n < wiener_win; n++) {
337           H_[m * wiener_win + n] =
338               (H_int_[n * 8 + m] +
339                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
340               bit_depth_divider;
341         }
342       }
343     }
344   }
345 }
346 
av1_compute_stats_highbd_avx2(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)347 void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8,
348                                    const uint8_t *src8, int16_t *dgd_avg,
349                                    int16_t *src_avg, int h_start, int h_end,
350                                    int v_start, int v_end, int dgd_stride,
351                                    int src_stride, int64_t *M, int64_t *H,
352                                    aom_bit_depth_t bit_depth) {
353   if (wiener_win == WIENER_WIN) {
354     (void)dgd_avg;
355     (void)src_avg;
356     compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start,
357                                        v_end, dgd_stride, src_stride, M, H,
358                                        bit_depth);
359   } else if (wiener_win == WIENER_WIN_CHROMA) {
360     (void)dgd_avg;
361     (void)src_avg;
362     compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start,
363                                        v_end, dgd_stride, src_stride, M, H,
364                                        bit_depth);
365   } else {
366     av1_compute_stats_highbd_c(wiener_win, dgd8, src8, dgd_avg, src_avg,
367                                h_start, h_end, v_start, v_end, dgd_stride,
368                                src_stride, M, H, bit_depth);
369   }
370 }
371 #endif  // CONFIG_AV1_HIGHBITDEPTH
372 
madd_and_accum_avx2(__m256i src,__m256i dgd,__m256i * sum)373 static inline void madd_and_accum_avx2(__m256i src, __m256i dgd, __m256i *sum) {
374   *sum = _mm256_add_epi32(*sum, _mm256_madd_epi16(src, dgd));
375 }
376 
convert_and_add_avx2(__m256i src)377 static inline __m256i convert_and_add_avx2(__m256i src) {
378   const __m256i s0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(src));
379   const __m256i s1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(src, 1));
380   return _mm256_add_epi64(s0, s1);
381 }
382 
hadd_four_32_to_64_avx2(__m256i src0,__m256i src1,__m256i * src2,__m256i * src3)383 static inline __m256i hadd_four_32_to_64_avx2(__m256i src0, __m256i src1,
384                                               __m256i *src2, __m256i *src3) {
385   // 00 01 10 11 02 03 12 13
386   const __m256i s_0 = _mm256_hadd_epi32(src0, src1);
387   // 20 21 30 31 22 23 32 33
388   const __m256i s_1 = _mm256_hadd_epi32(*src2, *src3);
389   // 00+01 10+11 20+21 30+31 02+03 12+13 22+23 32+33
390   const __m256i s_2 = _mm256_hadd_epi32(s_0, s_1);
391   return convert_and_add_avx2(s_2);
392 }
393 
add_64bit_lvl_avx2(__m256i src0,__m256i src1)394 static inline __m128i add_64bit_lvl_avx2(__m256i src0, __m256i src1) {
395   // 00 10 02 12
396   const __m256i t0 = _mm256_unpacklo_epi64(src0, src1);
397   // 01 11 03 13
398   const __m256i t1 = _mm256_unpackhi_epi64(src0, src1);
399   // 00+01 10+11 02+03 12+13
400   const __m256i sum = _mm256_add_epi64(t0, t1);
401   // 00+01 10+11
402   const __m128i sum0 = _mm256_castsi256_si128(sum);
403   // 02+03 12+13
404   const __m128i sum1 = _mm256_extracti128_si256(sum, 1);
405   // 00+01+02+03 10+11+12+13
406   return _mm_add_epi64(sum0, sum1);
407 }
408 
convert_32_to_64_add_avx2(__m256i src0,__m256i src1)409 static inline __m128i convert_32_to_64_add_avx2(__m256i src0, __m256i src1) {
410   // 00 01 02 03
411   const __m256i s0 = convert_and_add_avx2(src0);
412   // 10 11 12 13
413   const __m256i s1 = convert_and_add_avx2(src1);
414   return add_64bit_lvl_avx2(s0, s1);
415 }
416 
calc_sum_of_register(__m256i src)417 static inline int32_t calc_sum_of_register(__m256i src) {
418   const __m128i src_l = _mm256_castsi256_si128(src);
419   const __m128i src_h = _mm256_extracti128_si256(src, 1);
420   const __m128i sum = _mm_add_epi32(src_l, src_h);
421   const __m128i dst0 = _mm_add_epi32(sum, _mm_srli_si128(sum, 8));
422   const __m128i dst1 = _mm_add_epi32(dst0, _mm_srli_si128(dst0, 4));
423   return _mm_cvtsi128_si32(dst1);
424 }
425 
transpose_64bit_4x4_avx2(const __m256i * const src,__m256i * const dst)426 static inline void transpose_64bit_4x4_avx2(const __m256i *const src,
427                                             __m256i *const dst) {
428   // Unpack 64 bit elements. Goes from:
429   // src[0]: 00 01 02 03
430   // src[1]: 10 11 12 13
431   // src[2]: 20 21 22 23
432   // src[3]: 30 31 32 33
433   // to:
434   // reg0:    00 10 02 12
435   // reg1:    20 30 22 32
436   // reg2:    01 11 03 13
437   // reg3:    21 31 23 33
438   const __m256i reg0 = _mm256_unpacklo_epi64(src[0], src[1]);
439   const __m256i reg1 = _mm256_unpacklo_epi64(src[2], src[3]);
440   const __m256i reg2 = _mm256_unpackhi_epi64(src[0], src[1]);
441   const __m256i reg3 = _mm256_unpackhi_epi64(src[2], src[3]);
442 
443   // Unpack 64 bit elements resulting in:
444   // dst[0]: 00 10 20 30
445   // dst[1]: 01 11 21 31
446   // dst[2]: 02 12 22 32
447   // dst[3]: 03 13 23 33
448   dst[0] = _mm256_inserti128_si256(reg0, _mm256_castsi256_si128(reg1), 1);
449   dst[1] = _mm256_inserti128_si256(reg2, _mm256_castsi256_si128(reg3), 1);
450   dst[2] = _mm256_inserti128_si256(reg1, _mm256_extracti128_si256(reg0, 1), 0);
451   dst[3] = _mm256_inserti128_si256(reg3, _mm256_extracti128_si256(reg2, 1), 0);
452 }
453 
454 // When we load 32 values of int8_t type and need less than 32 values for
455 // processing, the below mask is used to make the extra values zero.
456 static const int8_t mask_8bit[32] = {
457   -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,  // 16 bytes
458   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,   // 16 bytes
459 };
460 
461 // When we load 16 values of int16_t type and need less than 16 values for
462 // processing, the below mask is used to make the extra values zero.
463 static const int16_t mask_16bit[32] = {
464   -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,  // 16 bytes
465   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,   // 16 bytes
466 };
467 
calc_dgd_buf_avg_avx2(const uint8_t * src,int32_t h_start,int32_t h_end,int32_t v_start,int32_t v_end,int32_t stride)468 static inline uint8_t calc_dgd_buf_avg_avx2(const uint8_t *src, int32_t h_start,
469                                             int32_t h_end, int32_t v_start,
470                                             int32_t v_end, int32_t stride) {
471   const uint8_t *src_temp = src + v_start * stride + h_start;
472   const __m256i zero = _mm256_setzero_si256();
473   const int32_t width = h_end - h_start;
474   const int32_t height = v_end - v_start;
475   const int32_t wd_beyond_mul32 = width & 31;
476   const int32_t wd_mul32 = width - wd_beyond_mul32;
477   __m128i mask_low, mask_high;
478   __m256i ss = zero;
479 
480   // When width is not multiple of 32, it still loads 32 and to make the data
481   // which is extra (beyond required) as zero using the below mask.
482   if (wd_beyond_mul32 >= 16) {
483     mask_low = _mm_set1_epi8(-1);
484     mask_high = _mm_loadu_si128((__m128i *)(&mask_8bit[32 - wd_beyond_mul32]));
485   } else {
486     mask_low = _mm_loadu_si128((__m128i *)(&mask_8bit[16 - wd_beyond_mul32]));
487     mask_high = _mm_setzero_si128();
488   }
489   const __m256i mask =
490       _mm256_inserti128_si256(_mm256_castsi128_si256(mask_low), mask_high, 1);
491 
492   int32_t proc_ht = 0;
493   do {
494     // Process width in multiple of 32.
495     int32_t proc_wd = 0;
496     while (proc_wd < wd_mul32) {
497       const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
498       const __m256i sad_0 = _mm256_sad_epu8(s_0, zero);
499       ss = _mm256_add_epi32(ss, sad_0);
500       proc_wd += 32;
501     }
502 
503     // Process the remaining width.
504     if (wd_beyond_mul32) {
505       const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd));
506       const __m256i s_m_0 = _mm256_and_si256(s_0, mask);
507       const __m256i sad_0 = _mm256_sad_epu8(s_m_0, zero);
508       ss = _mm256_add_epi32(ss, sad_0);
509     }
510     src_temp += stride;
511     proc_ht++;
512   } while (proc_ht < height);
513 
514   const uint32_t sum = calc_sum_of_register(ss);
515   const uint8_t avg = sum / (width * height);
516   return avg;
517 }
518 
519 // Fill (src-avg) or (dgd-avg) buffers. Note that when n = (width % 16) is not
520 // 0, it writes (16 - n) more data than required.
sub_avg_block_avx2(const uint8_t * src,int32_t src_stride,uint8_t avg,int32_t width,int32_t height,int16_t * dst,int32_t dst_stride,int use_downsampled_wiener_stats)521 static inline void sub_avg_block_avx2(const uint8_t *src, int32_t src_stride,
522                                       uint8_t avg, int32_t width,
523                                       int32_t height, int16_t *dst,
524                                       int32_t dst_stride,
525                                       int use_downsampled_wiener_stats) {
526   const __m256i avg_reg = _mm256_set1_epi16(avg);
527 
528   int32_t proc_ht = 0;
529   do {
530     int ds_factor =
531         use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
532     if (use_downsampled_wiener_stats &&
533         (height - proc_ht < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
534       ds_factor = height - proc_ht;
535     }
536 
537     int32_t proc_wd = 0;
538     while (proc_wd < width) {
539       const __m128i s = _mm_loadu_si128((__m128i *)(src + proc_wd));
540       const __m256i ss = _mm256_cvtepu8_epi16(s);
541       const __m256i d = _mm256_sub_epi16(ss, avg_reg);
542       _mm256_storeu_si256((__m256i *)(dst + proc_wd), d);
543       proc_wd += 16;
544     }
545 
546     src += ds_factor * src_stride;
547     dst += ds_factor * dst_stride;
548     proc_ht += ds_factor;
549   } while (proc_ht < height);
550 }
551 
552 // Fills lower-triangular elements of H buffer from upper triangular elements of
553 // the same
fill_lower_triag_elements_avx2(const int32_t wiener_win2,int64_t * const H)554 static inline void fill_lower_triag_elements_avx2(const int32_t wiener_win2,
555                                                   int64_t *const H) {
556   for (int32_t i = 0; i < wiener_win2 - 1; i += 4) {
557     __m256i in[4], out[4];
558 
559     in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + i + 1));
560     in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + i + 1));
561     in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + i + 1));
562     in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i + 1));
563 
564     transpose_64bit_4x4_avx2(in, out);
565 
566     _mm_storel_epi64((__m128i *)(H + (i + 1) * wiener_win2 + i),
567                      _mm256_castsi256_si128(out[0]));
568     _mm_storeu_si128((__m128i *)(H + (i + 2) * wiener_win2 + i),
569                      _mm256_castsi256_si128(out[1]));
570     _mm256_storeu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i), out[2]);
571     _mm256_storeu_si256((__m256i *)(H + (i + 4) * wiener_win2 + i), out[3]);
572 
573     for (int32_t j = i + 5; j < wiener_win2; j += 4) {
574       in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + j));
575       in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + j));
576       in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + j));
577       in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + j));
578 
579       transpose_64bit_4x4_avx2(in, out);
580 
581       _mm256_storeu_si256((__m256i *)(H + (j + 0) * wiener_win2 + i), out[0]);
582       _mm256_storeu_si256((__m256i *)(H + (j + 1) * wiener_win2 + i), out[1]);
583       _mm256_storeu_si256((__m256i *)(H + (j + 2) * wiener_win2 + i), out[2]);
584       _mm256_storeu_si256((__m256i *)(H + (j + 3) * wiener_win2 + i), out[3]);
585     }
586   }
587 }
588 
589 // Fill H buffer based on loop_count.
590 #define INIT_H_VALUES(d, loop_count)                           \
591   for (int g = 0; g < (loop_count); g++) {                     \
592     const __m256i dgd0 =                                       \
593         _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
594     madd_and_accum_avx2(dgd_mul_df, dgd0, &sum_h[g]);          \
595   }
596 
597 // Fill M & H buffer.
598 #define INIT_MH_VALUES(d)                                      \
599   for (int g = 0; g < wiener_win; g++) {                       \
600     const __m256i dgds_0 =                                     \
601         _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \
602     madd_and_accum_avx2(src_mul_df, dgds_0, &sum_m[g]);        \
603     madd_and_accum_avx2(dgd_mul_df, dgds_0, &sum_h[g]);        \
604   }
605 
606 // Update the dgd pointers appropriately.
607 #define INITIALIZATION(wiener_window_sz)                                 \
608   j = i / (wiener_window_sz);                                            \
609   const int16_t *d_window = d + j;                                       \
610   const int16_t *d_current_row =                                         \
611       d + j + ((i % (wiener_window_sz)) * d_stride);                     \
612   int proc_ht = v_start;                                                 \
613   downsample_factor =                                                    \
614       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \
615   __m256i sum_h[wiener_window_sz];                                       \
616   memset(sum_h, 0, sizeof(sum_h));
617 
618 // Update the downsample factor appropriately.
619 #define UPDATE_DOWNSAMPLE_FACTOR                              \
620   int proc_wd = 0;                                            \
621   if (use_downsampled_wiener_stats &&                         \
622       ((v_end - proc_ht) < WIENER_STATS_DOWNSAMPLE_FACTOR)) { \
623     downsample_factor = v_end - proc_ht;                      \
624   }                                                           \
625   const __m256i df_reg = _mm256_set1_epi16(downsample_factor);
626 
627 #define CALCULATE_REMAINING_H_WIN5                                             \
628   while (j < wiener_win) {                                                     \
629     d_window = d;                                                              \
630     d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride);      \
631     const __m256i zero = _mm256_setzero_si256();                               \
632     sum_h[0] = zero;                                                           \
633     sum_h[1] = zero;                                                           \
634     sum_h[2] = zero;                                                           \
635     sum_h[3] = zero;                                                           \
636     sum_h[4] = zero;                                                           \
637                                                                                \
638     proc_ht = v_start;                                                         \
639     downsample_factor =                                                        \
640         use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;     \
641     do {                                                                       \
642       UPDATE_DOWNSAMPLE_FACTOR;                                                \
643                                                                                \
644       /* Process the amount of width multiple of 16.*/                         \
645       while (proc_wd < wd_mul16) {                                             \
646         const __m256i dgd =                                                    \
647             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));          \
648         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);            \
649         INIT_H_VALUES(d_window + j + proc_wd, 5)                               \
650                                                                                \
651         proc_wd += 16;                                                         \
652       };                                                                       \
653                                                                                \
654       /* Process the remaining width here. */                                  \
655       if (wd_beyond_mul16) {                                                   \
656         const __m256i dgd =                                                    \
657             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));          \
658         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);                  \
659         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);       \
660         INIT_H_VALUES(d_window + j + proc_wd, 5)                               \
661       }                                                                        \
662       proc_ht += downsample_factor;                                            \
663       d_window += downsample_factor * d_stride;                                \
664       d_current_row += downsample_factor * d_stride;                           \
665     } while (proc_ht < v_end);                                                 \
666     const __m256i s_h0 =                                                       \
667         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);     \
668     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
669                         s_h0);                                                 \
670     const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);                      \
671     const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);                   \
672     _mm_storel_epi64(                                                          \
673         (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0);    \
674     j++;                                                                       \
675   }
676 
677 #define CALCULATE_REMAINING_H_WIN7                                             \
678   while (j < wiener_win) {                                                     \
679     d_window = d;                                                              \
680     d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride);      \
681     const __m256i zero = _mm256_setzero_si256();                               \
682     sum_h[0] = zero;                                                           \
683     sum_h[1] = zero;                                                           \
684     sum_h[2] = zero;                                                           \
685     sum_h[3] = zero;                                                           \
686     sum_h[4] = zero;                                                           \
687     sum_h[5] = zero;                                                           \
688     sum_h[6] = zero;                                                           \
689                                                                                \
690     proc_ht = v_start;                                                         \
691     downsample_factor =                                                        \
692         use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;     \
693     do {                                                                       \
694       UPDATE_DOWNSAMPLE_FACTOR;                                                \
695                                                                                \
696       /* Process the amount of width multiple of 16.*/                         \
697       while (proc_wd < wd_mul16) {                                             \
698         const __m256i dgd =                                                    \
699             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));          \
700         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);            \
701         INIT_H_VALUES(d_window + j + proc_wd, 7)                               \
702                                                                                \
703         proc_wd += 16;                                                         \
704       };                                                                       \
705                                                                                \
706       /* Process the remaining width here. */                                  \
707       if (wd_beyond_mul16) {                                                   \
708         const __m256i dgd =                                                    \
709             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));          \
710         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);                  \
711         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);       \
712         INIT_H_VALUES(d_window + j + proc_wd, 7)                               \
713       }                                                                        \
714       proc_ht += downsample_factor;                                            \
715       d_window += downsample_factor * d_stride;                                \
716       d_current_row += downsample_factor * d_stride;                           \
717     } while (proc_ht < v_end);                                                 \
718     const __m256i s_h1 =                                                       \
719         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);     \
720     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \
721                         s_h1);                                                 \
722     const __m256i s_h2 =                                                       \
723         hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);     \
724     _mm256_storeu_si256(                                                       \
725         (__m256i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_h2);      \
726     j++;                                                                       \
727   }
728 
729 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
730 // the filter tap values required for wiener filtering. Here, the buffer H is of
731 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
732 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
733 // value above the diagonal (upper triangle) are equal to the values below the
734 // diagonal (lower triangle). The calculation of elements/stats of H(upper
735 // triangle) and M is done in steps as described below where each step fills
736 // specific values of H and M.
737 // Once the upper triangular elements of H matrix are derived, the same will be
738 // copied to lower triangular using the function
739 // fill_lower_triag_elements_avx2().
740 // Example: Wiener window size =
741 // WIENER_WIN_CHROMA (5) M buffer = [M0 M1 M2 ---- M23 M24] H buffer = Hxy
742 // (x-row, y-column) [H00 H01 H02 ---- H023 H024] [H10 H11 H12 ---- H123 H124]
743 // [H30 H31 H32 ---- H323 H324]
744 // [H40 H41 H42 ---- H423 H424]
745 // [H50 H51 H52 ---- H523 H524]
746 // [H60 H61 H62 ---- H623 H624]
747 //            ||
748 //            ||
749 // [H230 H231 H232 ---- H2323 H2324]
750 // [H240 H241 H242 ---- H2423 H2424]
751 // In Step 1, whole M buffers (i.e., M0 to M24) and the first row of H (i.e.,
752 // H00 to H024) is filled. The remaining rows of H buffer are filled through
753 // steps 2 to 6.
compute_stats_win5_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)754 static void compute_stats_win5_avx2(const int16_t *const d, int32_t d_stride,
755                                     const int16_t *const s, int32_t s_stride,
756                                     int32_t width, int v_start, int v_end,
757                                     int64_t *const M, int64_t *const H,
758                                     int use_downsampled_wiener_stats) {
759   const int32_t wiener_win = WIENER_WIN_CHROMA;
760   const int32_t wiener_win2 = wiener_win * wiener_win;
761   // Amount of width which is beyond multiple of 16. This case is handled
762   // appropriately to process only the required width towards the end.
763   const int32_t wd_mul16 = width & ~15;
764   const int32_t wd_beyond_mul16 = width - wd_mul16;
765   const __m256i mask =
766       _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
767   int downsample_factor;
768 
769   // Step 1: Full M (i.e., M0 to M24) and first row H (i.e., H00 to H024)
770   // values are filled here. Here, the loop over 'j' is executed for values 0
771   // to 4 (wiener_win-1). When the loop executed for a specific 'j', 5 values of
772   // M and H are filled as shown below.
773   // j=0: M0-M4 and H00-H04, j=1: M5-M9 and H05-H09 are filled etc,.
774   int j = 0;
775   do {
776     const int16_t *s_t = s;
777     const int16_t *d_t = d;
778     __m256i sum_m[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
779     __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
780     downsample_factor =
781         use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
782     int proc_ht = v_start;
783     do {
784       UPDATE_DOWNSAMPLE_FACTOR
785 
786       // Process the amount of width multiple of 16.
787       while (proc_wd < wd_mul16) {
788         const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
789         const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
790         const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
791         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
792         INIT_MH_VALUES(d_t + j + proc_wd)
793 
794         proc_wd += 16;
795       }
796 
797       // Process the remaining width here.
798       if (wd_beyond_mul16) {
799         const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
800         const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
801         const __m256i src_mask = _mm256_and_si256(src, mask);
802         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
803         const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
804         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
805         INIT_MH_VALUES(d_t + j + proc_wd)
806       }
807       proc_ht += downsample_factor;
808       s_t += downsample_factor * s_stride;
809       d_t += downsample_factor * d_stride;
810     } while (proc_ht < v_end);
811 
812     const __m256i s_m =
813         hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
814     const __m128i s_m_h = convert_32_to_64_add_avx2(sum_m[4], sum_h[4]);
815     _mm256_storeu_si256((__m256i *)(M + wiener_win * j), s_m);
816     _mm_storel_epi64((__m128i *)&M[wiener_win * j + 4], s_m_h);
817 
818     const __m256i s_h =
819         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
820     _mm256_storeu_si256((__m256i *)(H + wiener_win * j), s_h);
821     _mm_storeh_epi64((__m128i *)&H[wiener_win * j + 4], s_m_h);
822   } while (++j < wiener_win);
823 
824   // The below steps are designed to fill remaining rows of H buffer. Here, aim
825   // is to fill only upper triangle elements correspond to each row and lower
826   // triangle elements are copied from upper-triangle elements. Also, as
827   // mentioned in Step 1, the core function is designed to fill 5
828   // elements/stats/values of H buffer.
829   //
830   // Step 2: Here, the rows 1, 6, 11, 16 and 21 are filled. As we need to fill
831   // only upper-triangle elements, H10 from row1, H60-H64 and H65 from row6,etc,
832   // are need not be filled. As the core function process 5 values, in first
833   // iteration of 'j' only 4 values to be filled i.e., H11-H14 from row1,H66-H69
834   // from row6, etc.
835   for (int i = 1; i < wiener_win2; i += wiener_win) {
836     // Update the dgd pointers appropriately and also derive the 'j'th iteration
837     // from where the H buffer filling needs to be started.
838     INITIALIZATION(WIENER_WIN_CHROMA)
839 
840     do {
841       UPDATE_DOWNSAMPLE_FACTOR
842 
843       // Process the amount of width multiple of 16.
844       while (proc_wd < wd_mul16) {
845         const __m256i dgd =
846             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
847         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
848         INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
849 
850         proc_wd += 16;
851       }
852 
853       // Process the remaining width here.
854       if (wd_beyond_mul16) {
855         const __m256i dgd =
856             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
857         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
858         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
859         INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4)
860       }
861       proc_ht += downsample_factor;
862       d_window += downsample_factor * d_stride;
863       d_current_row += downsample_factor * d_stride;
864     } while (proc_ht < v_end);
865     const __m256i s_h =
866         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
867     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
868 
869     // process the remaining 'j' iterations.
870     j++;
871     CALCULATE_REMAINING_H_WIN5
872   }
873 
874   // Step 3: Here, the rows 2, 7, 12, 17 and 22 are filled. As we need to fill
875   // only upper-triangle elements, H20-H21 from row2, H70-H74 and H75-H76 from
876   // row7, etc, are need not be filled. As the core function process 5 values,
877   // in first iteration of 'j' only 3 values to be filled i.e., H22-H24 from
878   // row2, H77-H79 from row7, etc.
879   for (int i = 2; i < wiener_win2; i += wiener_win) {
880     // Update the dgd pointers appropriately and also derive the 'j'th iteration
881     // from where the H buffer filling needs to be started.
882     INITIALIZATION(WIENER_WIN_CHROMA)
883 
884     do {
885       UPDATE_DOWNSAMPLE_FACTOR
886 
887       // Process the amount of width multiple of 16.
888       while (proc_wd < wd_mul16) {
889         const __m256i dgd =
890             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
891         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
892         INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
893 
894         proc_wd += 16;
895       }
896 
897       // Process the remaining width here.
898       if (wd_beyond_mul16) {
899         const __m256i dgd =
900             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
901         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
902         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
903         INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3)
904       }
905       proc_ht += downsample_factor;
906       d_window += downsample_factor * d_stride;
907       d_current_row += downsample_factor * d_stride;
908     } while (proc_ht < v_end);
909     const __m256i s_h =
910         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
911     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
912 
913     // process the remaining 'j' iterations.
914     j++;
915     CALCULATE_REMAINING_H_WIN5
916   }
917 
918   // Step 4: Here, the rows 3, 8, 13, 18 and 23 are filled. As we need to fill
919   // only upper-triangle elements, H30-H32 from row3, H80-H84 and H85-H87 from
920   // row8, etc, are need not be filled. As the core function process 5 values,
921   // in first iteration of 'j' only 2 values to be filled i.e., H33-H34 from
922   // row3, H88-89 from row8, etc.
923   for (int i = 3; i < wiener_win2; i += wiener_win) {
924     // Update the dgd pointers appropriately and also derive the 'j'th iteration
925     // from where the H buffer filling needs to be started.
926     INITIALIZATION(WIENER_WIN_CHROMA)
927 
928     do {
929       UPDATE_DOWNSAMPLE_FACTOR
930 
931       // Process the amount of width multiple of 16.
932       while (proc_wd < wd_mul16) {
933         const __m256i dgd =
934             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
935         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
936         INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
937 
938         proc_wd += 16;
939       }
940 
941       // Process the remaining width here.
942       if (wd_beyond_mul16) {
943         const __m256i dgd =
944             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
945         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
946         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
947         INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2)
948       }
949       proc_ht += downsample_factor;
950       d_window += downsample_factor * d_stride;
951       d_current_row += downsample_factor * d_stride;
952     } while (proc_ht < v_end);
953     const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
954     _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
955 
956     // process the remaining 'j' iterations.
957     j++;
958     CALCULATE_REMAINING_H_WIN5
959   }
960 
961   // Step 5: Here, the rows 4, 9, 14, 19 and 24 are filled. As we need to fill
962   // only upper-triangle elements, H40-H43 from row4, H90-H94 and H95-H98 from
963   // row9, etc, are need not be filled. As the core function process 5 values,
964   // in first iteration of 'j' only 1 values to be filled i.e., H44 from row4,
965   // H99 from row9, etc.
966   for (int i = 4; i < wiener_win2; i += wiener_win) {
967     // Update the dgd pointers appropriately and also derive the 'j'th iteration
968     // from where the H buffer filling needs to be started.
969     INITIALIZATION(WIENER_WIN_CHROMA)
970     do {
971       UPDATE_DOWNSAMPLE_FACTOR
972 
973       // Process the amount of width multiple of 16.
974       while (proc_wd < wd_mul16) {
975         const __m256i dgd =
976             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
977         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
978         INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
979 
980         proc_wd += 16;
981       }
982 
983       // Process the remaining width here.
984       if (wd_beyond_mul16) {
985         const __m256i dgd =
986             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
987         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
988         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
989         INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1)
990       }
991       proc_ht += downsample_factor;
992       d_window += downsample_factor * d_stride;
993       d_current_row += downsample_factor * d_stride;
994     } while (proc_ht < v_end);
995     const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]);
996     _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h);
997 
998     // process the remaining 'j' iterations.
999     j++;
1000     CALCULATE_REMAINING_H_WIN5
1001   }
1002 
1003   // Step 6: Here, the rows 5, 10, 15 and 20 are filled. As we need to fill only
1004   // upper-triangle elements, H50-H54 from row5, H100-H104 and H105-H109 from
1005   // row10,etc, are need not be filled. The first iteration of 'j' fills H55-H59
1006   // from row5 and H1010-H1014 from row10, etc.
1007   for (int i = 5; i < wiener_win2; i += wiener_win) {
1008     // Derive j'th iteration from where the H buffer filling needs to be
1009     // started.
1010     j = i / wiener_win;
1011     int shift = 0;
1012     do {
1013       // Update the dgd pointers appropriately.
1014       int proc_ht = v_start;
1015       const int16_t *d_window = d + (i / wiener_win);
1016       const int16_t *d_current_row =
1017           d + (i / wiener_win) + ((i % wiener_win) * d_stride);
1018       downsample_factor =
1019           use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1020       __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() };
1021       do {
1022         UPDATE_DOWNSAMPLE_FACTOR
1023 
1024         // Process the amount of width multiple of 16.
1025         while (proc_wd < wd_mul16) {
1026           const __m256i dgd =
1027               _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1028           const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1029           INIT_H_VALUES(d_window + shift + proc_wd, 5)
1030 
1031           proc_wd += 16;
1032         }
1033 
1034         // Process the remaining width here.
1035         if (wd_beyond_mul16) {
1036           const __m256i dgd =
1037               _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1038           const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1039           const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1040           INIT_H_VALUES(d_window + shift + proc_wd, 5)
1041         }
1042         proc_ht += downsample_factor;
1043         d_window += downsample_factor * d_stride;
1044         d_current_row += downsample_factor * d_stride;
1045       } while (proc_ht < v_end);
1046 
1047       const __m256i s_h =
1048           hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1049       _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1050                           s_h);
1051       const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1052       const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1053       _mm_storel_epi64(
1054           (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0);
1055       shift++;
1056     } while (++j < wiener_win);
1057   }
1058 
1059   fill_lower_triag_elements_avx2(wiener_win2, H);
1060 }
1061 
1062 // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate
1063 // the filter tap values required for wiener filtering. Here, the buffer H is of
1064 // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size
1065 // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the
1066 // value above the diagonal (upper triangle) are equal to the values below the
1067 // diagonal (lower triangle). The calculation of elements/stats of H(upper
1068 // triangle) and M is done in steps as described below where each step fills
1069 // specific values of H and M.
1070 // Example:
1071 // Wiener window size = WIENER_WIN (7)
1072 // M buffer = [M0 M1 M2 ---- M47 M48]
1073 // H buffer = Hxy (x-row, y-column)
1074 // [H00 H01 H02 ---- H047 H048]
1075 // [H10 H11 H12 ---- H147 H148]
1076 // [H30 H31 H32 ---- H347 H348]
1077 // [H40 H41 H42 ---- H447 H448]
1078 // [H50 H51 H52 ---- H547 H548]
1079 // [H60 H61 H62 ---- H647 H648]
1080 //            ||
1081 //            ||
1082 // [H470 H471 H472 ---- H4747 H4748]
1083 // [H480 H481 H482 ---- H4847 H4848]
1084 // In Step 1, whole M buffers (i.e., M0 to M48) and the first row of H (i.e.,
1085 // H00 to H048) is filled. The remaining rows of H buffer are filled through
1086 // steps 2 to 8.
compute_stats_win7_avx2(const int16_t * const d,int32_t d_stride,const int16_t * const s,int32_t s_stride,int32_t width,int v_start,int v_end,int64_t * const M,int64_t * const H,int use_downsampled_wiener_stats)1087 static void compute_stats_win7_avx2(const int16_t *const d, int32_t d_stride,
1088                                     const int16_t *const s, int32_t s_stride,
1089                                     int32_t width, int v_start, int v_end,
1090                                     int64_t *const M, int64_t *const H,
1091                                     int use_downsampled_wiener_stats) {
1092   const int32_t wiener_win = WIENER_WIN;
1093   const int32_t wiener_win2 = wiener_win * wiener_win;
1094   // Amount of width which is beyond multiple of 16. This case is handled
1095   // appropriately to process only the required width towards the end.
1096   const int32_t wd_mul16 = width & ~15;
1097   const int32_t wd_beyond_mul16 = width - wd_mul16;
1098   const __m256i mask =
1099       _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16]));
1100   int downsample_factor;
1101 
1102   // Step 1: Full M (i.e., M0 to M48) and first row H (i.e., H00 to H048)
1103   // values are filled here. Here, the loop over 'j' is executed for values 0
1104   // to 6. When the loop executed for a specific 'j', 7 values of M and H are
1105   // filled as shown below.
1106   // j=0: M0-M6 and H00-H06, j=1: M7-M13 and H07-H013 are filled etc,.
1107   int j = 0;
1108   do {
1109     const int16_t *s_t = s;
1110     const int16_t *d_t = d;
1111     __m256i sum_m[WIENER_WIN] = { _mm256_setzero_si256() };
1112     __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1113     downsample_factor =
1114         use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1115     int proc_ht = v_start;
1116     do {
1117       UPDATE_DOWNSAMPLE_FACTOR
1118 
1119       // Process the amount of width multiple of 16.
1120       while (proc_wd < wd_mul16) {
1121         const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1122         const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1123         const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg);
1124         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1125         INIT_MH_VALUES(d_t + j + proc_wd)
1126 
1127         proc_wd += 16;
1128       }
1129 
1130       if (wd_beyond_mul16) {
1131         const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd));
1132         const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd));
1133         const __m256i src_mask = _mm256_and_si256(src, mask);
1134         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1135         const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg);
1136         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1137         INIT_MH_VALUES(d_t + j + proc_wd)
1138       }
1139       proc_ht += downsample_factor;
1140       s_t += downsample_factor * s_stride;
1141       d_t += downsample_factor * d_stride;
1142     } while (proc_ht < v_end);
1143 
1144     const __m256i s_m0 =
1145         hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]);
1146     const __m256i s_m1 =
1147         hadd_four_32_to_64_avx2(sum_m[4], sum_m[5], &sum_m[6], &sum_m[6]);
1148     _mm256_storeu_si256((__m256i *)(M + wiener_win * j + 0), s_m0);
1149     _mm_storeu_si128((__m128i *)(M + wiener_win * j + 4),
1150                      _mm256_castsi256_si128(s_m1));
1151     _mm_storel_epi64((__m128i *)&M[wiener_win * j + 6],
1152                      _mm256_extracti128_si256(s_m1, 1));
1153 
1154     const __m256i sh_0 =
1155         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1156     const __m256i sh_1 =
1157         hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1158     _mm256_storeu_si256((__m256i *)(H + wiener_win * j + 0), sh_0);
1159     _mm_storeu_si128((__m128i *)(H + wiener_win * j + 4),
1160                      _mm256_castsi256_si128(sh_1));
1161     _mm_storel_epi64((__m128i *)&H[wiener_win * j + 6],
1162                      _mm256_extracti128_si256(sh_1, 1));
1163   } while (++j < wiener_win);
1164 
1165   // The below steps are designed to fill remaining rows of H buffer. Here, aim
1166   // is to fill only upper triangle elements correspond to each row and lower
1167   // triangle elements are copied from upper-triangle elements. Also, as
1168   // mentioned in Step 1, the core function is designed to fill 7
1169   // elements/stats/values of H buffer.
1170   //
1171   // Step 2: Here, the rows 1, 8, 15, 22, 29, 36 and 43 are filled. As we need
1172   // to fill only upper-triangle elements, H10 from row1, H80-H86 and H87 from
1173   // row8, etc. are need not be filled. As the core function process 7 values,
1174   // in first iteration of 'j' only 6 values to be filled i.e., H11-H16 from
1175   // row1 and H88-H813 from row8, etc.
1176   for (int i = 1; i < wiener_win2; i += wiener_win) {
1177     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1178     // from where the H buffer filling needs to be started.
1179     INITIALIZATION(WIENER_WIN)
1180 
1181     do {
1182       UPDATE_DOWNSAMPLE_FACTOR
1183 
1184       // Process the amount of width multiple of 16.
1185       while (proc_wd < wd_mul16) {
1186         const __m256i dgd =
1187             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1188         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1189         INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1190 
1191         proc_wd += 16;
1192       }
1193 
1194       // Process the remaining width here.
1195       if (wd_beyond_mul16) {
1196         const __m256i dgd =
1197             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1198         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1199         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1200         INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6)
1201       }
1202       proc_ht += downsample_factor;
1203       d_window += downsample_factor * d_stride;
1204       d_current_row += downsample_factor * d_stride;
1205     } while (proc_ht < v_end);
1206     const __m256i s_h =
1207         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1208     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1209     const __m128i s_h0 = convert_32_to_64_add_avx2(sum_h[4], sum_h[5]);
1210     _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i + 4), s_h0);
1211 
1212     // process the remaining 'j' iterations.
1213     j++;
1214     CALCULATE_REMAINING_H_WIN7
1215   }
1216 
1217   // Step 3: Here, the rows 2, 9, 16, 23, 30, 37 and 44 are filled. As we need
1218   // to fill only upper-triangle elements, H20-H21 from row2, H90-H96 and
1219   // H97-H98 from row9, etc. are need not be filled. As the core function
1220   // process 7 values, in first iteration of 'j' only 5 values to be filled
1221   // i.e., H22-H26 from row2 and H99-H913 from row9, etc.
1222   for (int i = 2; i < wiener_win2; i += wiener_win) {
1223     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1224     // from where the H buffer filling needs to be started.
1225     INITIALIZATION(WIENER_WIN)
1226     do {
1227       UPDATE_DOWNSAMPLE_FACTOR
1228 
1229       // Process the amount of width multiple of 16.
1230       while (proc_wd < wd_mul16) {
1231         const __m256i dgd =
1232             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1233         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1234         INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1235 
1236         proc_wd += 16;
1237       }
1238 
1239       // Process the remaining width here.
1240       if (wd_beyond_mul16) {
1241         const __m256i dgd =
1242             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1243         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1244         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1245         INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5)
1246       }
1247       proc_ht += downsample_factor;
1248       d_window += downsample_factor * d_stride;
1249       d_current_row += downsample_factor * d_stride;
1250     } while (proc_ht < v_end);
1251     const __m256i s_h =
1252         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1253     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1254     const __m256i s_m_h = convert_and_add_avx2(sum_h[4]);
1255     const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h);
1256     _mm_storel_epi64((__m128i *)(H + (i * wiener_win2) + i + 4), s_m_h0);
1257 
1258     // process the remaining 'j' iterations.
1259     j++;
1260     CALCULATE_REMAINING_H_WIN7
1261   }
1262 
1263   // Step 4: Here, the rows 3, 10, 17, 24, 31, 38 and 45 are filled. As we need
1264   // to fill only upper-triangle elements, H30-H32 from row3, H100-H106 and
1265   // H107-H109 from row10, etc. are need not be filled. As the core function
1266   // process 7 values, in first iteration of 'j' only 4 values to be filled
1267   // i.e., H33-H36 from row3 and H1010-H1013 from row10, etc.
1268   for (int i = 3; i < wiener_win2; i += wiener_win) {
1269     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1270     // from where the H buffer filling needs to be started.
1271     INITIALIZATION(WIENER_WIN)
1272 
1273     do {
1274       UPDATE_DOWNSAMPLE_FACTOR
1275 
1276       // Process the amount of width multiple of 16.
1277       while (proc_wd < wd_mul16) {
1278         const __m256i dgd =
1279             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1280         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1281         INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1282 
1283         proc_wd += 16;
1284       }
1285 
1286       // Process the remaining width here.
1287       if (wd_beyond_mul16) {
1288         const __m256i dgd =
1289             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1290         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1291         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1292         INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4)
1293       }
1294       proc_ht += downsample_factor;
1295       d_window += downsample_factor * d_stride;
1296       d_current_row += downsample_factor * d_stride;
1297     } while (proc_ht < v_end);
1298     const __m256i s_h =
1299         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1300     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1301 
1302     // process the remaining 'j' iterations.
1303     j++;
1304     CALCULATE_REMAINING_H_WIN7
1305   }
1306 
1307   // Step 5: Here, the rows 4, 11, 18, 25, 32, 39 and 46 are filled. As we need
1308   // to fill only upper-triangle elements, H40-H43 from row4, H110-H116 and
1309   // H117-H1110 from row10, etc. are need not be filled. As the core function
1310   // process 7 values, in first iteration of 'j' only 3 values to be filled
1311   // i.e., H44-H46 from row4 and H1111-H1113 from row11, etc.
1312   for (int i = 4; i < wiener_win2; i += wiener_win) {
1313     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1314     // from where the H buffer filling needs to be started.
1315     INITIALIZATION(WIENER_WIN)
1316 
1317     do {
1318       UPDATE_DOWNSAMPLE_FACTOR
1319 
1320       // Process the amount of width multiple of 16.
1321       while (proc_wd < wd_mul16) {
1322         const __m256i dgd =
1323             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1324         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1325         INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1326 
1327         proc_wd += 16;
1328       }
1329 
1330       // Process the remaining width here.
1331       if (wd_beyond_mul16) {
1332         const __m256i dgd =
1333             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1334         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1335         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1336         INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3)
1337       }
1338       proc_ht += downsample_factor;
1339       d_window += downsample_factor * d_stride;
1340       d_current_row += downsample_factor * d_stride;
1341     } while (proc_ht < v_end);
1342     const __m256i s_h =
1343         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1344     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1345 
1346     // process the remaining 'j' iterations.
1347     j++;
1348     CALCULATE_REMAINING_H_WIN7
1349   }
1350 
1351   // Step 6: Here, the rows 5, 12, 19, 26, 33, 40 and 47 are filled. As we need
1352   // to fill only upper-triangle elements, H50-H54 from row5, H120-H126 and
1353   // H127-H1211 from row12, etc. are need not be filled. As the core function
1354   // process 7 values, in first iteration of 'j' only 2 values to be filled
1355   // i.e., H55-H56 from row5 and H1212-H1213 from row12, etc.
1356   for (int i = 5; i < wiener_win2; i += wiener_win) {
1357     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1358     // from where the H buffer filling needs to be started.
1359     INITIALIZATION(WIENER_WIN)
1360     do {
1361       UPDATE_DOWNSAMPLE_FACTOR
1362 
1363       // Process the amount of width multiple of 16.
1364       while (proc_wd < wd_mul16) {
1365         const __m256i dgd =
1366             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1367         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1368         INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1369 
1370         proc_wd += 16;
1371       }
1372 
1373       // Process the remaining width here.
1374       if (wd_beyond_mul16) {
1375         const __m256i dgd =
1376             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1377         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1378         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1379         INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2)
1380       }
1381       proc_ht += downsample_factor;
1382       d_window += downsample_factor * d_stride;
1383       d_current_row += downsample_factor * d_stride;
1384     } while (proc_ht < v_end);
1385     const __m256i s_h =
1386         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1387     _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h);
1388 
1389     // process the remaining 'j' iterations.
1390     j++;
1391     CALCULATE_REMAINING_H_WIN7
1392   }
1393 
1394   // Step 7: Here, the rows 6, 13, 20, 27, 34, 41 and 48 are filled. As we need
1395   // to fill only upper-triangle elements, H60-H65 from row6, H130-H136 and
1396   // H137-H1312 from row13, etc. are need not be filled. As the core function
1397   // process 7 values, in first iteration of 'j' only 1 value to be filled
1398   // i.e., H66 from row6 and H1313 from row13, etc.
1399   for (int i = 6; i < wiener_win2; i += wiener_win) {
1400     // Update the dgd pointers appropriately and also derive the 'j'th iteration
1401     // from where the H buffer filling needs to be started.
1402     INITIALIZATION(WIENER_WIN)
1403     do {
1404       UPDATE_DOWNSAMPLE_FACTOR
1405 
1406       // Process the amount of width multiple of 16.
1407       while (proc_wd < wd_mul16) {
1408         const __m256i dgd =
1409             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1410         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1411         INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1412 
1413         proc_wd += 16;
1414       }
1415 
1416       // Process the remaining width here.
1417       if (wd_beyond_mul16) {
1418         const __m256i dgd =
1419             _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1420         const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1421         const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1422         INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1)
1423       }
1424       proc_ht += downsample_factor;
1425       d_window += downsample_factor * d_stride;
1426       d_current_row += downsample_factor * d_stride;
1427     } while (proc_ht < v_end);
1428     const __m256i s_h =
1429         hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1430     xx_storel_64(&H[(i * wiener_win2) + i], _mm256_castsi256_si128(s_h));
1431 
1432     // process the remaining 'j' iterations.
1433     j++;
1434     CALCULATE_REMAINING_H_WIN7
1435   }
1436 
1437   // Step 8: Here, the rows 7, 14, 21, 28, 35 and 42 are filled. As we need
1438   // to fill only upper-triangle elements, H70-H75 from row7, H140-H146 and
1439   // H147-H1413 from row14, etc. are need not be filled. The first iteration of
1440   // 'j' fills H77-H713 from row7 and H1414-H1420 from row14, etc.
1441   for (int i = 7; i < wiener_win2; i += wiener_win) {
1442     // Derive j'th iteration from where the H buffer filling needs to be
1443     // started.
1444     j = i / wiener_win;
1445     int shift = 0;
1446     do {
1447       // Update the dgd pointers appropriately.
1448       int proc_ht = v_start;
1449       const int16_t *d_window = d + (i / WIENER_WIN);
1450       const int16_t *d_current_row =
1451           d + (i / WIENER_WIN) + ((i % WIENER_WIN) * d_stride);
1452       downsample_factor =
1453           use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
1454       __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() };
1455       do {
1456         UPDATE_DOWNSAMPLE_FACTOR
1457 
1458         // Process the amount of width multiple of 16.
1459         while (proc_wd < wd_mul16) {
1460           const __m256i dgd =
1461               _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1462           const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg);
1463           INIT_H_VALUES(d_window + shift + proc_wd, 7)
1464 
1465           proc_wd += 16;
1466         }
1467 
1468         // Process the remaining width here.
1469         if (wd_beyond_mul16) {
1470           const __m256i dgd =
1471               _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd));
1472           const __m256i dgd_mask = _mm256_and_si256(dgd, mask);
1473           const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg);
1474           INIT_H_VALUES(d_window + shift + proc_wd, 7)
1475         }
1476         proc_ht += downsample_factor;
1477         d_window += downsample_factor * d_stride;
1478         d_current_row += downsample_factor * d_stride;
1479       } while (proc_ht < v_end);
1480 
1481       const __m256i sh_0 =
1482           hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]);
1483       const __m256i sh_1 =
1484           hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]);
1485       _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)),
1486                           sh_0);
1487       _mm_storeu_si128(
1488           (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4),
1489           _mm256_castsi256_si128(sh_1));
1490       _mm_storel_epi64((__m128i *)&H[(i * wiener_win2) + (wiener_win * j) + 6],
1491                        _mm256_extracti128_si256(sh_1, 1));
1492       shift++;
1493     } while (++j < wiener_win);
1494   }
1495 
1496   fill_lower_triag_elements_avx2(wiener_win2, H);
1497 }
1498 
av1_compute_stats_avx2(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)1499 void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd,
1500                             const uint8_t *src, int16_t *dgd_avg,
1501                             int16_t *src_avg, int h_start, int h_end,
1502                             int v_start, int v_end, int dgd_stride,
1503                             int src_stride, int64_t *M, int64_t *H,
1504                             int use_downsampled_wiener_stats) {
1505   if (wiener_win != WIENER_WIN && wiener_win != WIENER_WIN_CHROMA) {
1506     // Currently, libaom supports Wiener filter processing with window sizes as
1507     // WIENER_WIN_CHROMA(5) and WIENER_WIN(7). For any other window size, SIMD
1508     // support is not facilitated. Hence, invoke C function for the same.
1509     av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
1510                         v_start, v_end, dgd_stride, src_stride, M, H,
1511                         use_downsampled_wiener_stats);
1512     return;
1513   }
1514 
1515   const int32_t wiener_halfwin = wiener_win >> 1;
1516   const uint8_t avg =
1517       calc_dgd_buf_avg_avx2(dgd, h_start, h_end, v_start, v_end, dgd_stride);
1518   const int32_t width = h_end - h_start;
1519   const int32_t height = v_end - v_start;
1520   const int32_t d_stride = (width + 2 * wiener_halfwin + 15) & ~15;
1521   const int32_t s_stride = (width + 15) & ~15;
1522 
1523   // Based on the sf 'use_downsampled_wiener_stats', process either once for
1524   // UPDATE_DOWNSAMPLE_FACTOR or for each row.
1525   sub_avg_block_avx2(src + v_start * src_stride + h_start, src_stride, avg,
1526                      width, height, src_avg, s_stride,
1527                      use_downsampled_wiener_stats);
1528 
1529   // Compute (dgd-avg) buffer here which is used to fill H buffer.
1530   sub_avg_block_avx2(
1531       dgd + (v_start - wiener_halfwin) * dgd_stride + h_start - wiener_halfwin,
1532       dgd_stride, avg, width + 2 * wiener_halfwin, height + 2 * wiener_halfwin,
1533       dgd_avg, d_stride, 0);
1534   if (wiener_win == WIENER_WIN) {
1535     compute_stats_win7_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1536                             v_start, v_end, M, H, use_downsampled_wiener_stats);
1537   } else if (wiener_win == WIENER_WIN_CHROMA) {
1538     compute_stats_win5_avx2(dgd_avg, d_stride, src_avg, s_stride, width,
1539                             v_start, v_end, M, H, use_downsampled_wiener_stats);
1540   }
1541 }
1542 
pair_set_epi16(int a,int b)1543 static inline __m256i pair_set_epi16(int a, int b) {
1544   return _mm256_set1_epi32(
1545       (int32_t)(((uint16_t)(a)) | (((uint32_t)(uint16_t)(b)) << 16)));
1546 }
1547 
av1_lowbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)1548 int64_t av1_lowbd_pixel_proj_error_avx2(
1549     const uint8_t *src8, int width, int height, int src_stride,
1550     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1551     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
1552   int i, j, k;
1553   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
1554   const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
1555   __m256i sum64 = _mm256_setzero_si256();
1556   const uint8_t *src = src8;
1557   const uint8_t *dat = dat8;
1558   int64_t err = 0;
1559   if (params->r[0] > 0 && params->r[1] > 0) {
1560     __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]);
1561     for (i = 0; i < height; ++i) {
1562       __m256i sum32 = _mm256_setzero_si256();
1563       for (j = 0; j <= width - 16; j += 16) {
1564         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1565         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1566         const __m256i flt0_16b = _mm256_permute4x64_epi64(
1567             _mm256_packs_epi32(yy_loadu_256(flt0 + j),
1568                                yy_loadu_256(flt0 + j + 8)),
1569             0xd8);
1570         const __m256i flt1_16b = _mm256_permute4x64_epi64(
1571             _mm256_packs_epi32(yy_loadu_256(flt1 + j),
1572                                yy_loadu_256(flt1 + j + 8)),
1573             0xd8);
1574         const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
1575         const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0);
1576         const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0);
1577         const __m256i v0 = _mm256_madd_epi16(
1578             xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
1579         const __m256i v1 = _mm256_madd_epi16(
1580             xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
1581         const __m256i vr0 =
1582             _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1583         const __m256i vr1 =
1584             _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1585         const __m256i e0 = _mm256_sub_epi16(
1586             _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1587         const __m256i err0 = _mm256_madd_epi16(e0, e0);
1588         sum32 = _mm256_add_epi32(sum32, err0);
1589       }
1590       for (k = j; k < width; ++k) {
1591         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1592         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
1593         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1594         err += ((int64_t)e * e);
1595       }
1596       dat += dat_stride;
1597       src += src_stride;
1598       flt0 += flt0_stride;
1599       flt1 += flt1_stride;
1600       const __m256i sum64_0 =
1601           _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1602       const __m256i sum64_1 =
1603           _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1604       sum64 = _mm256_add_epi64(sum64, sum64_0);
1605       sum64 = _mm256_add_epi64(sum64, sum64_1);
1606     }
1607   } else if (params->r[0] > 0 || params->r[1] > 0) {
1608     const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
1609     const __m256i xq_coeff =
1610         pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
1611     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
1612     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
1613     for (i = 0; i < height; ++i) {
1614       __m256i sum32 = _mm256_setzero_si256();
1615       for (j = 0; j <= width - 16; j += 16) {
1616         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1617         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1618         const __m256i flt_16b = _mm256_permute4x64_epi64(
1619             _mm256_packs_epi32(yy_loadu_256(flt + j),
1620                                yy_loadu_256(flt + j + 8)),
1621             0xd8);
1622         const __m256i v0 =
1623             _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0));
1624         const __m256i v1 =
1625             _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0));
1626         const __m256i vr0 =
1627             _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift);
1628         const __m256i vr1 =
1629             _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift);
1630         const __m256i e0 = _mm256_sub_epi16(
1631             _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0);
1632         const __m256i err0 = _mm256_madd_epi16(e0, e0);
1633         sum32 = _mm256_add_epi32(sum32, err0);
1634       }
1635       for (k = j; k < width; ++k) {
1636         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1637         int32_t v = xq_active * (flt[k] - u);
1638         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1639         err += ((int64_t)e * e);
1640       }
1641       dat += dat_stride;
1642       src += src_stride;
1643       flt += flt_stride;
1644       const __m256i sum64_0 =
1645           _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1646       const __m256i sum64_1 =
1647           _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1648       sum64 = _mm256_add_epi64(sum64, sum64_0);
1649       sum64 = _mm256_add_epi64(sum64, sum64_1);
1650     }
1651   } else {
1652     __m256i sum32 = _mm256_setzero_si256();
1653     for (i = 0; i < height; ++i) {
1654       for (j = 0; j <= width - 16; j += 16) {
1655         const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j));
1656         const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j));
1657         const __m256i diff0 = _mm256_sub_epi16(d0, s0);
1658         const __m256i err0 = _mm256_madd_epi16(diff0, diff0);
1659         sum32 = _mm256_add_epi32(sum32, err0);
1660       }
1661       for (k = j; k < width; ++k) {
1662         const int32_t e = (int32_t)(dat[k]) - src[k];
1663         err += ((int64_t)e * e);
1664       }
1665       dat += dat_stride;
1666       src += src_stride;
1667     }
1668     const __m256i sum64_0 =
1669         _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32));
1670     const __m256i sum64_1 =
1671         _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1));
1672     sum64 = _mm256_add_epi64(sum64_0, sum64_1);
1673   }
1674   int64_t sum[4];
1675   yy_storeu_256(sum, sum64);
1676   err += sum[0] + sum[1] + sum[2] + sum[3];
1677   return err;
1678 }
1679 
1680 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
1681 // C and H need to be computed.
calc_proj_params_r0_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1682 static inline void calc_proj_params_r0_r1_avx2(
1683     const uint8_t *src8, int width, int height, int src_stride,
1684     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1685     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1686   const int size = width * height;
1687   const uint8_t *src = src8;
1688   const uint8_t *dat = dat8;
1689   __m256i h00, h01, h11, c0, c1;
1690   const __m256i zero = _mm256_setzero_si256();
1691   h01 = h11 = c0 = c1 = h00 = zero;
1692 
1693   for (int i = 0; i < height; ++i) {
1694     for (int j = 0; j < width; j += 8) {
1695       const __m256i u_load = _mm256_cvtepu8_epi32(
1696           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1697       const __m256i s_load = _mm256_cvtepu8_epi32(
1698           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1699       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1700       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1701       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1702       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1703       s = _mm256_sub_epi32(s, d);
1704       f1 = _mm256_sub_epi32(f1, d);
1705       f2 = _mm256_sub_epi32(f2, d);
1706 
1707       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1708       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1709                                                _mm256_srli_epi64(f1, 32));
1710       h00 = _mm256_add_epi64(h00, h00_even);
1711       h00 = _mm256_add_epi64(h00, h00_odd);
1712 
1713       const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1714       const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1715                                                _mm256_srli_epi64(f2, 32));
1716       h01 = _mm256_add_epi64(h01, h01_even);
1717       h01 = _mm256_add_epi64(h01, h01_odd);
1718 
1719       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1720       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1721                                                _mm256_srli_epi64(f2, 32));
1722       h11 = _mm256_add_epi64(h11, h11_even);
1723       h11 = _mm256_add_epi64(h11, h11_odd);
1724 
1725       const __m256i c0_even = _mm256_mul_epi32(f1, s);
1726       const __m256i c0_odd =
1727           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1728       c0 = _mm256_add_epi64(c0, c0_even);
1729       c0 = _mm256_add_epi64(c0, c0_odd);
1730 
1731       const __m256i c1_even = _mm256_mul_epi32(f2, s);
1732       const __m256i c1_odd =
1733           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1734       c1 = _mm256_add_epi64(c1, c1_even);
1735       c1 = _mm256_add_epi64(c1, c1_odd);
1736     }
1737   }
1738 
1739   __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1740   const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1741   c_low = _mm256_add_epi64(c_low, c_high);
1742   const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1743                                          _mm256_castsi256_si128(c_low));
1744 
1745   __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1746   const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1747   h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1748   const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1749                                            _mm256_castsi256_si128(h0x_low));
1750 
1751   // Using the symmetric properties of H,  calculations of H[1][0] are not
1752   // needed.
1753   __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1754   const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1755   h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1756   const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1757                                            _mm256_castsi256_si128(h1x_low));
1758 
1759   xx_storeu_128(C, c_128bit);
1760   xx_storeu_128(H[0], h0x_128bit);
1761   xx_storeu_128(H[1], h1x_128bit);
1762 
1763   H[0][0] /= size;
1764   H[0][1] /= size;
1765   H[1][1] /= size;
1766 
1767   // Since H is a symmetric matrix
1768   H[1][0] = H[0][1];
1769   C[0] /= size;
1770   C[1] /= size;
1771 }
1772 
1773 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
1774 // non-zero and need to be computed.
calc_proj_params_r0_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1775 static inline void calc_proj_params_r0_avx2(const uint8_t *src8, int width,
1776                                             int height, int src_stride,
1777                                             const uint8_t *dat8, int dat_stride,
1778                                             int32_t *flt0, int flt0_stride,
1779                                             int64_t H[2][2], int64_t C[2]) {
1780   const int size = width * height;
1781   const uint8_t *src = src8;
1782   const uint8_t *dat = dat8;
1783   __m256i h00, c0;
1784   const __m256i zero = _mm256_setzero_si256();
1785   c0 = h00 = zero;
1786 
1787   for (int i = 0; i < height; ++i) {
1788     for (int j = 0; j < width; j += 8) {
1789       const __m256i u_load = _mm256_cvtepu8_epi32(
1790           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1791       const __m256i s_load = _mm256_cvtepu8_epi32(
1792           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1793       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1794       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1795       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1796       s = _mm256_sub_epi32(s, d);
1797       f1 = _mm256_sub_epi32(f1, d);
1798 
1799       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1800       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1801                                                _mm256_srli_epi64(f1, 32));
1802       h00 = _mm256_add_epi64(h00, h00_even);
1803       h00 = _mm256_add_epi64(h00, h00_odd);
1804 
1805       const __m256i c0_even = _mm256_mul_epi32(f1, s);
1806       const __m256i c0_odd =
1807           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1808       c0 = _mm256_add_epi64(c0, c0_even);
1809       c0 = _mm256_add_epi64(c0, c0_odd);
1810     }
1811   }
1812   const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
1813                                            _mm256_castsi256_si128(h00));
1814   const __m128i h00_val =
1815       _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
1816 
1817   const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
1818                                           _mm256_castsi256_si128(c0));
1819   const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
1820 
1821   const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
1822   const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
1823 
1824   xx_storeu_128(C, c);
1825   xx_storeu_128(H[0], h0x);
1826 
1827   H[0][0] /= size;
1828   C[0] /= size;
1829 }
1830 
1831 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1832 // non-zero and need to be computed.
calc_proj_params_r1_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1833 static inline void calc_proj_params_r1_avx2(const uint8_t *src8, int width,
1834                                             int height, int src_stride,
1835                                             const uint8_t *dat8, int dat_stride,
1836                                             int32_t *flt1, int flt1_stride,
1837                                             int64_t H[2][2], int64_t C[2]) {
1838   const int size = width * height;
1839   const uint8_t *src = src8;
1840   const uint8_t *dat = dat8;
1841   __m256i h11, c1;
1842   const __m256i zero = _mm256_setzero_si256();
1843   c1 = h11 = zero;
1844 
1845   for (int i = 0; i < height; ++i) {
1846     for (int j = 0; j < width; j += 8) {
1847       const __m256i u_load = _mm256_cvtepu8_epi32(
1848           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1849       const __m256i s_load = _mm256_cvtepu8_epi32(
1850           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1851       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1852       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1853       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1854       s = _mm256_sub_epi32(s, d);
1855       f2 = _mm256_sub_epi32(f2, d);
1856 
1857       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1858       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1859                                                _mm256_srli_epi64(f2, 32));
1860       h11 = _mm256_add_epi64(h11, h11_even);
1861       h11 = _mm256_add_epi64(h11, h11_odd);
1862 
1863       const __m256i c1_even = _mm256_mul_epi32(f2, s);
1864       const __m256i c1_odd =
1865           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1866       c1 = _mm256_add_epi64(c1, c1_even);
1867       c1 = _mm256_add_epi64(c1, c1_odd);
1868     }
1869   }
1870 
1871   const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
1872                                            _mm256_castsi256_si128(h11));
1873   const __m128i h11_val =
1874       _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
1875 
1876   const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
1877                                           _mm256_castsi256_si128(c1));
1878   const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
1879 
1880   const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
1881   const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
1882 
1883   xx_storeu_128(C, c);
1884   xx_storeu_128(H[1], h1x);
1885 
1886   H[1][1] /= size;
1887   C[1] /= size;
1888 }
1889 
1890 // AVX2 variant of av1_calc_proj_params_c.
av1_calc_proj_params_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1891 void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height,
1892                                int src_stride, const uint8_t *dat8,
1893                                int dat_stride, int32_t *flt0, int flt0_stride,
1894                                int32_t *flt1, int flt1_stride, int64_t H[2][2],
1895                                int64_t C[2], const sgr_params_type *params) {
1896   if ((params->r[0] > 0) && (params->r[1] > 0)) {
1897     calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8,
1898                                 dat_stride, flt0, flt0_stride, flt1,
1899                                 flt1_stride, H, C);
1900   } else if (params->r[0] > 0) {
1901     calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride,
1902                              flt0, flt0_stride, H, C);
1903   } else if (params->r[1] > 0) {
1904     calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride,
1905                              flt1, flt1_stride, H, C);
1906   }
1907 }
1908 
1909 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r0_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1910 static inline void calc_proj_params_r0_r1_high_bd_avx2(
1911     const uint8_t *src8, int width, int height, int src_stride,
1912     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1913     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1914   const int size = width * height;
1915   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1916   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1917   __m256i h00, h01, h11, c0, c1;
1918   const __m256i zero = _mm256_setzero_si256();
1919   h01 = h11 = c0 = c1 = h00 = zero;
1920 
1921   for (int i = 0; i < height; ++i) {
1922     for (int j = 0; j < width; j += 8) {
1923       const __m256i u_load = _mm256_cvtepu16_epi32(
1924           _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
1925       const __m256i s_load = _mm256_cvtepu16_epi32(
1926           _mm_load_si128((__m128i *)(src + i * src_stride + j)));
1927       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
1928       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
1929       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
1930       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
1931       s = _mm256_sub_epi32(s, d);
1932       f1 = _mm256_sub_epi32(f1, d);
1933       f2 = _mm256_sub_epi32(f2, d);
1934 
1935       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
1936       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1937                                                _mm256_srli_epi64(f1, 32));
1938       h00 = _mm256_add_epi64(h00, h00_even);
1939       h00 = _mm256_add_epi64(h00, h00_odd);
1940 
1941       const __m256i h01_even = _mm256_mul_epi32(f1, f2);
1942       const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
1943                                                _mm256_srli_epi64(f2, 32));
1944       h01 = _mm256_add_epi64(h01, h01_even);
1945       h01 = _mm256_add_epi64(h01, h01_odd);
1946 
1947       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
1948       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
1949                                                _mm256_srli_epi64(f2, 32));
1950       h11 = _mm256_add_epi64(h11, h11_even);
1951       h11 = _mm256_add_epi64(h11, h11_odd);
1952 
1953       const __m256i c0_even = _mm256_mul_epi32(f1, s);
1954       const __m256i c0_odd =
1955           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
1956       c0 = _mm256_add_epi64(c0, c0_even);
1957       c0 = _mm256_add_epi64(c0, c0_odd);
1958 
1959       const __m256i c1_even = _mm256_mul_epi32(f2, s);
1960       const __m256i c1_odd =
1961           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
1962       c1 = _mm256_add_epi64(c1, c1_even);
1963       c1 = _mm256_add_epi64(c1, c1_odd);
1964     }
1965   }
1966 
1967   __m256i c_low = _mm256_unpacklo_epi64(c0, c1);
1968   const __m256i c_high = _mm256_unpackhi_epi64(c0, c1);
1969   c_low = _mm256_add_epi64(c_low, c_high);
1970   const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1),
1971                                          _mm256_castsi256_si128(c_low));
1972 
1973   __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01);
1974   const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01);
1975   h0x_low = _mm256_add_epi64(h0x_low, h0x_high);
1976   const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1),
1977                                            _mm256_castsi256_si128(h0x_low));
1978 
1979   // Using the symmetric properties of H,  calculations of H[1][0] are not
1980   // needed.
1981   __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11);
1982   const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11);
1983   h1x_low = _mm256_add_epi64(h1x_low, h1x_high);
1984   const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1),
1985                                            _mm256_castsi256_si128(h1x_low));
1986 
1987   xx_storeu_128(C, c_128bit);
1988   xx_storeu_128(H[0], h0x_128bit);
1989   xx_storeu_128(H[1], h1x_128bit);
1990 
1991   H[0][0] /= size;
1992   H[0][1] /= size;
1993   H[1][1] /= size;
1994 
1995   // Since H is a symmetric matrix
1996   H[1][0] = H[0][1];
1997   C[0] /= size;
1998   C[1] /= size;
1999 }
2000 
calc_proj_params_r0_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])2001 static inline void calc_proj_params_r0_high_bd_avx2(
2002     const uint8_t *src8, int width, int height, int src_stride,
2003     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
2004     int64_t H[2][2], int64_t C[2]) {
2005   const int size = width * height;
2006   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2007   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2008   __m256i h00, c0;
2009   const __m256i zero = _mm256_setzero_si256();
2010   c0 = h00 = zero;
2011 
2012   for (int i = 0; i < height; ++i) {
2013     for (int j = 0; j < width; j += 8) {
2014       const __m256i u_load = _mm256_cvtepu16_epi32(
2015           _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2016       const __m256i s_load = _mm256_cvtepu16_epi32(
2017           _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2018       __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j));
2019       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2020       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2021       s = _mm256_sub_epi32(s, d);
2022       f1 = _mm256_sub_epi32(f1, d);
2023 
2024       const __m256i h00_even = _mm256_mul_epi32(f1, f1);
2025       const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32),
2026                                                _mm256_srli_epi64(f1, 32));
2027       h00 = _mm256_add_epi64(h00, h00_even);
2028       h00 = _mm256_add_epi64(h00, h00_odd);
2029 
2030       const __m256i c0_even = _mm256_mul_epi32(f1, s);
2031       const __m256i c0_odd =
2032           _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32));
2033       c0 = _mm256_add_epi64(c0, c0_even);
2034       c0 = _mm256_add_epi64(c0, c0_odd);
2035     }
2036   }
2037   const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1),
2038                                            _mm256_castsi256_si128(h00));
2039   const __m128i h00_val =
2040       _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8));
2041 
2042   const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1),
2043                                           _mm256_castsi256_si128(c0));
2044   const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8));
2045 
2046   const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero));
2047   const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero));
2048 
2049   xx_storeu_128(C, c);
2050   xx_storeu_128(H[0], h0x);
2051 
2052   H[0][0] /= size;
2053   C[0] /= size;
2054 }
2055 
calc_proj_params_r1_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])2056 static inline void calc_proj_params_r1_high_bd_avx2(
2057     const uint8_t *src8, int width, int height, int src_stride,
2058     const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
2059     int64_t H[2][2], int64_t C[2]) {
2060   const int size = width * height;
2061   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2062   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2063   __m256i h11, c1;
2064   const __m256i zero = _mm256_setzero_si256();
2065   c1 = h11 = zero;
2066 
2067   for (int i = 0; i < height; ++i) {
2068     for (int j = 0; j < width; j += 8) {
2069       const __m256i u_load = _mm256_cvtepu16_epi32(
2070           _mm_load_si128((__m128i *)(dat + i * dat_stride + j)));
2071       const __m256i s_load = _mm256_cvtepu16_epi32(
2072           _mm_load_si128((__m128i *)(src + i * src_stride + j)));
2073       __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j));
2074       __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS);
2075       __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS);
2076       s = _mm256_sub_epi32(s, d);
2077       f2 = _mm256_sub_epi32(f2, d);
2078 
2079       const __m256i h11_even = _mm256_mul_epi32(f2, f2);
2080       const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32),
2081                                                _mm256_srli_epi64(f2, 32));
2082       h11 = _mm256_add_epi64(h11, h11_even);
2083       h11 = _mm256_add_epi64(h11, h11_odd);
2084 
2085       const __m256i c1_even = _mm256_mul_epi32(f2, s);
2086       const __m256i c1_odd =
2087           _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32));
2088       c1 = _mm256_add_epi64(c1, c1_even);
2089       c1 = _mm256_add_epi64(c1, c1_odd);
2090     }
2091   }
2092 
2093   const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1),
2094                                            _mm256_castsi256_si128(h11));
2095   const __m128i h11_val =
2096       _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8));
2097 
2098   const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1),
2099                                           _mm256_castsi256_si128(c1));
2100   const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8));
2101 
2102   const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val);
2103   const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val);
2104 
2105   xx_storeu_128(C, c);
2106   xx_storeu_128(H[1], h1x);
2107 
2108   H[1][1] /= size;
2109   C[1] /= size;
2110 }
2111 
2112 // AVX2 variant of av1_calc_proj_params_high_bd_c.
av1_calc_proj_params_high_bd_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)2113 void av1_calc_proj_params_high_bd_avx2(const uint8_t *src8, int width,
2114                                        int height, int src_stride,
2115                                        const uint8_t *dat8, int dat_stride,
2116                                        int32_t *flt0, int flt0_stride,
2117                                        int32_t *flt1, int flt1_stride,
2118                                        int64_t H[2][2], int64_t C[2],
2119                                        const sgr_params_type *params) {
2120   if ((params->r[0] > 0) && (params->r[1] > 0)) {
2121     calc_proj_params_r0_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2122                                         dat_stride, flt0, flt0_stride, flt1,
2123                                         flt1_stride, H, C);
2124   } else if (params->r[0] > 0) {
2125     calc_proj_params_r0_high_bd_avx2(src8, width, height, src_stride, dat8,
2126                                      dat_stride, flt0, flt0_stride, H, C);
2127   } else if (params->r[1] > 0) {
2128     calc_proj_params_r1_high_bd_avx2(src8, width, height, src_stride, dat8,
2129                                      dat_stride, flt1, flt1_stride, H, C);
2130   }
2131 }
2132 
av1_highbd_pixel_proj_error_avx2(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)2133 int64_t av1_highbd_pixel_proj_error_avx2(
2134     const uint8_t *src8, int width, int height, int src_stride,
2135     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
2136     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
2137   int i, j, k;
2138   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
2139   const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1));
2140   __m256i sum64 = _mm256_setzero_si256();
2141   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
2142   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
2143   int64_t err = 0;
2144   if (params->r[0] > 0 && params->r[1] > 0) {  // Both filters are enabled
2145     const __m256i xq0 = _mm256_set1_epi32(xq[0]);
2146     const __m256i xq1 = _mm256_set1_epi32(xq[1]);
2147     for (i = 0; i < height; ++i) {
2148       __m256i sum32 = _mm256_setzero_si256();
2149       for (j = 0; j <= width - 16; j += 16) {  // Process 16 pixels at a time
2150         // Load 16 pixels each from source image and corrupted image
2151         const __m256i s0 = yy_loadu_256(src + j);
2152         const __m256i d0 = yy_loadu_256(dat + j);
2153         // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices)
2154 
2155         // Shift-up each pixel to match filtered image scaling
2156         const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS);
2157 
2158         // Split u0 into two halves and pad each from u16 to i32
2159         const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0));
2160         const __m256i u0h =
2161             _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1));
2162         // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2163 
2164         // Load 16 pixels from each filtered image
2165         const __m256i flt0l = yy_loadu_256(flt0 + j);
2166         const __m256i flt0h = yy_loadu_256(flt0 + j + 8);
2167         const __m256i flt1l = yy_loadu_256(flt1 + j);
2168         const __m256i flt1h = yy_loadu_256(flt1 + j + 8);
2169         // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32
2170 
2171         // Subtract shifted corrupt image from each filtered image
2172         const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l);
2173         const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h);
2174         const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l);
2175         const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h);
2176 
2177         // Multiply basis vectors by appropriate coefficients
2178         const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0);
2179         const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0);
2180         const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1);
2181         const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1);
2182 
2183         // Add together the contributions from the two basis vectors
2184         const __m256i vl = _mm256_add_epi32(v0l, v1l);
2185         const __m256i vh = _mm256_add_epi32(v0h, v1h);
2186 
2187         // Right-shift v with appropriate rounding
2188         const __m256i vrl =
2189             _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2190         const __m256i vrh =
2191             _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2192         // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0]
2193 
2194         // Saturate each i32 to an i16 then combine both halves
2195         // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2196         const __m256i vr =
2197             _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2198         // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0]
2199         // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0]
2200 
2201         // Add twin-subspace-sgr-filter to corrupt image then subtract source
2202         const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2203 
2204         // Calculate squared error and add adjacent values
2205         const __m256i err0 = _mm256_madd_epi16(e0, e0);
2206 
2207         sum32 = _mm256_add_epi32(sum32, err0);
2208       }
2209 
2210       const __m256i sum32l =
2211           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2212       sum64 = _mm256_add_epi64(sum64, sum32l);
2213       const __m256i sum32h =
2214           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2215       sum64 = _mm256_add_epi64(sum64, sum32h);
2216 
2217       // Process remaining pixels in this row (modulo 16)
2218       for (k = j; k < width; ++k) {
2219         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2220         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
2221         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2222         err += ((int64_t)e * e);
2223       }
2224       dat += dat_stride;
2225       src += src_stride;
2226       flt0 += flt0_stride;
2227       flt1 += flt1_stride;
2228     }
2229   } else if (params->r[0] > 0 || params->r[1] > 0) {  // Only one filter enabled
2230     const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
2231     const __m256i xq_active = _mm256_set1_epi32(xq_on);
2232     const __m256i xq_inactive =
2233         _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
2234     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
2235     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
2236     for (i = 0; i < height; ++i) {
2237       __m256i sum32 = _mm256_setzero_si256();
2238       for (j = 0; j <= width - 16; j += 16) {
2239         // Load 16 pixels from source image
2240         const __m256i s0 = yy_loadu_256(src + j);
2241         // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2242 
2243         // Load 16 pixels from corrupted image and pad each u16 to i32
2244         const __m256i d0 = yy_loadu_256(dat + j);
2245         const __m256i d0h =
2246             _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1));
2247         const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0));
2248         // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2249         // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2250 
2251         // Load 16 pixels from the filtered image
2252         const __m256i flth = yy_loadu_256(flt + j + 8);
2253         const __m256i fltl = yy_loadu_256(flt + j);
2254         // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2255 
2256         const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active);
2257         const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active);
2258         const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive);
2259         const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive);
2260 
2261         const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq);
2262         const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq);
2263 
2264         // Shift this down with appropriate rounding
2265         const __m256i vrh =
2266             _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift);
2267         const __m256i vrl =
2268             _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift);
2269         // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32
2270 
2271         // Saturate each i32 to an i16 then combine both halves
2272         // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes
2273         const __m256i vr =
2274             _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8);
2275         // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16
2276         // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16
2277 
2278         // Subtract twin-subspace-sgr filtered from source image to get error
2279         const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0);
2280 
2281         // Calculate squared error and add adjacent values
2282         const __m256i err0 = _mm256_madd_epi16(e0, e0);
2283 
2284         sum32 = _mm256_add_epi32(sum32, err0);
2285       }
2286 
2287       const __m256i sum32l =
2288           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2289       sum64 = _mm256_add_epi64(sum64, sum32l);
2290       const __m256i sum32h =
2291           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2292       sum64 = _mm256_add_epi64(sum64, sum32h);
2293 
2294       // Process remaining pixels in this row (modulo 16)
2295       for (k = j; k < width; ++k) {
2296         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
2297         int32_t v = xq_on * (flt[k] - u);
2298         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
2299         err += ((int64_t)e * e);
2300       }
2301       dat += dat_stride;
2302       src += src_stride;
2303       flt += flt_stride;
2304     }
2305   } else {  // Neither filter is enabled
2306     for (i = 0; i < height; ++i) {
2307       __m256i sum32 = _mm256_setzero_si256();
2308       for (j = 0; j <= width - 32; j += 32) {
2309         // Load 2x16 u16 from source image
2310         const __m256i s0l = yy_loadu_256(src + j);
2311         const __m256i s0h = yy_loadu_256(src + j + 16);
2312 
2313         // Load 2x16 u16 from corrupted image
2314         const __m256i d0l = yy_loadu_256(dat + j);
2315         const __m256i d0h = yy_loadu_256(dat + j + 16);
2316 
2317         // Subtract corrupted image from source image
2318         const __m256i diffl = _mm256_sub_epi16(d0l, s0l);
2319         const __m256i diffh = _mm256_sub_epi16(d0h, s0h);
2320 
2321         // Square error and add adjacent values
2322         const __m256i err0l = _mm256_madd_epi16(diffl, diffl);
2323         const __m256i err0h = _mm256_madd_epi16(diffh, diffh);
2324 
2325         sum32 = _mm256_add_epi32(sum32, err0l);
2326         sum32 = _mm256_add_epi32(sum32, err0h);
2327       }
2328 
2329       const __m256i sum32l =
2330           _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32));
2331       sum64 = _mm256_add_epi64(sum64, sum32l);
2332       const __m256i sum32h =
2333           _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1));
2334       sum64 = _mm256_add_epi64(sum64, sum32h);
2335 
2336       // Process remaining pixels (modulu 16)
2337       for (k = j; k < width; ++k) {
2338         const int32_t e = (int32_t)(dat[k]) - src[k];
2339         err += ((int64_t)e * e);
2340       }
2341       dat += dat_stride;
2342       src += src_stride;
2343     }
2344   }
2345 
2346   // Sum 4 values from sum64l and sum64h into err
2347   int64_t sum[4];
2348   yy_storeu_256(sum, sum64);
2349   err += sum[0] + sum[1] + sum[2] + sum[3];
2350   return err;
2351 }
2352 #endif  // CONFIG_AV1_HIGHBITDEPTH
2353