1 /*
2 * Copyright (c) 2018, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <smmintrin.h>
14
15 #include "config/av1_rtcd.h"
16
17 #include "av1/common/convolve.h"
18 #include "av1/common/resize.h"
19 #include "aom_dsp/x86/synonyms.h"
20
21 // Note: If the crop width is not a multiple of 4, then, unlike the C version,
22 // this function will overwrite some of the padding on the right hand side of
23 // the frame. This padding appears to be trashed anyway, so this should not
24 // affect the running of the decoder.
av1_convolve_horiz_rs_sse4_1(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int w,int h,const int16_t * x_filters,int x0_qn,int x_step_qn)25 void av1_convolve_horiz_rs_sse4_1(const uint8_t *src, int src_stride,
26 uint8_t *dst, int dst_stride, int w, int h,
27 const int16_t *x_filters, int x0_qn,
28 int x_step_qn) {
29 assert(UPSCALE_NORMATIVE_TAPS == 8);
30
31 src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
32
33 const __m128i round_add = _mm_set1_epi32((1 << FILTER_BITS) >> 1);
34 const __m128i zero = _mm_setzero_si128();
35
36 const uint8_t *src_y;
37 uint8_t *dst_y;
38 int x_qn = x0_qn;
39 for (int x = 0; x < w; x += 4, x_qn += 4 * x_step_qn) {
40 const int x_filter_idx0 =
41 ((x_qn + 0 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
42 const int x_filter_idx1 =
43 ((x_qn + 1 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
44 const int x_filter_idx2 =
45 ((x_qn + 2 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
46 const int x_filter_idx3 =
47 ((x_qn + 3 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
48
49 assert(x_filter_idx0 <= RS_SUBPEL_MASK);
50 assert(x_filter_idx1 <= RS_SUBPEL_MASK);
51 assert(x_filter_idx2 <= RS_SUBPEL_MASK);
52 assert(x_filter_idx3 <= RS_SUBPEL_MASK);
53
54 const int16_t *const x_filter0 =
55 &x_filters[x_filter_idx0 * UPSCALE_NORMATIVE_TAPS];
56 const int16_t *const x_filter1 =
57 &x_filters[x_filter_idx1 * UPSCALE_NORMATIVE_TAPS];
58 const int16_t *const x_filter2 =
59 &x_filters[x_filter_idx2 * UPSCALE_NORMATIVE_TAPS];
60 const int16_t *const x_filter3 =
61 &x_filters[x_filter_idx3 * UPSCALE_NORMATIVE_TAPS];
62
63 const __m128i fil0_16 = xx_loadu_128(x_filter0);
64 const __m128i fil1_16 = xx_loadu_128(x_filter1);
65 const __m128i fil2_16 = xx_loadu_128(x_filter2);
66 const __m128i fil3_16 = xx_loadu_128(x_filter3);
67
68 src_y = src;
69 dst_y = dst;
70 for (int y = 0; y < h; y++, src_y += src_stride, dst_y += dst_stride) {
71 const uint8_t *const src_x0 =
72 &src_y[(x_qn + 0 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
73 const uint8_t *const src_x1 =
74 &src_y[(x_qn + 1 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
75 const uint8_t *const src_x2 =
76 &src_y[(x_qn + 2 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
77 const uint8_t *const src_x3 =
78 &src_y[(x_qn + 3 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
79
80 // Load up the source data. This is 8-bit input data, so each load
81 // gets 8 pixels.
82 const __m128i src0_8 = xx_loadl_64(src_x0);
83 const __m128i src1_8 = xx_loadl_64(src_x1);
84 const __m128i src2_8 = xx_loadl_64(src_x2);
85 const __m128i src3_8 = xx_loadl_64(src_x3);
86
87 // Now zero-extend up to 16-bit precision, i.e.
88 // [ 00 00 00 00 hg fe dc ba ] -> [ 0h 0g 0f 0e 0d 0c 0b 0a ]
89 const __m128i src0_16 = _mm_cvtepu8_epi16(src0_8);
90 const __m128i src1_16 = _mm_cvtepu8_epi16(src1_8);
91 const __m128i src2_16 = _mm_cvtepu8_epi16(src2_8);
92 const __m128i src3_16 = _mm_cvtepu8_epi16(src3_8);
93
94 // Multiply by filter coefficients (results in a 32-bit value),
95 // and add adjacent pairs, i.e.
96 // ([ s7 s6 s5 s4 s3 s2 s1 s0], [ f7 f6 f5 f4 f3 f2 f1 f0 ])
97 // -> [ {s7*f7+s6*f6} {s5*f5+s4*f4} {s3*f3+s2*f2} {s1*f1+s0*f0} ]
98 const __m128i conv0_32 = _mm_madd_epi16(src0_16, fil0_16);
99 const __m128i conv1_32 = _mm_madd_epi16(src1_16, fil1_16);
100 const __m128i conv2_32 = _mm_madd_epi16(src2_16, fil2_16);
101 const __m128i conv3_32 = _mm_madd_epi16(src3_16, fil3_16);
102
103 // Reduce horizontally and add, i.e.
104 // ([ D C B A ], [ S R Q P ]) -> [ S+R Q+P D+C B+A ]
105 const __m128i conv01_32 = _mm_hadd_epi32(conv0_32, conv1_32);
106 const __m128i conv23_32 = _mm_hadd_epi32(conv2_32, conv3_32);
107
108 const __m128i conv0123_32 = _mm_hadd_epi32(conv01_32, conv23_32);
109
110 // Divide down by (1 << FILTER_BITS), rounding to nearest.
111 const __m128i shifted_32 =
112 _mm_srai_epi32(_mm_add_epi32(conv0123_32, round_add), FILTER_BITS);
113
114 // Pack 32-bit values into 16-bit values, i.e.
115 // ([ D C B A ], [ 0 0 0 0 ]) -> [ 0 0 0 0 D C B A ]
116 const __m128i shifted_16 = _mm_packus_epi32(shifted_32, zero);
117
118 // Pack 16-bit values into 8-bit values, i.e.
119 // ([ 0 0 0 0 D C B A ], [ 0 0 0 0 0 0 0 0 ])
120 // -> [ 0 0 0 0 0 0 DC BA ]
121 const __m128i shifted_8 = _mm_packus_epi16(shifted_16, zero);
122
123 // Write to the output
124 xx_storel_32(&dst_y[x], shifted_8);
125 }
126 }
127 }
128
129 #if CONFIG_AV1_HIGHBITDEPTH
130 // Note: If the crop width is not a multiple of 4, then, unlike the C version,
131 // this function will overwrite some of the padding on the right hand side of
132 // the frame. This padding appears to be trashed anyway, so this should not
133 // affect the running of the decoder.
av1_highbd_convolve_horiz_rs_sse4_1(const uint16_t * src,int src_stride,uint16_t * dst,int dst_stride,int w,int h,const int16_t * x_filters,int x0_qn,int x_step_qn,int bd)134 void av1_highbd_convolve_horiz_rs_sse4_1(const uint16_t *src, int src_stride,
135 uint16_t *dst, int dst_stride, int w,
136 int h, const int16_t *x_filters,
137 int x0_qn, int x_step_qn, int bd) {
138 assert(UPSCALE_NORMATIVE_TAPS == 8);
139 assert(bd == 8 || bd == 10 || bd == 12);
140
141 src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
142
143 const __m128i round_add = _mm_set1_epi32((1 << FILTER_BITS) >> 1);
144 const __m128i zero = _mm_setzero_si128();
145 const __m128i clip_maximum = _mm_set1_epi16((1 << bd) - 1);
146
147 const uint16_t *src_y;
148 uint16_t *dst_y;
149 int x_qn = x0_qn;
150 for (int x = 0; x < w; x += 4, x_qn += 4 * x_step_qn) {
151 const int x_filter_idx0 =
152 ((x_qn + 0 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
153 const int x_filter_idx1 =
154 ((x_qn + 1 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
155 const int x_filter_idx2 =
156 ((x_qn + 2 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
157 const int x_filter_idx3 =
158 ((x_qn + 3 * x_step_qn) & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
159
160 assert(x_filter_idx0 <= RS_SUBPEL_MASK);
161 assert(x_filter_idx1 <= RS_SUBPEL_MASK);
162 assert(x_filter_idx2 <= RS_SUBPEL_MASK);
163 assert(x_filter_idx3 <= RS_SUBPEL_MASK);
164
165 const int16_t *const x_filter0 =
166 &x_filters[x_filter_idx0 * UPSCALE_NORMATIVE_TAPS];
167 const int16_t *const x_filter1 =
168 &x_filters[x_filter_idx1 * UPSCALE_NORMATIVE_TAPS];
169 const int16_t *const x_filter2 =
170 &x_filters[x_filter_idx2 * UPSCALE_NORMATIVE_TAPS];
171 const int16_t *const x_filter3 =
172 &x_filters[x_filter_idx3 * UPSCALE_NORMATIVE_TAPS];
173
174 const __m128i fil0_16 = xx_loadu_128(x_filter0);
175 const __m128i fil1_16 = xx_loadu_128(x_filter1);
176 const __m128i fil2_16 = xx_loadu_128(x_filter2);
177 const __m128i fil3_16 = xx_loadu_128(x_filter3);
178
179 src_y = src;
180 dst_y = dst;
181 for (int y = 0; y < h; y++, src_y += src_stride, dst_y += dst_stride) {
182 const uint16_t *const src_x0 =
183 &src_y[(x_qn + 0 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
184 const uint16_t *const src_x1 =
185 &src_y[(x_qn + 1 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
186 const uint16_t *const src_x2 =
187 &src_y[(x_qn + 2 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
188 const uint16_t *const src_x3 =
189 &src_y[(x_qn + 3 * x_step_qn) >> RS_SCALE_SUBPEL_BITS];
190
191 // Load up the source data. This is 16-bit input data, so each load
192 // gets 8 pixels.
193 const __m128i src0_16 = xx_loadu_128(src_x0);
194 const __m128i src1_16 = xx_loadu_128(src_x1);
195 const __m128i src2_16 = xx_loadu_128(src_x2);
196 const __m128i src3_16 = xx_loadu_128(src_x3);
197
198 // Multiply by filter coefficients (results in a 32-bit value),
199 // and add adjacent pairs, i.e.
200 // ([ s7 s6 s5 s4 s3 s2 s1 s0], [ f7 f6 f5 f4 f3 f2 f1 f0 ])
201 // -> [ {s7*f7+s6*f6} {s5*f5+s4*f4} {s3*f3+s2*f2} {s1*f1+s0*f0} ]
202 const __m128i conv0_32 = _mm_madd_epi16(src0_16, fil0_16);
203 const __m128i conv1_32 = _mm_madd_epi16(src1_16, fil1_16);
204 const __m128i conv2_32 = _mm_madd_epi16(src2_16, fil2_16);
205 const __m128i conv3_32 = _mm_madd_epi16(src3_16, fil3_16);
206
207 // Reduce horizontally and add, i.e.
208 // ([ D C B A ], [ S R Q P ]) -> [ S+R Q+P D+C B+A ]
209 const __m128i conv01_32 = _mm_hadd_epi32(conv0_32, conv1_32);
210 const __m128i conv23_32 = _mm_hadd_epi32(conv2_32, conv3_32);
211
212 const __m128i conv0123_32 = _mm_hadd_epi32(conv01_32, conv23_32);
213
214 // Divide down by (1 << FILTER_BITS), rounding to nearest.
215 const __m128i shifted_32 =
216 _mm_srai_epi32(_mm_add_epi32(conv0123_32, round_add), FILTER_BITS);
217
218 // Pack 32-bit values into 16-bit values, i.e.
219 // ([ D C B A ], [ 0 0 0 0 ]) -> [ 0 0 0 0 D C B A ]
220 const __m128i shifted_16 = _mm_packus_epi32(shifted_32, zero);
221
222 // Clip the values at (1 << bd) - 1
223 const __m128i clipped_16 = _mm_min_epi16(shifted_16, clip_maximum);
224
225 // Write to the output
226 xx_storel_64(&dst_y[x], clipped_16);
227 }
228 }
229 }
230 #endif // CONFIG_AV1_HIGHBITDEPTH
231