1 #include <torch/csrc/jit/codegen/fuser/compiler.h>
2
3 #include <ATen/ATen.h>
4 #include <ATen/core/jit_type.h>
5 #include <c10/util/Exception.h>
6 #include <c10/util/irange.h>
7 #include <torch/csrc/jit/codegen/fuser/codegen.h>
8 #include <torch/csrc/jit/codegen/fuser/interface.h>
9 #include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
10 #include <torch/csrc/jit/codegen/fuser/tensor_desc.h>
11 #include <torch/csrc/jit/ir/ir.h>
12 #include <torch/csrc/jit/passes/canonicalize.h>
13 #include <torch/csrc/jit/passes/shape_analysis.h>
14 #include <torch/csrc/jit/runtime/operator.h>
15
16 #include <atomic>
17 #include <iostream>
18 #include <memory>
19 #include <sstream>
20 #include <stdexcept>
21 #include <string>
22 #include <tuple>
23 #include <unordered_set>
24 #include <utility>
25
26 namespace {
fusionBackendLock()27 std::mutex& fusionBackendLock() {
28 static std::mutex fusion_backends_lock_{};
29 return fusion_backends_lock_;
30 }
31 } // namespace
32
33 namespace torch::jit::fuser {
34
35 static std::unordered_map<at::Device::Type, FusedKernelConstructor>&
getFusionBackends()36 getFusionBackends() {
37 static std::unordered_map<at::Device::Type, FusedKernelConstructor>
38 fusion_backends;
39 return fusion_backends;
40 }
41
registerFusionBackend(at::Device::Type backend_type,FusedKernelConstructor ctor)42 void registerFusionBackend(
43 at::Device::Type backend_type,
44 FusedKernelConstructor ctor) {
45 std::lock_guard<std::mutex> guard(fusionBackendLock());
46 getFusionBackends()[backend_type] = std::move(ctor);
47 }
48
hasFusionBackend(at::Device::Type backend_type)49 bool hasFusionBackend(at::Device::Type backend_type) {
50 std::lock_guard<std::mutex> guard(fusionBackendLock());
51 return getFusionBackends().count(backend_type);
52 }
53
getConstructor(at::Device::Type backend_type)54 static const FusedKernelConstructor& getConstructor(
55 at::Device::Type backend_type) {
56 std::lock_guard<std::mutex> guard(fusionBackendLock());
57 return getFusionBackends().at(backend_type);
58 }
59
60 // Counter for number of kernels compiled, used for debugging and
61 // creating arbitrary kernel names.
62 static std::atomic<size_t> next_kernel_id{0};
63 static int debug_fusion{-1};
64
nCompiledKernels()65 size_t nCompiledKernels() {
66 return next_kernel_id.load();
67 }
68
debugFuser()69 int debugFuser() {
70 if (debug_fusion < 0) {
71 const char* debug_env = getenv("PYTORCH_FUSION_DEBUG");
72 debug_fusion = debug_env ? atoi(debug_env) : 0;
73 }
74 return debug_fusion;
75 }
76
77 // If the given node is used once by a chunk node, returns that node.
78 // Returns nullptr otherwise.
usedInFusedChunk(const Value * input)79 static const Node* usedInFusedChunk(const Value* input) {
80 const auto& uses = input->uses();
81 if (uses.size() == 1) {
82 const Node* user = uses[0].user;
83 if (user->kind() == prim::ConstantChunk) {
84 return user;
85 }
86 }
87 return nullptr;
88 }
89
setInputChunkDescriptors(KernelSpec & spec)90 static void setInputChunkDescriptors(KernelSpec& spec) {
91 // We only have as many chunk descriptors as tensor inputs,
92 // furthermore we know that the tensor inputs are in the
93 // beginning of the fusion group's inputs.
94 spec.inputChunks().reserve(spec.nTensorInputs());
95 for (const auto i : c10::irange(spec.nTensorInputs())) {
96 const Value* input = spec.graph()->inputs()[i];
97 if (const Node* chunk = usedInFusedChunk(input)) {
98 spec.inputChunks().emplace_back(
99 chunk->i(attr::chunks), chunk->i(attr::dim));
100 } else {
101 spec.inputChunks().emplace_back(1, 0);
102 }
103 }
104 }
105
106 // Run a DFS traversal to find all inputs that affect a given output value
getInputDependencies(const Value * output)107 static std::vector<int64_t> getInputDependencies(const Value* output) {
108 std::vector<const Value*> queue{output};
109 std::unordered_set<const Value*> inputs;
110 std::unordered_set<const Value*> seen;
111 while (!queue.empty()) {
112 const Value* val = queue.back();
113 queue.pop_back();
114 const Node* producer = val->node();
115 // Here we assume that only tensor inputs are used in
116 // the computation of the outputs.
117 // This is currently true, as the only inputs will be
118 // sizes (for _grad_sum_to_size as the derivative
119 // of broadcasts), which will only be used after
120 // the fusion kernel, and Tensors.
121 // This needs to be revisited when you start allowing
122 // other things e.g. nonconstant scalars.
123 if (producer->kind() == prim::Param &&
124 val->type()->isSubtypeOf(*TensorType::get())) {
125 inputs.insert(val);
126 continue;
127 }
128 for (const Value* input : producer->inputs()) {
129 if (/*bool inserted = */ seen.insert(input).second) {
130 queue.push_back(input);
131 }
132 }
133 }
134
135 // Convert Value* into offsets into the graph's input list
136 std::vector<int64_t> offsets;
137 offsets.reserve(inputs.size());
138 for (const Value* input : inputs) {
139 offsets.push_back(input->offset());
140 }
141
142 std::sort(offsets.begin(), offsets.end());
143 return offsets;
144 }
145
setInputBroadcastGroups(KernelSpec & spec)146 static void setInputBroadcastGroups(KernelSpec& spec) {
147 std::unordered_set<std::vector<int64_t>, c10::hash<std::vector<int64_t>>>
148 broadcast_groups;
149 for (const Value* output : (spec.graph())->outputs()) {
150 if (output->node()->kind() == prim::FusedConcat) {
151 for (const Value* concat_input : output->node()->inputs()) {
152 broadcast_groups.insert(getInputDependencies(concat_input));
153 }
154 } else {
155 broadcast_groups.insert(getInputDependencies(output));
156 }
157 }
158 std::copy(
159 broadcast_groups.begin(),
160 broadcast_groups.end(),
161 std::back_inserter(spec.inputBroadcastGroups()));
162 }
163
164 // Performs "upfront" compilation where storage is known but shapes are not.
165 // Currently identifies how to expand all tensors so that all intermediate
166 // tensors are the same shape, simplifying code generation.
167 // Broadcast groups and chunks are identified without shape information
168 // using logical properties of how each works. In particular, tensors
169 // are always expandable to the outputs of pointwise operations they
170 // or their descendants are involved in, which means that in a DAG of
171 // pointwise operations all tensors are expandable to the (single) output.
172 // Note: The logic is slightly complicated by concatenation and chunking.
upfrontCompilation(KernelSpec & spec)173 static void upfrontCompilation(KernelSpec& spec) {
174 setInputBroadcastGroups(spec);
175 setInputChunkDescriptors(spec);
176 }
177
registerFusion(const Node * fusion_group)178 int64_t registerFusion(const Node* fusion_group) {
179 auto graph = normalizeGraphForCache(fusion_group->g(attr::Subgraph));
180
181 // Don't re-register the fusion if we can use a pre-existing one
182 const auto maybe_spec = lookupGraph(graph);
183 if (maybe_spec) {
184 return (*maybe_spec)->key();
185 }
186
187 // Unconditionally create and register the fusion
188 // This is necessary to support our global disable fusions flag: if someone
189 // runs some code under no-fusions mode and then runs some code with fusions
190 // enabled, the second time around the returned spec from the cache should
191 // be a valid spec (must have had upfrontCompilation run on it).
192 const auto key = store(graph);
193 const auto maybe_retrieved_spec = retrieve(key);
194 AT_ASSERT(maybe_retrieved_spec);
195 upfrontCompilation(**maybe_retrieved_spec);
196
197 return key;
198 }
199
compileKernel(const KernelSpec & spec,const ArgSpec & arg_spec,const std::vector<int64_t> & map_size,const at::Device device)200 std::shared_ptr<FusedKernel> compileKernel(
201 const KernelSpec& spec,
202 const ArgSpec& arg_spec,
203 const std::vector<int64_t>& map_size,
204 const at::Device device) {
205 const std::vector<TensorDesc>& input_desc = arg_spec.descs();
206
207 auto graph = spec.graph()->copy();
208
209 for (const auto i : c10::irange(input_desc.size())) {
210 const auto& desc = input_desc[i];
211
212 // TODO: can't get rid of this use of TensorType
213 // until we switch to ProfilingGraphExecutor, so we don't have to
214 // run PropagateInputShapes below
215 graph->inputs()[i]->setType(TensorType::create(
216 desc.scalar_type,
217 device,
218 {desc.nDim()},
219 false)); // TODO: nDim is bad, as it is collapsed
220 }
221
222 PropagateInputShapes(graph);
223
224 // Creates chunk and flattened input descriptions
225 std::vector<PartitionDesc> chunk_desc;
226 std::vector<std::pair<const Value*, const std::optional<TensorDesc>>>
227 flat_inputs;
228 {
229 size_t input_index = 0;
230 for (const auto& p : graph->inputs()) {
231 if (p->type()->isSubtypeOf(*FloatType::get())) {
232 flat_inputs.emplace_back(p, std::nullopt);
233 }
234 if (!p->type()->isSubtypeOf(*TensorType::get())) {
235 continue;
236 }
237 if (const Node* chunk = usedInFusedChunk(p)) {
238 int64_t dim = chunk->i(attr::dim);
239 int64_t chunks = chunk->i(attr::chunks);
240 chunk_desc.emplace_back(input_desc[input_index++], chunks, dim);
241 for (const auto* o : chunk->outputs()) {
242 flat_inputs.emplace_back(o, *chunk_desc.back().subTensorDesc());
243 }
244 } else {
245 chunk_desc.emplace_back();
246 flat_inputs.emplace_back(p, input_desc[input_index++]);
247 }
248 }
249 }
250
251 // Creates output, concat, and flattened output descriptions
252 std::vector<TensorDesc> output_desc;
253 std::vector<PartitionDesc> concat_desc;
254 std::vector<std::pair<const Value*, const TensorDesc>> flat_outputs;
255 for (const Value* o : graph->outputs()) {
256 // Creates output description
257 std::vector<int64_t> sizes = map_size;
258 if (o->node()->kind() == prim::FusedConcat) {
259 sizes.at(o->node()->i(attr::dim)) *= o->node()->inputs().size();
260 }
261
262 auto scalar_type = o->type()->expectRef<TensorType>().scalarType();
263 TORCH_INTERNAL_ASSERT(scalar_type);
264 auto type = TensorType::createContiguous(*scalar_type, device, sizes);
265 output_desc.emplace_back(type);
266 const auto& desc = output_desc.back();
267
268 // Creates concat and flattened output descriptions (relies on output desc)
269 if (o->node()->kind() != prim::FusedConcat) {
270 concat_desc.emplace_back();
271 flat_outputs.emplace_back(o, desc);
272 } else {
273 const auto cat = o->node();
274 concat_desc.emplace_back(desc, cat->inputs().size(), cat->i(attr::dim));
275 for (const auto& c : cat->inputs()) {
276 flat_outputs.emplace_back(c, *concat_desc.back().subTensorDesc());
277 }
278 }
279 }
280
281 const bool use_cuda = device.is_cuda();
282 const std::string name = "kernel_" + std::to_string(next_kernel_id++);
283 std::string code =
284 generateKernel(name, *graph, flat_inputs, flat_outputs, use_cuda);
285 const FusedKernelConstructor& kernel_ctor =
286 getConstructor(use_cuda ? DeviceType::CUDA : DeviceType::CPU);
287 return kernel_ctor(
288 device.index(),
289 name,
290 code,
291 input_desc,
292 output_desc,
293 chunk_desc,
294 concat_desc,
295 spec.hasRandom());
296 }
297
298 } // namespace torch::jit::fuser
299