xref: /aosp_15_r20/external/pytorch/torch/_custom_ops.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2import inspect
3
4from torch._custom_op.impl import (
5    _custom_op_with_schema,
6    _find_custom_op,
7    infer_schema,
8    parse_qualname,
9    validate_namespace,
10)
11from torch.library import get_ctx
12
13
14__all__ = [
15    "custom_op",
16    "impl",
17    "impl_abstract",
18    "get_ctx",
19    "impl_save_for_backward",
20    "impl_backward",
21]
22
23
24def custom_op(qualname, func_or_schema=None):
25    r"""Register a new custom operator
26
27    In PyTorch, defining an op (short for "operator") is a two step-process:
28    - we need to define the op (by providing an operator name and schema)
29    - we need to implement behavior for how the operator interacts with
30      various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
31
32    This entrypoint defines the custom operator (the first step)
33    you must then perform the second step by calling various
34    ``impl_*`` APIs.
35
36    This API may be used as a decorator (see examples).
37
38    For a detailed guide on custom ops, please see
39    https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
40
41    Arguments:
42        qualname (str): Should be a string that looks like
43            "namespace::operator_name". Operators in PyTorch need a namespace to
44            avoid name collisions; a given operator may only be created once.
45            If you are writing a Python library, we recommend the namespace to
46            be the name of your top-level module.
47        func_or_schema (Union[Callable, str]): Each PyTorch operator needs a
48            schema that tells PyTorch the types of the inputs/outputs.
49            If this is a Callable, we will automatically infer the schema from
50            the type annotations on the function (see examples). Otherwise,
51            if you don't want to use type annotations, you may provide us the
52            schema string.
53
54    Example::
55        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
56        >>> import torch
57        >>> import numpy as np
58        >>> from torch import Tensor
59        >>>
60        >>> # Step 1: define the custom op.
61        >>> # We need to provide the API a "prototype function"
62        >>> # (a function that returns NotImplementedError), from which
63        >>> # we will infer the types of the inputs and outputs.
64        >>> @torch._custom_ops.custom_op("mylibrary::numpy_sin")
65        >>> def numpy_sin(x: Tensor) -> Tensor:
66        >>>     raise NotImplementedError
67        >>>
68        >>> # The custom op is now accessible via the torch.ops module:
69        >>> torch.ops.mylibrary.numpy_sin
70        >>>
71        >>> # Step 2: Register an implementation for various PyTorch subsystems
72        >>>
73        >>> # Register an implementation for CPU tensors
74        >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cpu")
75        >>> def numpy_sin_impl_cpu(x):
76        >>>     return torch.from_numpy(np.sin(x.numpy()))
77        >>>
78        >>> # Register an implementation for CUDA tensors
79        >>> @torch._custom_ops.impl("mylibrary::numpy_sin", device_types="cuda")
80        >>> def numpy_sin_impl_cuda(x):
81        >>>     return torch.from_numpy(np.sin(x.cpu().numpy())).to(x.device)
82        >>>
83        >>> x = torch.randn(3)
84        >>> torch.ops.mylibrary.numpy_sin(x)  # calls numpy_sin_impl_cpu
85        >>>
86        >>> x_cuda = x.cuda()
87        >>> torch.ops.mylibrary.numpy_sin(x)  # calls numpy_sin_impl_cuda
88
89    """
90    ns, name = parse_qualname(qualname)
91    validate_namespace(ns)
92
93    def inner(func):
94        if not inspect.isfunction(func):
95            raise ValueError(
96                f"custom_op(...)(func): Expected `func` to be a Python "
97                f"function, got: {type(func)}"
98            )
99
100        if func.__name__ != name:
101            raise ValueError(
102                f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
103                f"to have name '{name}' but got '{func.__name__}'. "
104                f"Please either change the name of `func` or the qualname that "
105                f"is passed to `custom_op`"
106            )
107
108        schema = infer_schema(func, mutates_args=())
109        _custom_op_with_schema(qualname, schema)
110        return func
111
112    if func_or_schema is None:
113        return inner
114    if isinstance(func_or_schema, str):
115        _custom_op_with_schema(qualname, func_or_schema)
116    else:
117        return inner(func_or_schema)
118
119
120def impl(qualname, *, device_types=("cpu", "cuda"), func=None):
121    r"""Register an implementation for a device type for this custom op.
122
123    If the op is passed multiple Tensor inputs with different device
124    types, it will dispatch to the registered implementation for the highest
125    priority device type among those present.
126    The supported device types, in order of priority, are {'cuda', 'cpu'}.
127
128    This API may be used as a decorator (see examples).
129
130    For a detailed guide on custom ops, please see
131    https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
132
133    Arguments:
134        device_types (str or Iterable[str]): the device type(s) to register the function for.
135
136    Example::
137        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
138        >>> import torch
139        >>> import numpy as np
140        >>> from torch import Tensor
141        >>>
142        >>> # Step 1: define the custom op.
143        >>> # We need to provide the API a "prototype function"
144        >>> # (a function that returns NotImplementedError), from which
145        >>> # we will infer the types of the inputs and outputs.
146        >>> @torch._custom_ops.custom_op("mylibrary::numpy_cos")
147        >>> def numpy_cos(x: Tensor) -> Tensor:
148        >>>     raise NotImplementedError
149        >>>
150        >>> # The custom op is now accessible via the torch.ops module:
151        >>> torch.ops.mylibrary.numpy_cos
152        >>>
153        >>> # Step 2: Register an implementation for various PyTorch subsystems
154        >>>
155        >>> # Register an implementation for CPU tensors
156        >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cpu")
157        >>> def numpy_cos_impl_cpu(x):
158        >>>     return torch.from_numpy(np.cos(x.numpy()))
159        >>>
160        >>> # Register an implementation for CUDA tensors
161        >>> @torch._custom_ops.impl("mylibrary::numpy_cos", device_types="cuda")
162        >>> def numpy_cos_impl_cuda(x):
163        >>>     return torch.from_numpy(np.cos(x.cpu().numpy())).to(x.device)
164        >>>
165        >>> x = torch.randn(3)
166        >>> torch.ops.mylibrary.numpy_cos(x)  # calls numpy_cos_impl_cpu
167        >>>
168        >>> x_cuda = x.cuda()
169        >>> torch.ops.mylibrary.numpy_cos(x)  # calls numpy_cos_impl_cuda
170
171    """
172
173    def inner(func):
174        custom_op = _find_custom_op(qualname, also_check_torch_library=True)
175        custom_op.impl(device_types, _stacklevel=3)(func)
176        return func
177
178    if func is None:
179        return inner
180    return inner(func)
181
182
183def impl_abstract(qualname, *, func=None):
184    r"""Register an abstract implementation for this operator.
185
186    An "abstract implementation" specifies the behavior of this operator on
187    Tensors that carry no data. Given some input Tensors with certain properties
188    (sizes/strides/storage_offset/device), it specifies what the properties of
189    the output Tensors are.
190
191    The abstract implementation has the same signature as the operator.
192    It is run for both FakeTensors and meta tensors. To write an abstract
193    implementation, assume that all Tensor inputs to the operator are
194    regular CPU/CUDA/Meta tensors, but they do not have storage, and
195    you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
196    The abstract implementation must consist of only PyTorch operations
197    (and may not directly access the storage or data of any input or
198    intermediate Tensors).
199
200    This API may be used as a decorator (see examples).
201
202    For a detailed guide on custom ops, please see
203    https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
204
205    Examples::
206        >>> import numpy as np
207        >>> from torch import Tensor
208        >>>
209        >>> # Example 1: an operator without data-dependent output shape
210        >>> @torch._custom_ops.custom_op("mylibrary::custom_linear")
211        >>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
212        >>>     raise NotImplementedError
213        >>>
214        >>> @torch._custom_ops.impl_abstract("mylibrary::custom_linear")
215        >>> def custom_linear_abstract(x, weight):
216        >>>     assert x.dim() == 2
217        >>>     assert weight.dim() == 2
218        >>>     assert bias.dim() == 1
219        >>>     assert x.shape[1] == weight.shape[1]
220        >>>     assert weight.shape[0] == bias.shape[0]
221        >>>     assert x.device == weight.device
222        >>>
223        >>>     return (x @ weight.t()) + bias
224        >>>
225        >>> # Example 2: an operator with data-dependent output shape
226        >>> @torch._custom_ops.custom_op('mylibrary::custom_nonzero')
227        >>> def custom_nonzero(x: Tensor) -> Tensor:
228        >>>     ...
229        >>>
230        >>> @torch._custom_ops.impl_abstract("mylibrary::custom_nonzero")
231        >>> def custom_nonzero_abstract(x):
232        >>>     # Number of nonzero-elements is data-dependent.
233        >>>     # Since we cannot peek at the data in an abstract impl,
234        >>>     # we use the ctx object to construct a new symint that
235        >>>     # represents the data-dependent size.
236        >>>     ctx = torch._custom_ops.get_ctx()
237        >>>     nnz = ctx.create_unbacked_symint()
238        >>>     shape = [x.dim(), nnz]
239        >>>     result = x.new_empty(shape, dtype=torch.long)
240        >>>     return result
241        >>>
242        >>> @torch._custom_ops.impl("mylibrary::custom_nonzero")
243        >>> def custom_nonzero_impl(x):
244        >>>     x_np = to_numpy(x)
245        >>>     res = np.stack(np.nonzero(x_np), axis=1)
246        >>>     # unbacked symbolic ints in PyTorch must be >= 2, so we
247        >>>     # constrain the range to at least 2
248        >>>     if res.shape[0] <= 1:
249        >>>         raise RuntimeError("not supported")
250        >>>     return torch.tensor(res, device=x.device)
251
252    """
253    import torch.library
254
255    return torch.library.register_fake(qualname, func, _stacklevel=2)
256
257
258def impl_save_for_backward(qualname, *, func=None):
259    r"""Register a function that tells us what to save for backward.
260
261    Please see :func:`impl_backward` for more details.
262    """
263
264    def inner(func):
265        custom_op = _find_custom_op(qualname, also_check_torch_library=True)
266        custom_op.impl_save_for_backward(_stacklevel=3)(func)
267        return func
268
269    if func is None:
270        return inner
271    return inner(func)
272
273
274def impl_backward(qualname, output_differentiability=None, *, func=None):
275    r"""Registers a backward formula for an operator.
276
277    In order for an operator to work with autograd, you need to register
278    a backward formula. There are two pieces to this:
279    1. You must give us a function to specify what to save for backward.
280       Call this the "save for backward" function.
281    2. You must give us a function that computes gradients. Call this the
282       "backward" function.
283
284    Use `impl_save_for_backward` to define a "save for backward" function
285    that specifies what gets saved for backward. The function should accept
286    two arguments ``(inputs, output)`` and return the quantities to be saved
287    for backward.
288
289    During runtime, when you call the operator in a forwards pass, PyTorch
290    will invoke the "save for backward" function with the inputs and output
291    of the operator.
292
293    Use `impl_backward` to define the "backward" function. The backward
294    function must accept ``(ctx, saved, *grads)``:
295    - ``ctx`` is a context object where we may provide information
296    - ``saved`` is exactly what gets returned from the "save for backward"
297      function
298    - ``grads`` is one or more gradients. The number of gradients matches
299      the number of outputs of the operator.
300
301    The backward function must return a dict that maps the name of
302    an input to the operator to its corresponding gradient. All inputs that
303    were declared to be Tensors in the operator definition must be accounted
304    for in the dict. The gradient may be a Tensor or None.
305
306    For a detailed guide on custom ops, please see
307    https://docs.google.com/document/d/1aGWtgxV3HppuxQAdddyPrs74_aEntpkYt9MalnCKnhk
308
309    """
310
311    def inner(func):
312        custom_op = _find_custom_op(qualname, also_check_torch_library=True)
313        custom_op.impl_backward(output_differentiability, _stacklevel=3)(func)
314        return func
315
316    if func is None:
317        return inner
318    return inner(func)
319
320
321def _destroy(qualname):
322    """De-registers a custom op. For testing purposes only"""
323    custom_op = _find_custom_op(qualname)
324    custom_op._destroy()
325