xref: /aosp_15_r20/external/igt-gpu-tools/tests/i915/gem_ring_sync_copy.c (revision d83cc019efdc2edc6c4b16e9034a3ceb8d35d77c)
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Damien Lespiau <[email protected]>
25  */
26 
27 /*
28  * The goal of this test is to ensure that we respect inter ring dependencies
29  *
30  * For each pair of rings R1, R2 where we have copy support (i.e. blt,
31  * rendercpy and mediafill) do:
32  *  - Throw a busy load onto R1. gem_concurrent_blt just uses lots of buffers
33  *    for this effect.
34  *  - Fill three buffers A, B, C with unique data.
35  *  - Copy A to B on ring R1
36  *
37  * Then come the three different variants.
38  *  - Copy B to C on ring R2, check that C now contains what A originally
39  *    contained. This is the write->read hazard. gem_concurrent_blt calls this
40  *    early read.
41  *  - Copy C to A on ring R2, check that B now contains what A originally
42  *    contained. This is the read->write hazard, gem_concurrent_blt calls it
43  *    overwrite_source.
44  *  - Copy C to B on ring R2 and check that B contains what C originally
45  *    contained. This is the write/write hazard. gem_concurrent_blt doesn't
46  *    have that since for the cpu case it's too boring.
47  *
48  */
49 
50 #include "igt.h"
51 #include <stdlib.h>
52 #include <stdbool.h>
53 
54 
55 IGT_TEST_DESCRIPTION("Ensure inter-ring dependencies are respected.");
56 
57 #define WIDTH	512
58 #define HEIGHT	512
59 #define NUM_BUSY_BUFFERS 32
60 
61 typedef struct {
62 	int drm_fd;
63 	uint32_t devid;
64 	drm_intel_bufmgr *bufmgr;
65 	struct intel_batchbuffer *batch;
66 
67 	/* number of buffers to keep the ring busy for a while */
68 	unsigned int n_buffers_load;
69 
70 	uint32_t linear[WIDTH * HEIGHT];
71 
72 	struct {
73 		igt_render_copyfunc_t copy;
74 		struct igt_buf *srcs;
75 		struct igt_buf *dsts;
76 	} render;
77 
78 	struct {
79 		drm_intel_bo **srcs;
80 		drm_intel_bo **dsts;
81 	} blitter;
82 
83 } data_t;
84 
85 enum ring {
86 	RENDER,
87 	BLITTER,
88 };
89 
90 enum test {
91 	TEST_WRITE_READ,
92 	TEST_READ_WRITE,
93 	TEST_WRITE_WRITE,
94 };
95 
ring_name(enum ring ring)96 static const char *ring_name(enum ring ring)
97 {
98 	const char *names[] = {
99 		"render",
100 		"blitter",
101 	};
102 
103 	return names[ring];
104 }
105 
bo_create(data_t * data,int width,int height,int val)106 static drm_intel_bo *bo_create(data_t *data, int width, int height, int val)
107 {
108 	drm_intel_bo *bo;
109 	int i;
110 
111 	bo = drm_intel_bo_alloc(data->bufmgr, "", 4 * width * height, 4096);
112 	igt_assert(bo);
113 
114 	for (i = 0; i < width * height; i++)
115 		data->linear[i] = val;
116 	gem_write(data->drm_fd, bo->handle, 0, data->linear,
117 		  sizeof(data->linear));
118 
119 	return bo;
120 }
121 
bo_check(data_t * data,drm_intel_bo * bo,uint32_t val)122 static void bo_check(data_t *data, drm_intel_bo *bo, uint32_t val)
123 {
124 	int i;
125 
126 	gem_read(data->drm_fd, bo->handle, 0,
127 		 data->linear, sizeof(data->linear));
128 	for (i = 0; i < WIDTH * HEIGHT; i++)
129 		igt_assert_eq_u32(data->linear[i], val);
130 }
131 
scratch_buf_init_from_bo(struct igt_buf * buf,drm_intel_bo * bo)132 static void scratch_buf_init_from_bo(struct igt_buf *buf, drm_intel_bo *bo)
133 {
134 	memset(buf, 0, sizeof(*buf));
135 
136 	buf->bo = bo;
137 	buf->stride = 4 * WIDTH;
138 	buf->tiling = I915_TILING_NONE;
139 	buf->size = 4 * WIDTH * HEIGHT;
140 	buf->bpp = 32;
141 }
142 
scratch_buf_init(data_t * data,struct igt_buf * buf,int width,int height,uint32_t color)143 static void scratch_buf_init(data_t *data, struct igt_buf *buf,
144 			     int width, int height, uint32_t color)
145 {
146 	drm_intel_bo *bo;
147 
148 	bo = bo_create(data, width, height, color);
149 	scratch_buf_init_from_bo(buf, bo);
150 }
151 
152 /*
153  * Provide a few ring specific vfuncs for run_test().
154  *
155  * busy()	Queue a n_buffers_load workloads onto the ring to keep it busy
156  * busy_fini()	Clean up after busy
157  * copy()	Copy one BO to another
158  */
159 
160 /*
161  * Render ring
162  */
163 
render_busy(data_t * data)164 static void render_busy(data_t *data)
165 {
166 	size_t array_size;
167 	int i;
168 
169 	/* allocate 32 buffer objects and re-use them as needed */
170 	array_size = NUM_BUSY_BUFFERS * sizeof(struct igt_buf);
171 
172 	data->render.srcs = malloc(array_size);
173 	data->render.dsts = malloc(array_size);
174 
175 	for (i = 0; i < NUM_BUSY_BUFFERS; i++) {
176 		scratch_buf_init(data, &data->render.srcs[i], WIDTH, HEIGHT,
177 				 0xdeadbeef);
178 		scratch_buf_init(data, &data->render.dsts[i], WIDTH, HEIGHT,
179 				 0xdeadbeef);
180 	}
181 
182 	for (i = 0; i < data->n_buffers_load; i++) {
183 		data->render.copy(data->batch,
184 				  NULL,			/* context */
185 				  &data->render.srcs[i % NUM_BUSY_BUFFERS],
186 				  0, 0,			/* src_x, src_y */
187 				  WIDTH, HEIGHT,
188 				  &data->render.dsts[i % NUM_BUSY_BUFFERS],
189 				  0, 0			/* dst_x, dst_y */);
190 	}
191 }
192 
render_busy_fini(data_t * data)193 static void render_busy_fini(data_t *data)
194 {
195 	int i;
196 
197 	for (i = 0; i < NUM_BUSY_BUFFERS; i++) {
198 		drm_intel_bo_unreference(data->render.srcs[i].bo);
199 		drm_intel_bo_unreference(data->render.dsts[i].bo);
200 	}
201 
202 	free(data->render.srcs);
203 	free(data->render.dsts);
204 	data->render.srcs = NULL;
205 	data->render.dsts = NULL;
206 }
207 
render_copy(data_t * data,drm_intel_bo * src,drm_intel_bo * dst)208 static void render_copy(data_t *data, drm_intel_bo *src, drm_intel_bo *dst)
209 {
210 	struct igt_buf src_buf, dst_buf;
211 
212 	scratch_buf_init_from_bo(&src_buf, src);
213 	scratch_buf_init_from_bo(&dst_buf, dst);
214 
215 	data->render.copy(data->batch,
216 			  NULL,			/* context */
217 			  &src_buf,
218 			  0, 0,			/* src_x, src_y */
219 			  WIDTH, HEIGHT,
220 			  &dst_buf,
221 			  0, 0			/* dst_x, dst_y */);
222 }
223 
224 /*
225  * Blitter ring
226  */
227 
blitter_busy(data_t * data)228 static void blitter_busy(data_t *data)
229 {
230 	size_t array_size;
231 	int i;
232 
233 	/* allocate 32 buffer objects and re-use them as needed */
234 	array_size = NUM_BUSY_BUFFERS * sizeof(drm_intel_bo *);
235 
236 	data->blitter.srcs = malloc(array_size);
237 	data->blitter.dsts = malloc(array_size);
238 
239 	for (i = 0; i < NUM_BUSY_BUFFERS; i++) {
240 		data->blitter.srcs[i] = bo_create(data,
241 						  WIDTH, HEIGHT,
242 						  0xdeadbeef);
243 		data->blitter.dsts[i] = bo_create(data,
244 						  WIDTH, HEIGHT,
245 						  0xdeadbeef);
246 	}
247 
248 	for (i = 0; i < data->n_buffers_load; i++) {
249 		intel_copy_bo(data->batch,
250 			      data->blitter.srcs[i % NUM_BUSY_BUFFERS],
251 			      data->blitter.dsts[i % NUM_BUSY_BUFFERS],
252 			      WIDTH*HEIGHT*4);
253 	}
254 }
255 
blitter_busy_fini(data_t * data)256 static void blitter_busy_fini(data_t *data)
257 {
258 	int i;
259 
260 	for (i = 0; i < NUM_BUSY_BUFFERS; i++) {
261 		drm_intel_bo_unreference(data->blitter.srcs[i]);
262 		drm_intel_bo_unreference(data->blitter.dsts[i]);
263 	}
264 
265 	free(data->blitter.srcs);
266 	free(data->blitter.dsts);
267 	data->blitter.srcs = NULL;
268 	data->blitter.dsts = NULL;
269 }
270 
blitter_copy(data_t * data,drm_intel_bo * src,drm_intel_bo * dst)271 static void blitter_copy(data_t *data, drm_intel_bo *src, drm_intel_bo *dst)
272 {
273 	intel_copy_bo(data->batch, dst, src, WIDTH*HEIGHT*4);
274 }
275 
276 struct ring_ops {
277 	void (*busy)(data_t *data);
278 	void (*busy_fini)(data_t *data);
279 	void (*copy)(data_t *data, drm_intel_bo *src, drm_intel_bo *dst);
280 } ops [] = {
281 	{
282 		.busy      = render_busy,
283 		.busy_fini = render_busy_fini,
284 		.copy      = render_copy,
285 	},
286 	{
287 		.busy      = blitter_busy,
288 		.busy_fini = blitter_busy_fini,
289 		.copy      = blitter_copy,
290 	},
291 };
292 
run_test(data_t * data,enum ring r1,enum ring r2,enum test test)293 static void run_test(data_t *data, enum ring r1, enum ring r2, enum test test)
294 {
295 	struct ring_ops *r1_ops = &ops[r1];
296 	struct ring_ops *r2_ops = &ops[r2];
297 	drm_intel_bo *a, *b, *c;
298 
299 	a = bo_create(data, WIDTH, HEIGHT, 0xa);
300 	b = bo_create(data, WIDTH, HEIGHT, 0xb);
301 	c = bo_create(data, WIDTH, HEIGHT, 0xc);
302 
303 	r1_ops->busy(data);
304 	r1_ops->copy(data, a, b);
305 
306 	switch (test) {
307 	case TEST_WRITE_READ:
308 		r2_ops->copy(data, b, c);
309 		bo_check(data, c, 0xa);
310 		break;
311 	case TEST_READ_WRITE:
312 		r2_ops->copy(data, c, a);
313 		bo_check(data, b, 0xa);
314 		break;
315 	case TEST_WRITE_WRITE:
316 		r2_ops->copy(data, c, b);
317 		bo_check(data, b, 0xc);
318 		break;
319 	default:
320 		igt_fail(IGT_EXIT_FAILURE);
321 	}
322 
323 	r1_ops->busy_fini(data);
324 }
325 
326 igt_main
327 {
328 	data_t data = {0, };
329 	int i;
330 	struct combination {
331 		int r1, r2;
332 	} ring_combinations [] = {
333 		{ RENDER, BLITTER },
334 		{ BLITTER, RENDER },
335 	};
336 
337 	igt_fixture {
338 		data.drm_fd = drm_open_driver_render(DRIVER_INTEL);
339 		data.devid = intel_get_drm_devid(data.drm_fd);
340 
341 		data.n_buffers_load = 1000;
342 
343 		data.bufmgr = drm_intel_bufmgr_gem_init(data.drm_fd, 4096);
344 		igt_assert(data.bufmgr);
345 		drm_intel_bufmgr_gem_enable_reuse(data.bufmgr);
346 
347 		data.render.copy = igt_get_render_copyfunc(data.devid);
348 		igt_require_f(data.render.copy,
349 			      "no render-copy function\n");
350 
351 		data.batch = intel_batchbuffer_alloc(data.bufmgr, data.devid);
352 		igt_assert(data.batch);
353 	}
354 
355 	for (i = 0; i < ARRAY_SIZE(ring_combinations); i++) {
356 		struct combination *c = &ring_combinations[i];
357 
358 		igt_subtest_f("sync-%s-%s-write-read",
359 			      ring_name(c->r1), ring_name(c->r2))
360 			run_test(&data, c->r1, c->r2, TEST_WRITE_READ);
361 
362 		igt_subtest_f("sync-%s-%s-read-write",
363 			      ring_name(c->r1), ring_name(c->r2))
364 			run_test(&data, c->r1, c->r2, TEST_READ_WRITE);
365 		igt_subtest_f("sync-%s-%s-write-write",
366 			      ring_name(c->r1), ring_name(c->r2))
367 			run_test(&data, c->r1, c->r2, TEST_WRITE_WRITE);
368 	}
369 
370 	igt_fixture {
371 		intel_batchbuffer_free(data.batch);
372 		drm_intel_bufmgr_destroy(data.bufmgr);
373 		close(data.drm_fd);
374 	}
375 }
376