1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/cdefs.h>
27 #include <sys/mman.h>
28 #include <sys/param.h>
29 #include <sys/prctl.h>
30 #include <sys/resource.h>
31 #include <sys/syscall.h>
32 #include <time.h>
33 #include <unistd.h>
34 #include <unwind.h>
35
36 #include <atomic>
37 #include <future>
38 #include <vector>
39
40 #include <android-base/macros.h>
41 #include <android-base/parseint.h>
42 #include <android-base/scopeguard.h>
43 #include <android-base/silent_death_test.h>
44 #include <android-base/strings.h>
45 #include <android-base/test_utils.h>
46
47 #include "private/bionic_constants.h"
48 #include "private/bionic_time_conversions.h"
49 #include "SignalUtils.h"
50 #include "utils.h"
51
52 using pthread_DeathTest = SilentDeathTest;
53
TEST(pthread,pthread_key_create)54 TEST(pthread, pthread_key_create) {
55 pthread_key_t key;
56 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
57 ASSERT_EQ(0, pthread_key_delete(key));
58 // Can't delete a key that's already been deleted.
59 ASSERT_EQ(EINVAL, pthread_key_delete(key));
60 }
61
TEST(pthread,pthread_keys_max)62 TEST(pthread, pthread_keys_max) {
63 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
64 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
65 }
66
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)67 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
68 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
69 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
70 }
71
TEST(pthread,pthread_key_many_distinct)72 TEST(pthread, pthread_key_many_distinct) {
73 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
74 // pthread keys, but We should be able to allocate at least this many keys.
75 int nkeys = PTHREAD_KEYS_MAX / 2;
76 std::vector<pthread_key_t> keys;
77
78 auto scope_guard = android::base::make_scope_guard([&keys] {
79 for (const auto& key : keys) {
80 EXPECT_EQ(0, pthread_key_delete(key));
81 }
82 });
83
84 for (int i = 0; i < nkeys; ++i) {
85 pthread_key_t key;
86 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
87 ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
88 keys.push_back(key);
89 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
90 }
91
92 for (int i = keys.size() - 1; i >= 0; --i) {
93 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
94 pthread_key_t key = keys.back();
95 keys.pop_back();
96 ASSERT_EQ(0, pthread_key_delete(key));
97 }
98 }
99
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)100 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
101 std::vector<pthread_key_t> keys;
102 int rv = 0;
103
104 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
105 // be more than we are allowed to allocate now.
106 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
107 pthread_key_t key;
108 rv = pthread_key_create(&key, nullptr);
109 if (rv == EAGAIN) {
110 break;
111 }
112 EXPECT_EQ(0, rv);
113 keys.push_back(key);
114 }
115
116 // Don't leak keys.
117 for (const auto& key : keys) {
118 EXPECT_EQ(0, pthread_key_delete(key));
119 }
120 keys.clear();
121
122 // We should have eventually reached the maximum number of keys and received
123 // EAGAIN.
124 ASSERT_EQ(EAGAIN, rv);
125 }
126
TEST(pthread,pthread_key_delete)127 TEST(pthread, pthread_key_delete) {
128 void* expected = reinterpret_cast<void*>(1234);
129 pthread_key_t key;
130 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
131 ASSERT_EQ(0, pthread_setspecific(key, expected));
132 ASSERT_EQ(expected, pthread_getspecific(key));
133 ASSERT_EQ(0, pthread_key_delete(key));
134 // After deletion, pthread_getspecific returns nullptr.
135 ASSERT_EQ(nullptr, pthread_getspecific(key));
136 // And you can't use pthread_setspecific with the deleted key.
137 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
138 }
139
TEST(pthread,pthread_key_fork)140 TEST(pthread, pthread_key_fork) {
141 void* expected = reinterpret_cast<void*>(1234);
142 pthread_key_t key;
143 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
144 ASSERT_EQ(0, pthread_setspecific(key, expected));
145 ASSERT_EQ(expected, pthread_getspecific(key));
146
147 pid_t pid = fork();
148 ASSERT_NE(-1, pid) << strerror(errno);
149
150 if (pid == 0) {
151 // The surviving thread inherits all the forking thread's TLS values...
152 ASSERT_EQ(expected, pthread_getspecific(key));
153 _exit(99);
154 }
155
156 AssertChildExited(pid, 99);
157
158 ASSERT_EQ(expected, pthread_getspecific(key));
159 ASSERT_EQ(0, pthread_key_delete(key));
160 }
161
DirtyKeyFn(void * key)162 static void* DirtyKeyFn(void* key) {
163 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
164 }
165
TEST(pthread,pthread_key_dirty)166 TEST(pthread, pthread_key_dirty) {
167 pthread_key_t key;
168 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
169
170 size_t stack_size = 640 * 1024;
171 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
172 ASSERT_NE(MAP_FAILED, stack);
173 memset(stack, 0xff, stack_size);
174
175 pthread_attr_t attr;
176 ASSERT_EQ(0, pthread_attr_init(&attr));
177 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
178
179 pthread_t t;
180 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
181
182 void* result;
183 ASSERT_EQ(0, pthread_join(t, &result));
184 ASSERT_EQ(nullptr, result); // Not ~0!
185
186 ASSERT_EQ(0, munmap(stack, stack_size));
187 ASSERT_EQ(0, pthread_key_delete(key));
188 }
189
FnWithStackFrame(void *)190 static void* FnWithStackFrame(void*) {
191 int x;
192 *const_cast<volatile int*>(&x) = 1;
193 return nullptr;
194 }
195
TEST(pthread,pthread_heap_allocated_stack)196 TEST(pthread, pthread_heap_allocated_stack) {
197 SKIP_WITH_HWASAN; // TODO(b/148982147): Re-enable when fixed.
198
199 size_t stack_size = 640 * 1024;
200 std::unique_ptr<char[]> stack(new (std::align_val_t(getpagesize())) char[stack_size]);
201 memset(stack.get(), '\xff', stack_size);
202
203 pthread_attr_t attr;
204 ASSERT_EQ(0, pthread_attr_init(&attr));
205 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack.get(), stack_size));
206
207 pthread_t t;
208 ASSERT_EQ(0, pthread_create(&t, &attr, FnWithStackFrame, nullptr));
209
210 void* result;
211 ASSERT_EQ(0, pthread_join(t, &result));
212 }
213
TEST(pthread,static_pthread_key_used_before_creation)214 TEST(pthread, static_pthread_key_used_before_creation) {
215 #if defined(__BIONIC__)
216 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
217 // So here tests if the static/global default value 0 can be detected as invalid key.
218 static pthread_key_t key;
219 ASSERT_EQ(nullptr, pthread_getspecific(key));
220 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
221 ASSERT_EQ(EINVAL, pthread_key_delete(key));
222 #else
223 GTEST_SKIP() << "bionic-only test";
224 #endif
225 }
226
IdFn(void * arg)227 static void* IdFn(void* arg) {
228 return arg;
229 }
230
231 class SpinFunctionHelper {
232 public:
SpinFunctionHelper()233 SpinFunctionHelper() {
234 SpinFunctionHelper::spin_flag_ = true;
235 }
236
~SpinFunctionHelper()237 ~SpinFunctionHelper() {
238 UnSpin();
239 }
240
GetFunction()241 auto GetFunction() -> void* (*)(void*) {
242 return SpinFunctionHelper::SpinFn;
243 }
244
UnSpin()245 void UnSpin() {
246 SpinFunctionHelper::spin_flag_ = false;
247 }
248
249 private:
SpinFn(void *)250 static void* SpinFn(void*) {
251 while (spin_flag_) {}
252 return nullptr;
253 }
254 static std::atomic<bool> spin_flag_;
255 };
256
257 // It doesn't matter if spin_flag_ is used in several tests,
258 // because it is always set to false after each test. Each thread
259 // loops on spin_flag_ can find it becomes false at some time.
260 std::atomic<bool> SpinFunctionHelper::spin_flag_;
261
JoinFn(void * arg)262 static void* JoinFn(void* arg) {
263 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
264 }
265
AssertDetached(pthread_t t,bool is_detached)266 static void AssertDetached(pthread_t t, bool is_detached) {
267 pthread_attr_t attr;
268 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
269 int detach_state;
270 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
271 pthread_attr_destroy(&attr);
272 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
273 }
274
MakeDeadThread(pthread_t & t)275 static void MakeDeadThread(pthread_t& t) {
276 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
277 ASSERT_EQ(0, pthread_join(t, nullptr));
278 }
279
TEST(pthread,pthread_create)280 TEST(pthread, pthread_create) {
281 void* expected_result = reinterpret_cast<void*>(123);
282 // Can we create a thread?
283 pthread_t t;
284 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
285 // If we join, do we get the expected value back?
286 void* result;
287 ASSERT_EQ(0, pthread_join(t, &result));
288 ASSERT_EQ(expected_result, result);
289 }
290
TEST(pthread,pthread_create_EAGAIN)291 TEST(pthread, pthread_create_EAGAIN) {
292 pthread_attr_t attributes;
293 ASSERT_EQ(0, pthread_attr_init(&attributes));
294 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
295
296 pthread_t t;
297 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
298 }
299
TEST(pthread,pthread_no_join_after_detach)300 TEST(pthread, pthread_no_join_after_detach) {
301 SpinFunctionHelper spin_helper;
302
303 pthread_t t1;
304 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
305
306 // After a pthread_detach...
307 ASSERT_EQ(0, pthread_detach(t1));
308 AssertDetached(t1, true);
309
310 // ...pthread_join should fail.
311 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
312 }
313
TEST(pthread,pthread_no_op_detach_after_join)314 TEST(pthread, pthread_no_op_detach_after_join) {
315 SpinFunctionHelper spin_helper;
316
317 pthread_t t1;
318 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
319
320 // If thread 2 is already waiting to join thread 1...
321 pthread_t t2;
322 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
323
324 sleep(1); // (Give t2 a chance to call pthread_join.)
325
326 #if defined(__BIONIC__)
327 ASSERT_EQ(EINVAL, pthread_detach(t1));
328 #else
329 ASSERT_EQ(0, pthread_detach(t1));
330 #endif
331 AssertDetached(t1, false);
332
333 spin_helper.UnSpin();
334
335 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
336 void* join_result;
337 ASSERT_EQ(0, pthread_join(t2, &join_result));
338 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
339 }
340
TEST(pthread,pthread_join_self)341 TEST(pthread, pthread_join_self) {
342 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
343 }
344
345 struct TestBug37410 {
346 pthread_t main_thread;
347 pthread_mutex_t mutex;
348
mainTestBug37410349 static void main() {
350 TestBug37410 data;
351 data.main_thread = pthread_self();
352 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
353 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
354
355 pthread_t t;
356 ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
357
358 // Wait for the thread to be running...
359 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
360 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
361
362 // ...and exit.
363 pthread_exit(nullptr);
364 }
365
366 private:
thread_fnTestBug37410367 static void* thread_fn(void* arg) {
368 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
369
370 // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
371 pthread_t main_thread = data->main_thread;
372
373 // Let the main thread know we're running.
374 pthread_mutex_unlock(&data->mutex);
375
376 // And wait for the main thread to exit.
377 pthread_join(main_thread, nullptr);
378
379 return nullptr;
380 }
381 };
382
383 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
384 // run this test (which exits normally) in its own process.
TEST_F(pthread_DeathTest,pthread_bug_37410)385 TEST_F(pthread_DeathTest, pthread_bug_37410) {
386 // http://code.google.com/p/android/issues/detail?id=37410
387 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
388 }
389
SignalHandlerFn(void * arg)390 static void* SignalHandlerFn(void* arg) {
391 sigset64_t wait_set;
392 sigfillset64(&wait_set);
393 return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
394 }
395
TEST(pthread,pthread_sigmask)396 TEST(pthread, pthread_sigmask) {
397 // Check that SIGUSR1 isn't blocked.
398 sigset_t original_set;
399 sigemptyset(&original_set);
400 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
401 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
402
403 // Block SIGUSR1.
404 sigset_t set;
405 sigemptyset(&set);
406 sigaddset(&set, SIGUSR1);
407 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
408
409 // Check that SIGUSR1 is blocked.
410 sigset_t final_set;
411 sigemptyset(&final_set);
412 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
413 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
414 // ...and that sigprocmask agrees with pthread_sigmask.
415 sigemptyset(&final_set);
416 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
417 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
418
419 // Spawn a thread that calls sigwait and tells us what it received.
420 pthread_t signal_thread;
421 int received_signal = -1;
422 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
423
424 // Send that thread SIGUSR1.
425 pthread_kill(signal_thread, SIGUSR1);
426
427 // See what it got.
428 void* join_result;
429 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
430 ASSERT_EQ(SIGUSR1, received_signal);
431 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
432
433 // Restore the original signal mask.
434 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
435 }
436
TEST(pthread,pthread_sigmask64_SIGTRMIN)437 TEST(pthread, pthread_sigmask64_SIGTRMIN) {
438 // Check that SIGRTMIN isn't blocked.
439 sigset64_t original_set;
440 sigemptyset64(&original_set);
441 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
442 ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
443
444 // Block SIGRTMIN.
445 sigset64_t set;
446 sigemptyset64(&set);
447 sigaddset64(&set, SIGRTMIN);
448 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
449
450 // Check that SIGRTMIN is blocked.
451 sigset64_t final_set;
452 sigemptyset64(&final_set);
453 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
454 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
455 // ...and that sigprocmask64 agrees with pthread_sigmask64.
456 sigemptyset64(&final_set);
457 ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
458 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
459
460 // Spawn a thread that calls sigwait64 and tells us what it received.
461 pthread_t signal_thread;
462 int received_signal = -1;
463 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
464
465 // Send that thread SIGRTMIN.
466 pthread_kill(signal_thread, SIGRTMIN);
467
468 // See what it got.
469 void* join_result;
470 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
471 ASSERT_EQ(SIGRTMIN, received_signal);
472 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
473
474 // Restore the original signal mask.
475 ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
476 }
477
test_pthread_setname_np__pthread_getname_np(pthread_t t)478 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
479 ASSERT_EQ(0, pthread_setname_np(t, "short"));
480 char name[32];
481 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
482 ASSERT_STREQ("short", name);
483
484 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
485 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
486 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
487 ASSERT_STREQ("123456789012345", name);
488
489 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
490
491 // The passed-in buffer should be at least 16 bytes.
492 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
493 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
494 }
495
TEST(pthread,pthread_setname_np__pthread_getname_np__self)496 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
497 test_pthread_setname_np__pthread_getname_np(pthread_self());
498 }
499
TEST(pthread,pthread_setname_np__pthread_getname_np__other)500 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
501 SpinFunctionHelper spin_helper;
502
503 pthread_t t;
504 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
505 test_pthread_setname_np__pthread_getname_np(t);
506 spin_helper.UnSpin();
507 ASSERT_EQ(0, pthread_join(t, nullptr));
508 }
509
510 // http://b/28051133: a kernel misfeature means that you can't change the
511 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)512 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
513 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
514
515 SpinFunctionHelper spin_helper;
516
517 pthread_t t;
518 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
519 test_pthread_setname_np__pthread_getname_np(t);
520 spin_helper.UnSpin();
521 ASSERT_EQ(0, pthread_join(t, nullptr));
522 }
523
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)524 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
525 pthread_t dead_thread;
526 MakeDeadThread(dead_thread);
527
528 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
529 "invalid pthread_t (.*) passed to pthread_setname_np");
530 }
531
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)532 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
533 pthread_t null_thread = 0;
534 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
535 }
536
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)537 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
538 pthread_t dead_thread;
539 MakeDeadThread(dead_thread);
540
541 char name[64];
542 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
543 "invalid pthread_t (.*) passed to pthread_getname_np");
544 }
545
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)546 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
547 pthread_t null_thread = 0;
548
549 char name[64];
550 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
551 }
552
TEST(pthread,pthread_kill__0)553 TEST(pthread, pthread_kill__0) {
554 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
555 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
556 }
557
TEST(pthread,pthread_kill__invalid_signal)558 TEST(pthread, pthread_kill__invalid_signal) {
559 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
560 }
561
pthread_kill__in_signal_handler_helper(int signal_number)562 static void pthread_kill__in_signal_handler_helper(int signal_number) {
563 static int count = 0;
564 ASSERT_EQ(SIGALRM, signal_number);
565 if (++count == 1) {
566 // Can we call pthread_kill from a signal handler?
567 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
568 }
569 }
570
TEST(pthread,pthread_kill__in_signal_handler)571 TEST(pthread, pthread_kill__in_signal_handler) {
572 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
573 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
574 }
575
TEST(pthread,pthread_kill__exited_thread)576 TEST(pthread, pthread_kill__exited_thread) {
577 static std::promise<pid_t> tid_promise;
578 pthread_t thread;
579 ASSERT_EQ(0, pthread_create(&thread, nullptr,
580 [](void*) -> void* {
581 tid_promise.set_value(gettid());
582 return nullptr;
583 },
584 nullptr));
585
586 pid_t tid = tid_promise.get_future().get();
587 while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
588 continue;
589 }
590 ASSERT_ERRNO(ESRCH);
591
592 ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
593 }
594
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)595 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
596 pthread_t dead_thread;
597 MakeDeadThread(dead_thread);
598
599 EXPECT_DEATH(pthread_detach(dead_thread),
600 "invalid pthread_t (.*) passed to pthread_detach");
601 }
602
TEST_F(pthread_DeathTest,pthread_detach__null_thread)603 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
604 pthread_t null_thread = 0;
605 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
606 }
607
TEST(pthread,pthread_getcpuclockid__clock_gettime)608 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
609 SpinFunctionHelper spin_helper;
610
611 pthread_t t;
612 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
613
614 clockid_t c;
615 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
616 timespec ts;
617 ASSERT_EQ(0, clock_gettime(c, &ts));
618 spin_helper.UnSpin();
619 ASSERT_EQ(0, pthread_join(t, nullptr));
620 }
621
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)622 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
623 pthread_t dead_thread;
624 MakeDeadThread(dead_thread);
625
626 clockid_t c;
627 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
628 "invalid pthread_t (.*) passed to pthread_getcpuclockid");
629 }
630
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)631 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
632 pthread_t null_thread = 0;
633 clockid_t c;
634 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
635 }
636
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)637 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
638 pthread_t dead_thread;
639 MakeDeadThread(dead_thread);
640
641 int policy;
642 sched_param param;
643 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m),
644 "invalid pthread_t (.*) passed to pthread_getschedparam");
645 }
646
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)647 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
648 pthread_t null_thread = 0;
649 int policy;
650 sched_param param;
651 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
652 }
653
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)654 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
655 pthread_t dead_thread;
656 MakeDeadThread(dead_thread);
657
658 int policy = 0;
659 sched_param param;
660 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m),
661 "invalid pthread_t (.*) passed to pthread_setschedparam");
662 }
663
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)664 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
665 pthread_t null_thread = 0;
666 int policy = 0;
667 sched_param param;
668 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
669 }
670
TEST_F(pthread_DeathTest,pthread_setschedprio__no_such_thread)671 TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
672 pthread_t dead_thread;
673 MakeDeadThread(dead_thread);
674
675 EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
676 "invalid pthread_t (.*) passed to pthread_setschedprio");
677 }
678
TEST_F(pthread_DeathTest,pthread_setschedprio__null_thread)679 TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
680 pthread_t null_thread = 0;
681 EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
682 }
683
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)684 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
685 pthread_t dead_thread;
686 MakeDeadThread(dead_thread);
687
688 EXPECT_DEATH(pthread_join(dead_thread, nullptr),
689 "invalid pthread_t (.*) passed to pthread_join");
690 }
691
TEST_F(pthread_DeathTest,pthread_join__null_thread)692 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
693 pthread_t null_thread = 0;
694 EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
695 }
696
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)697 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
698 pthread_t dead_thread;
699 MakeDeadThread(dead_thread);
700
701 EXPECT_DEATH(pthread_kill(dead_thread, 0),
702 "invalid pthread_t (.*) passed to pthread_kill");
703 }
704
TEST_F(pthread_DeathTest,pthread_kill__null_thread)705 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
706 pthread_t null_thread = 0;
707 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
708 }
709
TEST(pthread,pthread_join__multijoin)710 TEST(pthread, pthread_join__multijoin) {
711 SpinFunctionHelper spin_helper;
712
713 pthread_t t1;
714 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
715
716 pthread_t t2;
717 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
718
719 sleep(1); // (Give t2 a chance to call pthread_join.)
720
721 // Multiple joins to the same thread should fail.
722 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
723
724 spin_helper.UnSpin();
725
726 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
727 void* join_result;
728 ASSERT_EQ(0, pthread_join(t2, &join_result));
729 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
730 }
731
TEST(pthread,pthread_join__race)732 TEST(pthread, pthread_join__race) {
733 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
734 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
735 for (size_t i = 0; i < 1024; ++i) {
736 size_t stack_size = 640*1024;
737 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
738
739 pthread_attr_t a;
740 pthread_attr_init(&a);
741 pthread_attr_setstack(&a, stack, stack_size);
742
743 pthread_t t;
744 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
745 ASSERT_EQ(0, pthread_join(t, nullptr));
746 ASSERT_EQ(0, munmap(stack, stack_size));
747 }
748 }
749
GetActualGuardSizeFn(void * arg)750 static void* GetActualGuardSizeFn(void* arg) {
751 pthread_attr_t attributes;
752 pthread_getattr_np(pthread_self(), &attributes);
753 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
754 return nullptr;
755 }
756
GetActualGuardSize(const pthread_attr_t & attributes)757 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
758 size_t result;
759 pthread_t t;
760 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
761 pthread_join(t, nullptr);
762 return result;
763 }
764
GetActualStackSizeFn(void * arg)765 static void* GetActualStackSizeFn(void* arg) {
766 pthread_attr_t attributes;
767 pthread_getattr_np(pthread_self(), &attributes);
768 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
769 return nullptr;
770 }
771
GetActualStackSize(const pthread_attr_t & attributes)772 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
773 size_t result;
774 pthread_t t;
775 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
776 pthread_join(t, nullptr);
777 return result;
778 }
779
TEST(pthread,pthread_attr_setguardsize_tiny)780 TEST(pthread, pthread_attr_setguardsize_tiny) {
781 pthread_attr_t attributes;
782 ASSERT_EQ(0, pthread_attr_init(&attributes));
783
784 // No such thing as too small: will be rounded up to one page by pthread_create.
785 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
786 size_t guard_size;
787 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
788 ASSERT_EQ(128U, guard_size);
789 ASSERT_EQ(static_cast<unsigned long>(getpagesize()), GetActualGuardSize(attributes));
790 }
791
TEST(pthread,pthread_attr_setguardsize_reasonable)792 TEST(pthread, pthread_attr_setguardsize_reasonable) {
793 pthread_attr_t attributes;
794 ASSERT_EQ(0, pthread_attr_init(&attributes));
795
796 // Large enough and a multiple of the page size.
797 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
798 size_t guard_size;
799 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
800 ASSERT_EQ(32*1024U, guard_size);
801 ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
802 }
803
TEST(pthread,pthread_attr_setguardsize_needs_rounding)804 TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
805 pthread_attr_t attributes;
806 ASSERT_EQ(0, pthread_attr_init(&attributes));
807
808 // Large enough but not a multiple of the page size.
809 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
810 size_t guard_size;
811 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
812 ASSERT_EQ(32*1024U + 1, guard_size);
813 ASSERT_EQ(roundup(32 * 1024U + 1, getpagesize()), GetActualGuardSize(attributes));
814 }
815
TEST(pthread,pthread_attr_setguardsize_enormous)816 TEST(pthread, pthread_attr_setguardsize_enormous) {
817 pthread_attr_t attributes;
818 ASSERT_EQ(0, pthread_attr_init(&attributes));
819
820 // Larger than the stack itself. (Historically we mistakenly carved
821 // the guard out of the stack itself, rather than adding it after the
822 // end.)
823 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
824 size_t guard_size;
825 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
826 ASSERT_EQ(32*1024*1024U, guard_size);
827 ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
828 }
829
TEST(pthread,pthread_attr_setstacksize)830 TEST(pthread, pthread_attr_setstacksize) {
831 pthread_attr_t attributes;
832 ASSERT_EQ(0, pthread_attr_init(&attributes));
833
834 // Get the default stack size.
835 size_t default_stack_size;
836 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
837
838 // Too small.
839 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
840 size_t stack_size;
841 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
842 ASSERT_EQ(default_stack_size, stack_size);
843 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
844
845 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
846 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
847 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
848 ASSERT_EQ(32*1024U, stack_size);
849 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
850
851 // Large enough but not aligned; will be rounded up by pthread_create.
852 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
853 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
854 ASSERT_EQ(32*1024U + 1, stack_size);
855 #if defined(__BIONIC__)
856 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
857 #else // __BIONIC__
858 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
859 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
860 #endif // __BIONIC__
861 }
862
TEST(pthread,pthread_rwlockattr_smoke)863 TEST(pthread, pthread_rwlockattr_smoke) {
864 pthread_rwlockattr_t attr;
865 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
866
867 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
868 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
869 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
870 int pshared;
871 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
872 ASSERT_EQ(pshared_value_array[i], pshared);
873 }
874
875 #if !defined(ANDROID_HOST_MUSL)
876 // musl doesn't have pthread_rwlockattr_setkind_np
877 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
878 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
879 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
880 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
881 int kind;
882 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
883 ASSERT_EQ(kind_array[i], kind);
884 }
885 #endif
886
887 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
888 }
889
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)890 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
891 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
892 pthread_rwlock_t lock2;
893 ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
894 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
895 }
896
TEST(pthread,pthread_rwlock_smoke)897 TEST(pthread, pthread_rwlock_smoke) {
898 pthread_rwlock_t l;
899 ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
900
901 // Single read lock
902 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
903 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
904
905 // Multiple read lock
906 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
907 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
908 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
909 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
910
911 // Write lock
912 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
913 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
914
915 // Try writer lock
916 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
917 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
918 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
919 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
920
921 // Try reader lock
922 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
923 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
924 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
925 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
926 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
927
928 // Try writer lock after unlock
929 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
930 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
931
932 // EDEADLK in "read after write"
933 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
934 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
935 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
936
937 // EDEADLK in "write after write"
938 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
939 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
940 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
941
942 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
943 }
944
945 struct RwlockWakeupHelperArg {
946 pthread_rwlock_t lock;
947 enum Progress {
948 LOCK_INITIALIZED,
949 LOCK_WAITING,
950 LOCK_RELEASED,
951 LOCK_ACCESSED,
952 LOCK_TIMEDOUT,
953 };
954 std::atomic<Progress> progress;
955 std::atomic<pid_t> tid;
956 std::function<int (pthread_rwlock_t*)> trylock_function;
957 std::function<int (pthread_rwlock_t*)> lock_function;
958 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
959 clockid_t clock;
960 };
961
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)962 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
963 arg->tid = gettid();
964 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
965 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
966
967 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
968 ASSERT_EQ(0, arg->lock_function(&arg->lock));
969 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
970 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
971
972 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
973 }
974
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)975 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
976 RwlockWakeupHelperArg wakeup_arg;
977 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
978 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
979 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
980 wakeup_arg.tid = 0;
981 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
982 wakeup_arg.lock_function = lock_function;
983
984 pthread_t thread;
985 ASSERT_EQ(0, pthread_create(&thread, nullptr,
986 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
987 WaitUntilThreadSleep(wakeup_arg.tid);
988 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
989
990 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
991 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
992
993 ASSERT_EQ(0, pthread_join(thread, nullptr));
994 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
995 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
996 }
997
TEST(pthread,pthread_rwlock_reader_wakeup_writer)998 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
999 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
1000 }
1001
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)1002 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
1003 timespec ts;
1004 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1005 ts.tv_sec += 1;
1006 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
1007 return pthread_rwlock_timedwrlock(lock, &ts);
1008 });
1009 }
1010
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np)1011 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
1012 #if defined(__BIONIC__)
1013 timespec ts;
1014 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1015 ts.tv_sec += 1;
1016 test_pthread_rwlock_reader_wakeup_writer(
1017 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
1018 #else // __BIONIC__
1019 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1020 #endif // __BIONIC__
1021 }
1022
TEST(pthread,pthread_rwlock_reader_wakeup_writer_clockwait)1023 TEST(pthread, pthread_rwlock_reader_wakeup_writer_clockwait) {
1024 #if defined(__BIONIC__)
1025 timespec ts;
1026 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1027 ts.tv_sec += 1;
1028 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
1029 return pthread_rwlock_clockwrlock(lock, CLOCK_MONOTONIC, &ts);
1030 });
1031
1032 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1033 ts.tv_sec += 1;
1034 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
1035 return pthread_rwlock_clockwrlock(lock, CLOCK_REALTIME, &ts);
1036 });
1037 #else // __BIONIC__
1038 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1039 #endif // __BIONIC__
1040 }
1041
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)1042 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
1043 RwlockWakeupHelperArg wakeup_arg;
1044 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1045 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1046 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1047 wakeup_arg.tid = 0;
1048 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1049 wakeup_arg.lock_function = lock_function;
1050
1051 pthread_t thread;
1052 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1053 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
1054 WaitUntilThreadSleep(wakeup_arg.tid);
1055 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1056
1057 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
1058 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1059
1060 ASSERT_EQ(0, pthread_join(thread, nullptr));
1061 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
1062 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1063 }
1064
TEST(pthread,pthread_rwlock_writer_wakeup_reader)1065 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
1066 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
1067 }
1068
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)1069 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
1070 timespec ts;
1071 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1072 ts.tv_sec += 1;
1073 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1074 return pthread_rwlock_timedrdlock(lock, &ts);
1075 });
1076 }
1077
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np)1078 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
1079 #if defined(__BIONIC__)
1080 timespec ts;
1081 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1082 ts.tv_sec += 1;
1083 test_pthread_rwlock_writer_wakeup_reader(
1084 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
1085 #else // __BIONIC__
1086 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1087 #endif // __BIONIC__
1088 }
1089
TEST(pthread,pthread_rwlock_writer_wakeup_reader_clockwait)1090 TEST(pthread, pthread_rwlock_writer_wakeup_reader_clockwait) {
1091 #if defined(__BIONIC__)
1092 timespec ts;
1093 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1094 ts.tv_sec += 1;
1095 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1096 return pthread_rwlock_clockrdlock(lock, CLOCK_MONOTONIC, &ts);
1097 });
1098
1099 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1100 ts.tv_sec += 1;
1101 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1102 return pthread_rwlock_clockrdlock(lock, CLOCK_REALTIME, &ts);
1103 });
1104 #else // __BIONIC__
1105 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1106 #endif // __BIONIC__
1107 }
1108
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)1109 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
1110 arg->tid = gettid();
1111 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
1112 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
1113
1114 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
1115
1116 timespec ts;
1117 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1118 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1119 ts.tv_nsec = -1;
1120 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1121 ts.tv_nsec = NS_PER_S;
1122 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1123 ts.tv_nsec = NS_PER_S - 1;
1124 ts.tv_sec = -1;
1125 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1126 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1127 ts.tv_sec += 1;
1128 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1129 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
1130 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
1131 }
1132
pthread_rwlock_timedrdlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1133 static void pthread_rwlock_timedrdlock_timeout_helper(
1134 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1135 RwlockWakeupHelperArg wakeup_arg;
1136 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1137 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1138 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1139 wakeup_arg.tid = 0;
1140 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1141 wakeup_arg.timed_lock_function = lock_function;
1142 wakeup_arg.clock = clock;
1143
1144 pthread_t thread;
1145 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1146 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1147 WaitUntilThreadSleep(wakeup_arg.tid);
1148 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1149
1150 ASSERT_EQ(0, pthread_join(thread, nullptr));
1151 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1152 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1153 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1154 }
1155
TEST(pthread,pthread_rwlock_timedrdlock_timeout)1156 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
1157 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
1158 }
1159
TEST(pthread,pthread_rwlock_timedrdlock_monotonic_np_timeout)1160 TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
1161 #if defined(__BIONIC__)
1162 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
1163 pthread_rwlock_timedrdlock_monotonic_np);
1164 #else // __BIONIC__
1165 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1166 #endif // __BIONIC__
1167 }
1168
TEST(pthread,pthread_rwlock_clockrdlock_monotonic_timeout)1169 TEST(pthread, pthread_rwlock_clockrdlock_monotonic_timeout) {
1170 #if defined(__BIONIC__)
1171 pthread_rwlock_timedrdlock_timeout_helper(
1172 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1173 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1174 });
1175 #else // __BIONIC__
1176 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1177 #endif // __BIONIC__
1178 }
1179
TEST(pthread,pthread_rwlock_clockrdlock_realtime_timeout)1180 TEST(pthread, pthread_rwlock_clockrdlock_realtime_timeout) {
1181 #if defined(__BIONIC__)
1182 pthread_rwlock_timedrdlock_timeout_helper(
1183 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1184 return pthread_rwlock_clockrdlock(__rwlock, CLOCK_REALTIME, __timeout);
1185 });
1186 #else // __BIONIC__
1187 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1188 #endif // __BIONIC__
1189 }
1190
TEST(pthread,pthread_rwlock_clockrdlock_invalid)1191 TEST(pthread, pthread_rwlock_clockrdlock_invalid) {
1192 #if defined(__BIONIC__)
1193 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1194 timespec ts;
1195 EXPECT_EQ(EINVAL, pthread_rwlock_clockrdlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1196 #else // __BIONIC__
1197 GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
1198 #endif // __BIONIC__
1199 }
1200
pthread_rwlock_timedwrlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1201 static void pthread_rwlock_timedwrlock_timeout_helper(
1202 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1203 RwlockWakeupHelperArg wakeup_arg;
1204 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1205 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
1206 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1207 wakeup_arg.tid = 0;
1208 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
1209 wakeup_arg.timed_lock_function = lock_function;
1210 wakeup_arg.clock = clock;
1211
1212 pthread_t thread;
1213 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1214 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1215 WaitUntilThreadSleep(wakeup_arg.tid);
1216 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1217
1218 ASSERT_EQ(0, pthread_join(thread, nullptr));
1219 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1220 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1221 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1222 }
1223
TEST(pthread,pthread_rwlock_timedwrlock_timeout)1224 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
1225 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
1226 }
1227
TEST(pthread,pthread_rwlock_timedwrlock_monotonic_np_timeout)1228 TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
1229 #if defined(__BIONIC__)
1230 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
1231 pthread_rwlock_timedwrlock_monotonic_np);
1232 #else // __BIONIC__
1233 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1234 #endif // __BIONIC__
1235 }
1236
TEST(pthread,pthread_rwlock_clockwrlock_monotonic_timeout)1237 TEST(pthread, pthread_rwlock_clockwrlock_monotonic_timeout) {
1238 #if defined(__BIONIC__)
1239 pthread_rwlock_timedwrlock_timeout_helper(
1240 CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1241 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_MONOTONIC, __timeout);
1242 });
1243 #else // __BIONIC__
1244 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1245 #endif // __BIONIC__
1246 }
1247
TEST(pthread,pthread_rwlock_clockwrlock_realtime_timeout)1248 TEST(pthread, pthread_rwlock_clockwrlock_realtime_timeout) {
1249 #if defined(__BIONIC__)
1250 pthread_rwlock_timedwrlock_timeout_helper(
1251 CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
1252 return pthread_rwlock_clockwrlock(__rwlock, CLOCK_REALTIME, __timeout);
1253 });
1254 #else // __BIONIC__
1255 GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
1256 #endif // __BIONIC__
1257 }
1258
TEST(pthread,pthread_rwlock_clockwrlock_invalid)1259 TEST(pthread, pthread_rwlock_clockwrlock_invalid) {
1260 #if defined(__BIONIC__)
1261 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
1262 timespec ts;
1263 EXPECT_EQ(EINVAL, pthread_rwlock_clockwrlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
1264 #else // __BIONIC__
1265 GTEST_SKIP() << "pthread_rwlock_clockrwlock not available";
1266 #endif // __BIONIC__
1267 }
1268
1269 #if !defined(ANDROID_HOST_MUSL)
1270 // musl doesn't have pthread_rwlockattr_setkind_np
1271 class RwlockKindTestHelper {
1272 private:
1273 struct ThreadArg {
1274 RwlockKindTestHelper* helper;
1275 std::atomic<pid_t>& tid;
1276
ThreadArgRwlockKindTestHelper::ThreadArg1277 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
1278 : helper(helper), tid(tid) { }
1279 };
1280
1281 public:
1282 pthread_rwlock_t lock;
1283
1284 public:
RwlockKindTestHelper(int kind_type)1285 explicit RwlockKindTestHelper(int kind_type) {
1286 InitRwlock(kind_type);
1287 }
1288
~RwlockKindTestHelper()1289 ~RwlockKindTestHelper() {
1290 DestroyRwlock();
1291 }
1292
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)1293 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1294 tid = 0;
1295 ThreadArg* arg = new ThreadArg(this, tid);
1296 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1297 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
1298 }
1299
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)1300 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1301 tid = 0;
1302 ThreadArg* arg = new ThreadArg(this, tid);
1303 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1304 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1305 }
1306
1307 private:
InitRwlock(int kind_type)1308 void InitRwlock(int kind_type) {
1309 pthread_rwlockattr_t attr;
1310 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1311 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1312 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1313 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1314 }
1315
DestroyRwlock()1316 void DestroyRwlock() {
1317 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1318 }
1319
WriterThreadFn(ThreadArg * arg)1320 static void WriterThreadFn(ThreadArg* arg) {
1321 arg->tid = gettid();
1322
1323 RwlockKindTestHelper* helper = arg->helper;
1324 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1325 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1326 delete arg;
1327 }
1328
ReaderThreadFn(ThreadArg * arg)1329 static void ReaderThreadFn(ThreadArg* arg) {
1330 arg->tid = gettid();
1331
1332 RwlockKindTestHelper* helper = arg->helper;
1333 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1334 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1335 delete arg;
1336 }
1337 };
1338 #endif
1339
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1340 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1341 #if !defined(ANDROID_HOST_MUSL)
1342 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1343 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1344
1345 pthread_t writer_thread;
1346 std::atomic<pid_t> writer_tid;
1347 helper.CreateWriterThread(writer_thread, writer_tid);
1348 WaitUntilThreadSleep(writer_tid);
1349
1350 pthread_t reader_thread;
1351 std::atomic<pid_t> reader_tid;
1352 helper.CreateReaderThread(reader_thread, reader_tid);
1353 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1354
1355 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1356 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1357 #else
1358 GTEST_SKIP() << "musl doesn't have pthread_rwlockattr_setkind_np";
1359 #endif
1360 }
1361
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1362 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1363 #if !defined(ANDROID_HOST_MUSL)
1364 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1365 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1366
1367 pthread_t writer_thread;
1368 std::atomic<pid_t> writer_tid;
1369 helper.CreateWriterThread(writer_thread, writer_tid);
1370 WaitUntilThreadSleep(writer_tid);
1371
1372 pthread_t reader_thread;
1373 std::atomic<pid_t> reader_tid;
1374 helper.CreateReaderThread(reader_thread, reader_tid);
1375 WaitUntilThreadSleep(reader_tid);
1376
1377 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1378 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1379 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1380 #else
1381 GTEST_SKIP() << "musl doesn't have pthread_rwlockattr_setkind_np";
1382 #endif
1383 }
1384
1385 static int g_once_fn_call_count = 0;
OnceFn()1386 static void OnceFn() {
1387 ++g_once_fn_call_count;
1388 }
1389
TEST(pthread,pthread_once_smoke)1390 TEST(pthread, pthread_once_smoke) {
1391 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1392 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1393 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1394 ASSERT_EQ(1, g_once_fn_call_count);
1395 }
1396
1397 static std::string pthread_once_1934122_result = "";
1398
Routine2()1399 static void Routine2() {
1400 pthread_once_1934122_result += "2";
1401 }
1402
Routine1()1403 static void Routine1() {
1404 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1405 pthread_once_1934122_result += "1";
1406 pthread_once(&once_control_2, &Routine2);
1407 }
1408
TEST(pthread,pthread_once_1934122)1409 TEST(pthread, pthread_once_1934122) {
1410 // Very old versions of Android couldn't call pthread_once from a
1411 // pthread_once init routine. http://b/1934122.
1412 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1413 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1414 ASSERT_EQ("12", pthread_once_1934122_result);
1415 }
1416
1417 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1418 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1419 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1420 static int g_atfork_parent_calls = 0;
AtForkParent1()1421 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1422 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1423 static int g_atfork_child_calls = 0;
AtForkChild1()1424 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1425 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1426
TEST(pthread,pthread_atfork_smoke_fork)1427 TEST(pthread, pthread_atfork_smoke_fork) {
1428 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1429 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1430
1431 g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0;
1432 pid_t pid = fork();
1433 ASSERT_NE(-1, pid) << strerror(errno);
1434
1435 // Child and parent calls are made in the order they were registered.
1436 if (pid == 0) {
1437 ASSERT_EQ(12, g_atfork_child_calls);
1438 _exit(0);
1439 }
1440 ASSERT_EQ(12, g_atfork_parent_calls);
1441
1442 // Prepare calls are made in the reverse order.
1443 ASSERT_EQ(21, g_atfork_prepare_calls);
1444 AssertChildExited(pid, 0);
1445 }
1446
TEST(pthread,pthread_atfork_smoke_vfork)1447 TEST(pthread, pthread_atfork_smoke_vfork) {
1448 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1449 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1450
1451 g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0;
1452 pid_t pid = vfork();
1453 ASSERT_NE(-1, pid) << strerror(errno);
1454
1455 // atfork handlers are not called.
1456 if (pid == 0) {
1457 ASSERT_EQ(0, g_atfork_child_calls);
1458 _exit(0);
1459 }
1460 ASSERT_EQ(0, g_atfork_parent_calls);
1461 ASSERT_EQ(0, g_atfork_prepare_calls);
1462 AssertChildExited(pid, 0);
1463 }
1464
TEST(pthread,pthread_atfork_smoke__Fork)1465 TEST(pthread, pthread_atfork_smoke__Fork) {
1466 #if defined(__BIONIC__)
1467 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1468 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1469
1470 g_atfork_prepare_calls = g_atfork_parent_calls = g_atfork_child_calls = 0;
1471 pid_t pid = _Fork();
1472 ASSERT_NE(-1, pid) << strerror(errno);
1473
1474 // atfork handlers are not called.
1475 if (pid == 0) {
1476 ASSERT_EQ(0, g_atfork_child_calls);
1477 _exit(0);
1478 }
1479 ASSERT_EQ(0, g_atfork_parent_calls);
1480 ASSERT_EQ(0, g_atfork_prepare_calls);
1481 AssertChildExited(pid, 0);
1482 #endif
1483 }
1484
TEST(pthread,pthread_attr_getscope)1485 TEST(pthread, pthread_attr_getscope) {
1486 pthread_attr_t attr;
1487 ASSERT_EQ(0, pthread_attr_init(&attr));
1488
1489 int scope;
1490 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1491 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1492 }
1493
TEST(pthread,pthread_condattr_init)1494 TEST(pthread, pthread_condattr_init) {
1495 pthread_condattr_t attr;
1496 pthread_condattr_init(&attr);
1497
1498 clockid_t clock;
1499 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1500 ASSERT_EQ(CLOCK_REALTIME, clock);
1501
1502 int pshared;
1503 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1504 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1505 }
1506
TEST(pthread,pthread_condattr_setclock)1507 TEST(pthread, pthread_condattr_setclock) {
1508 pthread_condattr_t attr;
1509 pthread_condattr_init(&attr);
1510
1511 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1512 clockid_t clock;
1513 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1514 ASSERT_EQ(CLOCK_REALTIME, clock);
1515
1516 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1517 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1518 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1519
1520 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1521 }
1522
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1523 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1524 #if defined(__BIONIC__)
1525 pthread_condattr_t attr;
1526 pthread_condattr_init(&attr);
1527
1528 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1529 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1530
1531 pthread_cond_t cond_var;
1532 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1533
1534 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1535 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1536
1537 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1538 clockid_t clock;
1539 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1540 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1541 int pshared;
1542 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1543 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1544 #else // !defined(__BIONIC__)
1545 GTEST_SKIP() << "bionic-only test";
1546 #endif // !defined(__BIONIC__)
1547 }
1548
1549 class pthread_CondWakeupTest : public ::testing::Test {
1550 protected:
1551 pthread_mutex_t mutex;
1552 pthread_cond_t cond;
1553
1554 enum Progress {
1555 INITIALIZED,
1556 WAITING,
1557 SIGNALED,
1558 FINISHED,
1559 };
1560 std::atomic<Progress> progress;
1561 pthread_t thread;
1562 timespec ts;
1563 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1564
1565 protected:
SetUp()1566 void SetUp() override {
1567 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1568 }
1569
InitCond(clockid_t clock=CLOCK_REALTIME)1570 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1571 pthread_condattr_t attr;
1572 ASSERT_EQ(0, pthread_condattr_init(&attr));
1573 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1574 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1575 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1576 }
1577
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1578 void StartWaitingThread(
1579 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1580 progress = INITIALIZED;
1581 this->wait_function = wait_function;
1582 ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn),
1583 this));
1584 while (progress != WAITING) {
1585 usleep(5000);
1586 }
1587 usleep(5000);
1588 }
1589
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,const timespec * timeout)> wait_function)1590 void RunTimedTest(
1591 clockid_t clock,
1592 std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* timeout)>
1593 wait_function) {
1594 ASSERT_EQ(0, clock_gettime(clock, &ts));
1595 ts.tv_sec += 1;
1596
1597 StartWaitingThread([&wait_function, this](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1598 return wait_function(cond, mutex, &ts);
1599 });
1600
1601 progress = SIGNALED;
1602 ASSERT_EQ(0, pthread_cond_signal(&cond));
1603 }
1604
RunTimedTest(clockid_t clock,std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex,clockid_t clock,const timespec * timeout)> wait_function)1605 void RunTimedTest(clockid_t clock, std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex,
1606 clockid_t clock, const timespec* timeout)>
1607 wait_function) {
1608 RunTimedTest(clock, [clock, &wait_function](pthread_cond_t* cond, pthread_mutex_t* mutex,
1609 const timespec* timeout) {
1610 return wait_function(cond, mutex, clock, timeout);
1611 });
1612 }
1613
TearDown()1614 void TearDown() override {
1615 ASSERT_EQ(0, pthread_join(thread, nullptr));
1616 ASSERT_EQ(FINISHED, progress);
1617 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1618 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1619 }
1620
1621 private:
WaitThreadFn(pthread_CondWakeupTest * test)1622 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1623 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1624 test->progress = WAITING;
1625 while (test->progress == WAITING) {
1626 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1627 }
1628 ASSERT_EQ(SIGNALED, test->progress);
1629 test->progress = FINISHED;
1630 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1631 }
1632 };
1633
TEST_F(pthread_CondWakeupTest,signal_wait)1634 TEST_F(pthread_CondWakeupTest, signal_wait) {
1635 InitCond();
1636 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1637 return pthread_cond_wait(cond, mutex);
1638 });
1639 progress = SIGNALED;
1640 ASSERT_EQ(0, pthread_cond_signal(&cond));
1641 }
1642
TEST_F(pthread_CondWakeupTest,broadcast_wait)1643 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1644 InitCond();
1645 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1646 return pthread_cond_wait(cond, mutex);
1647 });
1648 progress = SIGNALED;
1649 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1650 }
1651
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1652 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1653 InitCond(CLOCK_REALTIME);
1654 RunTimedTest(CLOCK_REALTIME, pthread_cond_timedwait);
1655 }
1656
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1657 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1658 InitCond(CLOCK_MONOTONIC);
1659 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait);
1660 }
1661
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC_np)1662 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
1663 #if defined(__BIONIC__)
1664 InitCond(CLOCK_REALTIME);
1665 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1666 #else // __BIONIC__
1667 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1668 #endif // __BIONIC__
1669 }
1670
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_monotonic)1671 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_monotonic) {
1672 #if defined(__BIONIC__)
1673 InitCond(CLOCK_MONOTONIC);
1674 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1675 #else // __BIONIC__
1676 GTEST_SKIP() << "pthread_cond_clockwait not available";
1677 #endif // __BIONIC__
1678 }
1679
TEST_F(pthread_CondWakeupTest,signal_clockwait_monotonic_realtime)1680 TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_realtime) {
1681 #if defined(__BIONIC__)
1682 InitCond(CLOCK_MONOTONIC);
1683 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1684 #else // __BIONIC__
1685 GTEST_SKIP() << "pthread_cond_clockwait not available";
1686 #endif // __BIONIC__
1687 }
1688
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_monotonic)1689 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_monotonic) {
1690 #if defined(__BIONIC__)
1691 InitCond(CLOCK_REALTIME);
1692 RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
1693 #else // __BIONIC__
1694 GTEST_SKIP() << "pthread_cond_clockwait not available";
1695 #endif // __BIONIC__
1696 }
1697
TEST_F(pthread_CondWakeupTest,signal_clockwait_realtime_realtime)1698 TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_realtime) {
1699 #if defined(__BIONIC__)
1700 InitCond(CLOCK_REALTIME);
1701 RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
1702 #else // __BIONIC__
1703 GTEST_SKIP() << "pthread_cond_clockwait not available";
1704 #endif // __BIONIC__
1705 }
1706
pthread_cond_timedwait_timeout_helper(bool init_monotonic,clockid_t clock,int (* wait_function)(pthread_cond_t * __cond,pthread_mutex_t * __mutex,const timespec * __timeout))1707 static void pthread_cond_timedwait_timeout_helper(bool init_monotonic, clockid_t clock,
1708 int (*wait_function)(pthread_cond_t* __cond,
1709 pthread_mutex_t* __mutex,
1710 const timespec* __timeout)) {
1711 pthread_mutex_t mutex;
1712 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1713 pthread_cond_t cond;
1714
1715 if (init_monotonic) {
1716 pthread_condattr_t attr;
1717 pthread_condattr_init(&attr);
1718
1719 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1720 clockid_t clock;
1721 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1722 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1723
1724 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1725 } else {
1726 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1727 }
1728 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1729
1730 timespec ts;
1731 ASSERT_EQ(0, clock_gettime(clock, &ts));
1732 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1733 ts.tv_nsec = -1;
1734 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1735 ts.tv_nsec = NS_PER_S;
1736 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1737 ts.tv_nsec = NS_PER_S - 1;
1738 ts.tv_sec = -1;
1739 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1740 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1741 }
1742
TEST(pthread,pthread_cond_timedwait_timeout)1743 TEST(pthread, pthread_cond_timedwait_timeout) {
1744 pthread_cond_timedwait_timeout_helper(false, CLOCK_REALTIME, pthread_cond_timedwait);
1745 }
1746
TEST(pthread,pthread_cond_timedwait_monotonic_np_timeout)1747 TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
1748 #if defined(__BIONIC__)
1749 pthread_cond_timedwait_timeout_helper(false, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1750 pthread_cond_timedwait_timeout_helper(true, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1751 #else // __BIONIC__
1752 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1753 #endif // __BIONIC__
1754 }
1755
TEST(pthread,pthread_cond_clockwait_timeout)1756 TEST(pthread, pthread_cond_clockwait_timeout) {
1757 #if defined(__BIONIC__)
1758 pthread_cond_timedwait_timeout_helper(
1759 false, CLOCK_MONOTONIC,
1760 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1761 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1762 });
1763 pthread_cond_timedwait_timeout_helper(
1764 true, CLOCK_MONOTONIC,
1765 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1766 return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
1767 });
1768 pthread_cond_timedwait_timeout_helper(
1769 false, CLOCK_REALTIME,
1770 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1771 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1772 });
1773 pthread_cond_timedwait_timeout_helper(
1774 true, CLOCK_REALTIME,
1775 [](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
1776 return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
1777 });
1778 #else // __BIONIC__
1779 GTEST_SKIP() << "pthread_cond_clockwait not available";
1780 #endif // __BIONIC__
1781 }
1782
TEST(pthread,pthread_cond_clockwait_invalid)1783 TEST(pthread, pthread_cond_clockwait_invalid) {
1784 #if defined(__BIONIC__)
1785 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
1786 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
1787 timespec ts;
1788 EXPECT_EQ(EINVAL, pthread_cond_clockwait(&cond, &mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
1789
1790 #else // __BIONIC__
1791 GTEST_SKIP() << "pthread_cond_clockwait not available";
1792 #endif // __BIONIC__
1793 }
1794
TEST(pthread,pthread_attr_getstack__main_thread)1795 TEST(pthread, pthread_attr_getstack__main_thread) {
1796 // This test is only meaningful for the main thread, so make sure we're running on it!
1797 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1798
1799 // Get the main thread's attributes.
1800 pthread_attr_t attributes;
1801 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1802
1803 // Check that we correctly report that the main thread has no guard page.
1804 size_t guard_size;
1805 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1806 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1807
1808 // Get the stack base and the stack size (both ways).
1809 void* stack_base;
1810 size_t stack_size;
1811 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1812 size_t stack_size2;
1813 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1814
1815 // The two methods of asking for the stack size should agree.
1816 EXPECT_EQ(stack_size, stack_size2);
1817
1818 #if defined(__BIONIC__)
1819 // Find stack in /proc/self/maps using a pointer to the stack.
1820 //
1821 // We do not use "[stack]" label because in native-bridge environment it is not
1822 // guaranteed to point to the right stack. A native bridge implementation may
1823 // keep separate stack for the guest code.
1824 void* maps_stack_hi = nullptr;
1825 std::vector<map_record> maps;
1826 ASSERT_TRUE(Maps::parse_maps(&maps));
1827 uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
1828 for (const auto& map : maps) {
1829 if (map.addr_start <= stack_address && map.addr_end > stack_address){
1830 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1831 break;
1832 }
1833 }
1834
1835 // The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
1836 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1837 // region isn't very interesting.
1838 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1839
1840 // The stack size should correspond to RLIMIT_STACK.
1841 rlimit rl;
1842 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1843 uint64_t original_rlim_cur = rl.rlim_cur;
1844 if (rl.rlim_cur == RLIM_INFINITY) {
1845 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1846 }
1847 EXPECT_EQ(rl.rlim_cur, stack_size);
1848
1849 auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1850 rl.rlim_cur = original_rlim_cur;
1851 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1852 });
1853
1854 //
1855 // What if RLIMIT_STACK is smaller than the stack's current extent?
1856 //
1857 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1858 rl.rlim_max = RLIM_INFINITY;
1859 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1860
1861 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1862 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1863 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1864
1865 EXPECT_EQ(stack_size, stack_size2);
1866 ASSERT_EQ(1024U, stack_size);
1867
1868 //
1869 // What if RLIMIT_STACK isn't a whole number of pages?
1870 //
1871 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1872 rl.rlim_max = RLIM_INFINITY;
1873 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1874
1875 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1876 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1877 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1878
1879 EXPECT_EQ(stack_size, stack_size2);
1880 ASSERT_EQ(6666U, stack_size);
1881 #endif
1882 }
1883
1884 struct GetStackSignalHandlerArg {
1885 volatile bool done;
1886 void* signal_stack_base;
1887 size_t signal_stack_size;
1888 void* main_stack_base;
1889 size_t main_stack_size;
1890 };
1891
1892 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1893
getstack_signal_handler(int sig)1894 static void getstack_signal_handler(int sig) {
1895 ASSERT_EQ(SIGUSR1, sig);
1896 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1897 sleep(1);
1898 pthread_attr_t attr;
1899 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1900 void* stack_base;
1901 size_t stack_size;
1902 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1903
1904 // Verify if the stack used by the signal handler is the alternate stack just registered.
1905 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1906 ASSERT_LT(static_cast<void*>(untag_address(&attr)),
1907 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1908 getstack_signal_handler_arg.signal_stack_size);
1909
1910 // Verify if the main thread's stack got in the signal handler is correct.
1911 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1912 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1913
1914 getstack_signal_handler_arg.done = true;
1915 }
1916
1917 // The previous code obtained the main thread's stack by reading the entry in
1918 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1919 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1920 // switches a process while the main thread is in an alternate stack, then the kernel will label
1921 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1922 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1923 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1924 // This test is only meaningful for the main thread, so make sure we're running on it!
1925 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1926
1927 const size_t sig_stack_size = 16 * 1024;
1928 void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1929 -1, 0);
1930 ASSERT_NE(MAP_FAILED, sig_stack);
1931 stack_t ss;
1932 ss.ss_sp = sig_stack;
1933 ss.ss_size = sig_stack_size;
1934 ss.ss_flags = 0;
1935 stack_t oss;
1936 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1937
1938 pthread_attr_t attr;
1939 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1940 void* main_stack_base;
1941 size_t main_stack_size;
1942 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1943
1944 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1945 getstack_signal_handler_arg.done = false;
1946 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1947 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1948 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1949 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1950 kill(getpid(), SIGUSR1);
1951 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1952
1953 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1954 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1955 }
1956
pthread_attr_getstack_18908062_helper(void *)1957 static void pthread_attr_getstack_18908062_helper(void*) {
1958 char local_variable;
1959 pthread_attr_t attributes;
1960 pthread_getattr_np(pthread_self(), &attributes);
1961 void* stack_base;
1962 size_t stack_size;
1963 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1964
1965 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1966 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1967 ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
1968 }
1969
1970 // Check whether something on stack is in the range of
1971 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1972 TEST(pthread, pthread_attr_getstack_18908062) {
1973 pthread_t t;
1974 ASSERT_EQ(0, pthread_create(&t, nullptr,
1975 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1976 nullptr));
1977 ASSERT_EQ(0, pthread_join(t, nullptr));
1978 }
1979
1980 #if defined(__BIONIC__)
1981 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1982
pthread_gettid_np_helper(void * arg)1983 static void* pthread_gettid_np_helper(void* arg) {
1984 *reinterpret_cast<pid_t*>(arg) = gettid();
1985
1986 // Wait for our parent to call pthread_gettid_np on us before exiting.
1987 pthread_mutex_lock(&pthread_gettid_np_mutex);
1988 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1989 return nullptr;
1990 }
1991 #endif
1992
TEST(pthread,pthread_gettid_np)1993 TEST(pthread, pthread_gettid_np) {
1994 #if defined(__BIONIC__)
1995 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1996
1997 // Ensure the other thread doesn't exit until after we've called
1998 // pthread_gettid_np on it.
1999 pthread_mutex_lock(&pthread_gettid_np_mutex);
2000
2001 pid_t t_gettid_result;
2002 pthread_t t;
2003 pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
2004
2005 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
2006
2007 // Release the other thread and wait for it to exit.
2008 pthread_mutex_unlock(&pthread_gettid_np_mutex);
2009 ASSERT_EQ(0, pthread_join(t, nullptr));
2010
2011 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
2012 #else
2013 GTEST_SKIP() << "pthread_gettid_np not available";
2014 #endif
2015 }
2016
2017 static size_t cleanup_counter = 0;
2018
AbortCleanupRoutine(void *)2019 static void AbortCleanupRoutine(void*) {
2020 abort();
2021 }
2022
CountCleanupRoutine(void *)2023 static void CountCleanupRoutine(void*) {
2024 ++cleanup_counter;
2025 }
2026
PthreadCleanupTester()2027 static void PthreadCleanupTester() {
2028 pthread_cleanup_push(CountCleanupRoutine, nullptr);
2029 pthread_cleanup_push(CountCleanupRoutine, nullptr);
2030 pthread_cleanup_push(AbortCleanupRoutine, nullptr);
2031
2032 pthread_cleanup_pop(0); // Pop the abort without executing it.
2033 pthread_cleanup_pop(1); // Pop one count while executing it.
2034 ASSERT_EQ(1U, cleanup_counter);
2035 // Exit while the other count is still on the cleanup stack.
2036 pthread_exit(nullptr);
2037
2038 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
2039 pthread_cleanup_pop(0);
2040 }
2041
PthreadCleanupStartRoutine(void *)2042 static void* PthreadCleanupStartRoutine(void*) {
2043 PthreadCleanupTester();
2044 return nullptr;
2045 }
2046
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)2047 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
2048 pthread_t t;
2049 ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
2050 ASSERT_EQ(0, pthread_join(t, nullptr));
2051 ASSERT_EQ(2U, cleanup_counter);
2052 }
2053
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)2054 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
2055 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
2056 }
2057
TEST(pthread,pthread_mutexattr_gettype)2058 TEST(pthread, pthread_mutexattr_gettype) {
2059 pthread_mutexattr_t attr;
2060 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2061
2062 int attr_type;
2063
2064 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
2065 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
2066 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
2067
2068 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
2069 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
2070 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
2071
2072 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
2073 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
2074 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
2075
2076 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2077 }
2078
TEST(pthread,pthread_mutexattr_protocol)2079 TEST(pthread, pthread_mutexattr_protocol) {
2080 pthread_mutexattr_t attr;
2081 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2082
2083 int protocol;
2084 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2085 ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
2086 for (size_t repeat = 0; repeat < 2; ++repeat) {
2087 for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
2088 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
2089 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
2090 ASSERT_EQ(protocol, set_protocol);
2091 }
2092 }
2093 }
2094
2095 struct PthreadMutex {
2096 pthread_mutex_t lock;
2097
PthreadMutexPthreadMutex2098 explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
2099 init(mutex_type, protocol);
2100 }
2101
~PthreadMutexPthreadMutex2102 ~PthreadMutex() {
2103 destroy();
2104 }
2105
2106 private:
initPthreadMutex2107 void init(int mutex_type, int protocol) {
2108 pthread_mutexattr_t attr;
2109 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2110 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
2111 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
2112 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
2113 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2114 }
2115
destroyPthreadMutex2116 void destroy() {
2117 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
2118 }
2119
2120 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
2121 };
2122
UnlockFromAnotherThread(pthread_mutex_t * mutex)2123 static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
2124 pthread_t thread;
2125 pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
2126 pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
2127 intptr_t result = pthread_mutex_unlock(mutex);
2128 return reinterpret_cast<void*>(result);
2129 }, mutex);
2130 void* result;
2131 EXPECT_EQ(0, pthread_join(thread, &result));
2132 return reinterpret_cast<intptr_t>(result);
2133 };
2134
TestPthreadMutexLockNormal(int protocol)2135 static void TestPthreadMutexLockNormal(int protocol) {
2136 PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
2137
2138 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2139 if (protocol == PTHREAD_PRIO_INHERIT) {
2140 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2141 }
2142 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2143 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2144 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2145 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2146 }
2147
TestPthreadMutexLockErrorCheck(int protocol)2148 static void TestPthreadMutexLockErrorCheck(int protocol) {
2149 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
2150
2151 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2152 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2153 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
2154 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2155 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2156 if (protocol == PTHREAD_PRIO_NONE) {
2157 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
2158 } else {
2159 ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
2160 }
2161 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2162 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2163 }
2164
TestPthreadMutexLockRecursive(int protocol)2165 static void TestPthreadMutexLockRecursive(int protocol) {
2166 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
2167
2168 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2169 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2170 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2171 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
2172 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2173 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2174 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2175 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
2176 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2177 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2178 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
2179 }
2180
TEST(pthread,pthread_mutex_lock_NORMAL)2181 TEST(pthread, pthread_mutex_lock_NORMAL) {
2182 TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
2183 }
2184
TEST(pthread,pthread_mutex_lock_ERRORCHECK)2185 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
2186 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
2187 }
2188
TEST(pthread,pthread_mutex_lock_RECURSIVE)2189 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
2190 TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
2191 }
2192
TEST(pthread,pthread_mutex_lock_pi)2193 TEST(pthread, pthread_mutex_lock_pi) {
2194 TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
2195 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
2196 TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
2197 }
2198
TEST(pthread,pthread_mutex_pi_count_limit)2199 TEST(pthread, pthread_mutex_pi_count_limit) {
2200 #if defined(__BIONIC__) && !defined(__LP64__)
2201 // Bionic only supports 65536 pi mutexes in 32-bit programs.
2202 pthread_mutexattr_t attr;
2203 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
2204 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
2205 std::vector<pthread_mutex_t> mutexes(65536);
2206 // Test if we can use 65536 pi mutexes at the same time.
2207 // Run 2 times to check if freed pi mutexes can be recycled.
2208 for (int repeat = 0; repeat < 2; ++repeat) {
2209 for (auto& m : mutexes) {
2210 ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
2211 }
2212 pthread_mutex_t m;
2213 ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
2214 for (auto& m : mutexes) {
2215 ASSERT_EQ(0, pthread_mutex_lock(&m));
2216 }
2217 for (auto& m : mutexes) {
2218 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2219 }
2220 for (auto& m : mutexes) {
2221 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2222 }
2223 }
2224 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
2225 #else
2226 GTEST_SKIP() << "pi mutex count not limited to 64Ki";
2227 #endif
2228 }
2229
TEST(pthread,pthread_mutex_init_same_as_static_initializers)2230 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
2231 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
2232 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
2233 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
2234 pthread_mutex_destroy(&lock_normal);
2235
2236 #if !defined(ANDROID_HOST_MUSL)
2237 // musl doesn't support PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP or
2238 // PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP.
2239 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
2240 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
2241 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
2242 pthread_mutex_destroy(&lock_errorcheck);
2243
2244 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
2245 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
2246 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
2247 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
2248 #endif
2249 }
2250
2251 class MutexWakeupHelper {
2252 private:
2253 PthreadMutex m;
2254 enum Progress {
2255 LOCK_INITIALIZED,
2256 LOCK_WAITING,
2257 LOCK_RELEASED,
2258 LOCK_ACCESSED
2259 };
2260 std::atomic<Progress> progress;
2261 std::atomic<pid_t> tid;
2262
thread_fn(MutexWakeupHelper * helper)2263 static void thread_fn(MutexWakeupHelper* helper) {
2264 helper->tid = gettid();
2265 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2266 helper->progress = LOCK_WAITING;
2267
2268 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2269 ASSERT_EQ(LOCK_RELEASED, helper->progress);
2270 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2271
2272 helper->progress = LOCK_ACCESSED;
2273 }
2274
2275 public:
MutexWakeupHelper(int mutex_type)2276 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
2277 }
2278
test()2279 void test() {
2280 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2281 progress = LOCK_INITIALIZED;
2282 tid = 0;
2283
2284 pthread_t thread;
2285 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2286 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
2287
2288 WaitUntilThreadSleep(tid);
2289 ASSERT_EQ(LOCK_WAITING, progress);
2290
2291 progress = LOCK_RELEASED;
2292 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2293
2294 ASSERT_EQ(0, pthread_join(thread, nullptr));
2295 ASSERT_EQ(LOCK_ACCESSED, progress);
2296 }
2297 };
2298
TEST(pthread,pthread_mutex_NORMAL_wakeup)2299 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
2300 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
2301 helper.test();
2302 }
2303
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)2304 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
2305 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
2306 helper.test();
2307 }
2308
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)2309 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
2310 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
2311 helper.test();
2312 }
2313
GetThreadPriority(pid_t tid)2314 static int GetThreadPriority(pid_t tid) {
2315 // sched_getparam() returns the static priority of a thread, which can't reflect a thread's
2316 // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
2317 std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
2318 std::string content;
2319 int result = INT_MAX;
2320 if (!android::base::ReadFileToString(filename, &content)) {
2321 return result;
2322 }
2323 std::vector<std::string> strs = android::base::Split(content, " ");
2324 if (strs.size() < 18) {
2325 return result;
2326 }
2327 if (!android::base::ParseInt(strs[17], &result)) {
2328 return INT_MAX;
2329 }
2330 return result;
2331 }
2332
2333 class PIMutexWakeupHelper {
2334 private:
2335 PthreadMutex m;
2336 int protocol;
2337 enum Progress {
2338 LOCK_INITIALIZED,
2339 LOCK_CHILD_READY,
2340 LOCK_WAITING,
2341 LOCK_RELEASED,
2342 };
2343 std::atomic<Progress> progress;
2344 std::atomic<pid_t> main_tid;
2345 std::atomic<pid_t> child_tid;
2346 PthreadMutex start_thread_m;
2347
thread_fn(PIMutexWakeupHelper * helper)2348 static void thread_fn(PIMutexWakeupHelper* helper) {
2349 helper->child_tid = gettid();
2350 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2351 ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
2352 ASSERT_EQ(21, GetThreadPriority(gettid()));
2353 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2354 helper->progress = LOCK_CHILD_READY;
2355 ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
2356
2357 ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
2358 WaitUntilThreadSleep(helper->main_tid);
2359 ASSERT_EQ(LOCK_WAITING, helper->progress);
2360
2361 if (helper->protocol == PTHREAD_PRIO_INHERIT) {
2362 ASSERT_EQ(20, GetThreadPriority(gettid()));
2363 } else {
2364 ASSERT_EQ(21, GetThreadPriority(gettid()));
2365 }
2366 helper->progress = LOCK_RELEASED;
2367 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2368 }
2369
2370 public:
PIMutexWakeupHelper(int mutex_type,int protocol)2371 explicit PIMutexWakeupHelper(int mutex_type, int protocol)
2372 : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
2373 }
2374
test()2375 void test() {
2376 ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
2377 main_tid = gettid();
2378 ASSERT_EQ(20, GetThreadPriority(main_tid));
2379 progress = LOCK_INITIALIZED;
2380 child_tid = 0;
2381
2382 pthread_t thread;
2383 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2384 reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
2385
2386 WaitUntilThreadSleep(child_tid);
2387 ASSERT_EQ(LOCK_CHILD_READY, progress);
2388 ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
2389 progress = LOCK_WAITING;
2390 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2391
2392 ASSERT_EQ(LOCK_RELEASED, progress);
2393 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2394 ASSERT_EQ(0, pthread_join(thread, nullptr));
2395 }
2396 };
2397
TEST(pthread,pthread_mutex_pi_wakeup)2398 TEST(pthread, pthread_mutex_pi_wakeup) {
2399 for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
2400 for (int protocol : {PTHREAD_PRIO_INHERIT}) {
2401 PIMutexWakeupHelper helper(type, protocol);
2402 helper.test();
2403 }
2404 }
2405 }
2406
TEST(pthread,pthread_mutex_owner_tid_limit)2407 TEST(pthread, pthread_mutex_owner_tid_limit) {
2408 #if defined(__BIONIC__) && !defined(__LP64__)
2409 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
2410 ASSERT_TRUE(fp != nullptr);
2411 long pid_max;
2412 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
2413 fclose(fp);
2414 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
2415 ASSERT_LE(pid_max, 65536);
2416 #else
2417 GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
2418 #endif
2419 }
2420
pthread_mutex_timedlock_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2421 static void pthread_mutex_timedlock_helper(clockid_t clock,
2422 int (*lock_function)(pthread_mutex_t* __mutex,
2423 const timespec* __timeout)) {
2424 pthread_mutex_t m;
2425 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2426
2427 // If the mutex is already locked, pthread_mutex_timedlock should time out.
2428 ASSERT_EQ(0, pthread_mutex_lock(&m));
2429
2430 timespec ts;
2431 ASSERT_EQ(0, clock_gettime(clock, &ts));
2432 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2433 ts.tv_nsec = -1;
2434 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2435 ts.tv_nsec = NS_PER_S;
2436 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2437 ts.tv_nsec = NS_PER_S - 1;
2438 ts.tv_sec = -1;
2439 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2440
2441 // Check we wait long enough for the lock before timing out...
2442
2443 // What time is it before we start?
2444 ASSERT_EQ(0, clock_gettime(clock, &ts));
2445 const int64_t start_ns = to_ns(ts);
2446 // Add a second to get deadline, and wait until we time out.
2447 ts.tv_sec += 1;
2448 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2449
2450 // What time is it now we've timed out?
2451 timespec ts2;
2452 clock_gettime(clock, &ts2);
2453 const int64_t end_ns = to_ns(ts2);
2454
2455 // The timedlock must have waited at least 1 second before returning.
2456 ASSERT_GE(end_ns - start_ns, NS_PER_S);
2457
2458 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
2459 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2460 ASSERT_EQ(0, clock_gettime(clock, &ts));
2461 ts.tv_sec += 1;
2462 ASSERT_EQ(0, lock_function(&m, &ts));
2463
2464 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2465 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2466 }
2467
TEST(pthread,pthread_mutex_timedlock)2468 TEST(pthread, pthread_mutex_timedlock) {
2469 pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2470 }
2471
TEST(pthread,pthread_mutex_timedlock_monotonic_np)2472 TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
2473 #if defined(__BIONIC__)
2474 pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2475 #else // __BIONIC__
2476 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2477 #endif // __BIONIC__
2478 }
2479
TEST(pthread,pthread_mutex_clocklock_MONOTONIC)2480 TEST(pthread, pthread_mutex_clocklock_MONOTONIC) {
2481 #if defined(__BIONIC__)
2482 pthread_mutex_timedlock_helper(
2483 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2484 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2485 });
2486 #else // __BIONIC__
2487 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2488 #endif // __BIONIC__
2489 }
2490
TEST(pthread,pthread_mutex_clocklock_REALTIME)2491 TEST(pthread, pthread_mutex_clocklock_REALTIME) {
2492 #if defined(__BIONIC__)
2493 pthread_mutex_timedlock_helper(
2494 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2495 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2496 });
2497 #else // __BIONIC__
2498 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2499 #endif // __BIONIC__
2500 }
2501
pthread_mutex_timedlock_pi_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2502 static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
2503 int (*lock_function)(pthread_mutex_t* __mutex,
2504 const timespec* __timeout)) {
2505 PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
2506
2507 timespec ts;
2508 clock_gettime(clock, &ts);
2509 const int64_t start_ns = ts.tv_sec * NS_PER_S + ts.tv_nsec;
2510
2511 // add a second to get deadline.
2512 ts.tv_sec += 1;
2513
2514 ASSERT_EQ(0, lock_function(&m.lock, &ts));
2515
2516 struct ThreadArgs {
2517 clockid_t clock;
2518 int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
2519 PthreadMutex& m;
2520 };
2521
2522 ThreadArgs thread_args = {
2523 .clock = clock,
2524 .lock_function = lock_function,
2525 .m = m,
2526 };
2527
2528 auto ThreadFn = [](void* arg) -> void* {
2529 auto args = static_cast<ThreadArgs*>(arg);
2530 timespec ts;
2531 clock_gettime(args->clock, &ts);
2532 ts.tv_sec += 1;
2533 intptr_t result = args->lock_function(&args->m.lock, &ts);
2534 return reinterpret_cast<void*>(result);
2535 };
2536
2537 pthread_t thread;
2538 ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
2539 void* result;
2540 ASSERT_EQ(0, pthread_join(thread, &result));
2541 ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
2542
2543 // The timedlock must have waited at least 1 second before returning.
2544 clock_gettime(clock, &ts);
2545 const int64_t end_ns = ts.tv_sec * NS_PER_S + ts.tv_nsec;
2546 ASSERT_GT(end_ns - start_ns, NS_PER_S);
2547
2548 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2549 }
2550
TEST(pthread,pthread_mutex_timedlock_pi)2551 TEST(pthread, pthread_mutex_timedlock_pi) {
2552 pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2553 }
2554
TEST(pthread,pthread_mutex_timedlock_monotonic_np_pi)2555 TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
2556 #if defined(__BIONIC__)
2557 pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2558 #else // __BIONIC__
2559 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2560 #endif // __BIONIC__
2561 }
2562
TEST(pthread,pthread_mutex_clocklock_pi)2563 TEST(pthread, pthread_mutex_clocklock_pi) {
2564 #if defined(__BIONIC__)
2565 pthread_mutex_timedlock_pi_helper(
2566 CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2567 return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
2568 });
2569 pthread_mutex_timedlock_pi_helper(
2570 CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
2571 return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
2572 });
2573 #else // __BIONIC__
2574 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2575 #endif // __BIONIC__
2576 }
2577
TEST(pthread,pthread_mutex_clocklock_invalid)2578 TEST(pthread, pthread_mutex_clocklock_invalid) {
2579 #if defined(__BIONIC__)
2580 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2581 timespec ts;
2582 EXPECT_EQ(EINVAL, pthread_mutex_clocklock(&mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
2583 #else // __BIONIC__
2584 GTEST_SKIP() << "pthread_mutex_clocklock not available";
2585 #endif // __BIONIC__
2586 }
2587
TEST_F(pthread_DeathTest,pthread_mutex_using_destroyed_mutex)2588 TEST_F(pthread_DeathTest, pthread_mutex_using_destroyed_mutex) {
2589 #if defined(__BIONIC__)
2590 pthread_mutex_t m;
2591 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2592 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2593 ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
2594 "pthread_mutex_lock called on a destroyed mutex");
2595 ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
2596 "pthread_mutex_unlock called on a destroyed mutex");
2597 ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
2598 "pthread_mutex_trylock called on a destroyed mutex");
2599 timespec ts;
2600 ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2601 "pthread_mutex_timedlock called on a destroyed mutex");
2602 ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2603 "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
2604 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_MONOTONIC, &ts), ::testing::KilledBySignal(SIGABRT),
2605 "pthread_mutex_clocklock called on a destroyed mutex");
2606 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_REALTIME, &ts), ::testing::KilledBySignal(SIGABRT),
2607 "pthread_mutex_clocklock called on a destroyed mutex");
2608 ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_PROCESS_CPUTIME_ID, &ts),
2609 ::testing::KilledBySignal(SIGABRT),
2610 "pthread_mutex_clocklock called on a destroyed mutex");
2611 ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
2612 "pthread_mutex_destroy called on a destroyed mutex");
2613 #else
2614 GTEST_SKIP() << "bionic-only test";
2615 #endif
2616 }
2617
2618 class StrictAlignmentAllocator {
2619 public:
allocate(size_t size,size_t alignment)2620 void* allocate(size_t size, size_t alignment) {
2621 char* p = new char[size + alignment * 2];
2622 allocated_array.push_back(p);
2623 while (!is_strict_aligned(p, alignment)) {
2624 ++p;
2625 }
2626 return p;
2627 }
2628
~StrictAlignmentAllocator()2629 ~StrictAlignmentAllocator() {
2630 for (const auto& p : allocated_array) {
2631 delete[] p;
2632 }
2633 }
2634
2635 private:
is_strict_aligned(char * p,size_t alignment)2636 bool is_strict_aligned(char* p, size_t alignment) {
2637 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
2638 }
2639
2640 std::vector<char*> allocated_array;
2641 };
2642
TEST(pthread,pthread_types_allow_four_bytes_alignment)2643 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
2644 #if defined(__BIONIC__)
2645 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
2646 StrictAlignmentAllocator allocator;
2647 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
2648 allocator.allocate(sizeof(pthread_mutex_t), 4));
2649 ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
2650 ASSERT_EQ(0, pthread_mutex_lock(mutex));
2651 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
2652 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
2653
2654 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
2655 allocator.allocate(sizeof(pthread_cond_t), 4));
2656 ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
2657 ASSERT_EQ(0, pthread_cond_signal(cond));
2658 ASSERT_EQ(0, pthread_cond_broadcast(cond));
2659 ASSERT_EQ(0, pthread_cond_destroy(cond));
2660
2661 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
2662 allocator.allocate(sizeof(pthread_rwlock_t), 4));
2663 ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
2664 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
2665 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2666 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
2667 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2668 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
2669
2670 #else
2671 GTEST_SKIP() << "bionic-only test";
2672 #endif
2673 }
2674
TEST(pthread,pthread_mutex_lock_null_32)2675 TEST(pthread, pthread_mutex_lock_null_32) {
2676 #if defined(__BIONIC__) && !defined(__LP64__)
2677 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2678 // EINVAL in that case: http://b/19995172.
2679 //
2680 // We decorate the public defintion with _Nonnull so that people recompiling
2681 // their code with get a warning and might fix their bug, but need to pass
2682 // NULL here to test that we remain compatible.
2683 pthread_mutex_t* null_value = nullptr;
2684 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
2685 #else
2686 GTEST_SKIP() << "32-bit bionic-only test";
2687 #endif
2688 }
2689
TEST(pthread,pthread_mutex_unlock_null_32)2690 TEST(pthread, pthread_mutex_unlock_null_32) {
2691 #if defined(__BIONIC__) && !defined(__LP64__)
2692 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2693 // EINVAL in that case: http://b/19995172.
2694 //
2695 // We decorate the public defintion with _Nonnull so that people recompiling
2696 // their code with get a warning and might fix their bug, but need to pass
2697 // NULL here to test that we remain compatible.
2698 pthread_mutex_t* null_value = nullptr;
2699 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
2700 #else
2701 GTEST_SKIP() << "32-bit bionic-only test";
2702 #endif
2703 }
2704
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)2705 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
2706 #if defined(__BIONIC__) && defined(__LP64__)
2707 pthread_mutex_t* null_value = nullptr;
2708 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
2709 #else
2710 GTEST_SKIP() << "64-bit bionic-only test";
2711 #endif
2712 }
2713
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)2714 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
2715 #if defined(__BIONIC__) && defined(__LP64__)
2716 pthread_mutex_t* null_value = nullptr;
2717 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
2718 #else
2719 GTEST_SKIP() << "64-bit bionic-only test";
2720 #endif
2721 }
2722
2723 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
2724
2725 static volatile bool signal_handler_on_altstack_done;
2726
2727 __attribute__((__noinline__))
signal_handler_backtrace()2728 static void signal_handler_backtrace() {
2729 // Check if we have enough stack space for unwinding.
2730 int count = 0;
2731 _Unwind_Backtrace(FrameCounter, &count);
2732 ASSERT_GT(count, 0);
2733 }
2734
2735 __attribute__((__noinline__))
signal_handler_logging()2736 static void signal_handler_logging() {
2737 // Check if we have enough stack space for logging.
2738 std::string s(2048, '*');
2739 GTEST_LOG_(INFO) << s;
2740 signal_handler_on_altstack_done = true;
2741 }
2742
2743 __attribute__((__noinline__))
signal_handler_snprintf()2744 static void signal_handler_snprintf() {
2745 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
2746 char buf[PATH_MAX + 2048];
2747 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
2748 }
2749
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)2750 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
2751 ASSERT_EQ(SIGUSR1, signo);
2752 signal_handler_backtrace();
2753 signal_handler_logging();
2754 signal_handler_snprintf();
2755 }
2756
TEST(pthread,big_enough_signal_stack)2757 TEST(pthread, big_enough_signal_stack) {
2758 signal_handler_on_altstack_done = false;
2759 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
2760 kill(getpid(), SIGUSR1);
2761 ASSERT_TRUE(signal_handler_on_altstack_done);
2762 }
2763
TEST(pthread,pthread_barrierattr_smoke)2764 TEST(pthread, pthread_barrierattr_smoke) {
2765 pthread_barrierattr_t attr;
2766 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
2767 int pshared;
2768 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2769 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
2770 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
2771 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2772 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
2773 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
2774 }
2775
2776 struct BarrierTestHelperData {
2777 size_t thread_count;
2778 pthread_barrier_t barrier;
2779 std::atomic<int> finished_mask;
2780 std::atomic<int> serial_thread_count;
2781 size_t iteration_count;
2782 std::atomic<size_t> finished_iteration_count;
2783
BarrierTestHelperDataBarrierTestHelperData2784 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
2785 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
2786 iteration_count(iteration_count), finished_iteration_count(0) {
2787 }
2788 };
2789
2790 struct BarrierTestHelperArg {
2791 int id;
2792 BarrierTestHelperData* data;
2793 };
2794
BarrierTestHelper(BarrierTestHelperArg * arg)2795 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
2796 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
2797 int result = pthread_barrier_wait(&arg->data->barrier);
2798 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
2799 arg->data->serial_thread_count++;
2800 } else {
2801 ASSERT_EQ(0, result);
2802 }
2803 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
2804 mask |= 1 << arg->id;
2805 if (mask == ((1 << arg->data->thread_count) - 1)) {
2806 ASSERT_EQ(1, arg->data->serial_thread_count);
2807 arg->data->finished_iteration_count++;
2808 arg->data->finished_mask = 0;
2809 arg->data->serial_thread_count = 0;
2810 }
2811 }
2812 }
2813
TEST(pthread,pthread_barrier_smoke)2814 TEST(pthread, pthread_barrier_smoke) {
2815 const size_t BARRIER_ITERATION_COUNT = 10;
2816 const size_t BARRIER_THREAD_COUNT = 10;
2817 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
2818 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
2819 std::vector<pthread_t> threads(data.thread_count);
2820 std::vector<BarrierTestHelperArg> args(threads.size());
2821 for (size_t i = 0; i < threads.size(); ++i) {
2822 args[i].id = i;
2823 args[i].data = &data;
2824 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2825 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
2826 }
2827 for (size_t i = 0; i < threads.size(); ++i) {
2828 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2829 }
2830 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
2831 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
2832 }
2833
2834 struct BarrierDestroyTestArg {
2835 std::atomic<int> tid;
2836 pthread_barrier_t* barrier;
2837 };
2838
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2839 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2840 arg->tid = gettid();
2841 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2842 }
2843
TEST(pthread,pthread_barrier_destroy)2844 TEST(pthread, pthread_barrier_destroy) {
2845 pthread_barrier_t barrier;
2846 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2847 pthread_t thread;
2848 BarrierDestroyTestArg arg;
2849 arg.tid = 0;
2850 arg.barrier = &barrier;
2851 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2852 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2853 WaitUntilThreadSleep(arg.tid);
2854 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2855 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2856 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2857 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2858 ASSERT_EQ(0, pthread_join(thread, nullptr));
2859 #if defined(__BIONIC__)
2860 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2861 #endif
2862 }
2863
2864 struct BarrierOrderingTestHelperArg {
2865 pthread_barrier_t* barrier;
2866 size_t* array;
2867 size_t array_length;
2868 size_t id;
2869 };
2870
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2871 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2872 const size_t ITERATION_COUNT = 10000;
2873 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2874 arg->array[arg->id] = i;
2875 int result = pthread_barrier_wait(arg->barrier);
2876 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2877 for (size_t j = 0; j < arg->array_length; ++j) {
2878 ASSERT_EQ(i, arg->array[j]);
2879 }
2880 result = pthread_barrier_wait(arg->barrier);
2881 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2882 }
2883 }
2884
TEST(pthread,pthread_barrier_check_ordering)2885 TEST(pthread, pthread_barrier_check_ordering) {
2886 const size_t THREAD_COUNT = 4;
2887 pthread_barrier_t barrier;
2888 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2889 size_t array[THREAD_COUNT];
2890 std::vector<pthread_t> threads(THREAD_COUNT);
2891 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2892 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2893 args[i].barrier = &barrier;
2894 args[i].array = array;
2895 args[i].array_length = THREAD_COUNT;
2896 args[i].id = i;
2897 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2898 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2899 &args[i]));
2900 }
2901 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2902 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2903 }
2904 }
2905
TEST(pthread,pthread_barrier_init_zero_count)2906 TEST(pthread, pthread_barrier_init_zero_count) {
2907 pthread_barrier_t barrier;
2908 ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
2909 }
2910
TEST(pthread,pthread_spinlock_smoke)2911 TEST(pthread, pthread_spinlock_smoke) {
2912 pthread_spinlock_t lock;
2913 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2914 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2915 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2916 ASSERT_EQ(0, pthread_spin_lock(&lock));
2917 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2918 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2919 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2920 }
2921
TEST(pthread,pthread_attr_getdetachstate__pthread_attr_setdetachstate)2922 TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
2923 pthread_attr_t attr;
2924 ASSERT_EQ(0, pthread_attr_init(&attr));
2925
2926 int state;
2927 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2928 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2929 ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
2930
2931 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2932 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2933 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2934
2935 ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2936 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2937 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2938 }
2939
TEST(pthread,pthread_create__mmap_failures)2940 TEST(pthread, pthread_create__mmap_failures) {
2941 // After thread is successfully created, native_bridge might need more memory to run it.
2942 SKIP_WITH_NATIVE_BRIDGE;
2943
2944 pthread_attr_t attr;
2945 ASSERT_EQ(0, pthread_attr_init(&attr));
2946 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2947
2948 const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2949
2950 // Use up all the VMAs. By default this is 64Ki (though some will already be in use).
2951 std::vector<void*> pages;
2952 pages.reserve(64 * 1024);
2953 int prot = PROT_NONE;
2954 while (true) {
2955 void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2956 if (page == MAP_FAILED) break;
2957 pages.push_back(page);
2958 prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2959 }
2960
2961 // Try creating threads, freeing up a page each time we fail.
2962 size_t EAGAIN_count = 0;
2963 size_t i = 0;
2964 for (; i < pages.size(); ++i) {
2965 pthread_t t;
2966 int status = pthread_create(&t, &attr, IdFn, nullptr);
2967 if (status != EAGAIN) break;
2968 ++EAGAIN_count;
2969 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2970 }
2971
2972 // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
2973 // side. So we should have seen at least three failures.
2974 ASSERT_GE(EAGAIN_count, 3U);
2975
2976 for (; i < pages.size(); ++i) {
2977 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2978 }
2979 }
2980
TEST(pthread,pthread_setschedparam)2981 TEST(pthread, pthread_setschedparam) {
2982 sched_param p = { .sched_priority = INT_MIN };
2983 ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
2984 }
2985
TEST(pthread,pthread_setschedprio)2986 TEST(pthread, pthread_setschedprio) {
2987 ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
2988 }
2989
TEST(pthread,pthread_attr_getinheritsched__pthread_attr_setinheritsched)2990 TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
2991 pthread_attr_t attr;
2992 ASSERT_EQ(0, pthread_attr_init(&attr));
2993
2994 int state;
2995 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2996 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2997 ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
2998
2999 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
3000 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
3001 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
3002
3003 ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
3004 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
3005 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
3006 }
3007
TEST(pthread,pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED)3008 TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
3009 pthread_attr_t attr;
3010 ASSERT_EQ(0, pthread_attr_init(&attr));
3011
3012 // If we set invalid scheduling attributes but choose to inherit, everything's fine...
3013 sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
3014 ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m));
3015 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
3016 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
3017
3018 pthread_t t;
3019 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
3020 ASSERT_EQ(0, pthread_join(t, nullptr));
3021
3022 #if defined(__LP64__)
3023 // If we ask to use them, though, we'll see a failure...
3024 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
3025 ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
3026 #else
3027 // For backwards compatibility with broken apps, we just ignore failures
3028 // to set scheduler attributes on LP32.
3029 #endif
3030 }
3031
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect)3032 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
3033 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
3034 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
3035 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
3036 ASSERT_EQ(0, rc);
3037
3038 pthread_attr_t attr;
3039 ASSERT_EQ(0, pthread_attr_init(&attr));
3040 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
3041
3042 SpinFunctionHelper spin_helper;
3043 pthread_t t;
3044 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
3045 int actual_policy;
3046 sched_param actual_param;
3047 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
3048 ASSERT_EQ(SCHED_FIFO, actual_policy);
3049 spin_helper.UnSpin();
3050 ASSERT_EQ(0, pthread_join(t, nullptr));
3051 }
3052
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect)3053 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
3054 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
3055 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
3056 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
3057 ASSERT_EQ(0, rc);
3058
3059 pthread_attr_t attr;
3060 ASSERT_EQ(0, pthread_attr_init(&attr));
3061 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
3062 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
3063
3064 SpinFunctionHelper spin_helper;
3065 pthread_t t;
3066 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
3067 int actual_policy;
3068 sched_param actual_param;
3069 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
3070 ASSERT_EQ(SCHED_OTHER, actual_policy);
3071 spin_helper.UnSpin();
3072 ASSERT_EQ(0, pthread_join(t, nullptr));
3073 }
3074
TEST(pthread,pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK)3075 TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
3076 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
3077 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m);
3078 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
3079 ASSERT_EQ(0, rc);
3080
3081 pthread_attr_t attr;
3082 ASSERT_EQ(0, pthread_attr_init(&attr));
3083 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
3084
3085 SpinFunctionHelper spin_helper;
3086 pthread_t t;
3087 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
3088 int actual_policy;
3089 sched_param actual_param;
3090 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
3091 ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy);
3092 spin_helper.UnSpin();
3093 ASSERT_EQ(0, pthread_join(t, nullptr));
3094 }
3095
3096 extern "C" bool android_run_on_all_threads(bool (*func)(void*), void* arg);
3097
TEST(pthread,run_on_all_threads)3098 TEST(pthread, run_on_all_threads) {
3099 #if defined(__BIONIC__)
3100 pthread_t t;
3101 ASSERT_EQ(
3102 0, pthread_create(
3103 &t, nullptr,
3104 [](void*) -> void* {
3105 pthread_attr_t detached;
3106 if (pthread_attr_init(&detached) != 0 ||
3107 pthread_attr_setdetachstate(&detached, PTHREAD_CREATE_DETACHED) != 0) {
3108 return reinterpret_cast<void*>(errno);
3109 }
3110
3111 for (int i = 0; i != 1000; ++i) {
3112 pthread_t t1, t2;
3113 if (pthread_create(
3114 &t1, &detached, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
3115 pthread_create(
3116 &t2, nullptr, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
3117 pthread_join(t2, nullptr) != 0) {
3118 return reinterpret_cast<void*>(errno);
3119 }
3120 }
3121
3122 if (pthread_attr_destroy(&detached) != 0) {
3123 return reinterpret_cast<void*>(errno);
3124 }
3125 return nullptr;
3126 },
3127 nullptr));
3128
3129 for (int i = 0; i != 1000; ++i) {
3130 ASSERT_TRUE(android_run_on_all_threads([](void* arg) { return arg == nullptr; }, nullptr));
3131 }
3132
3133 void *retval;
3134 ASSERT_EQ(0, pthread_join(t, &retval));
3135 ASSERT_EQ(nullptr, retval);
3136 #else
3137 GTEST_SKIP() << "bionic-only test";
3138 #endif
3139 }
3140
TEST(pthread,pthread_getaffinity_np_failure)3141 TEST(pthread, pthread_getaffinity_np_failure) {
3142 // Trivial test of the errno-preserving/returning behavior.
3143 #pragma clang diagnostic push
3144 #pragma clang diagnostic ignored "-Wnonnull"
3145 errno = 0;
3146 ASSERT_EQ(EINVAL, pthread_getaffinity_np(pthread_self(), 0, nullptr));
3147 ASSERT_ERRNO(0);
3148 #pragma clang diagnostic pop
3149 }
3150
TEST(pthread,pthread_getaffinity)3151 TEST(pthread, pthread_getaffinity) {
3152 cpu_set_t set;
3153 CPU_ZERO(&set);
3154 ASSERT_EQ(0, pthread_getaffinity_np(pthread_self(), sizeof(set), &set));
3155 ASSERT_GT(CPU_COUNT(&set), 0);
3156 }
3157
TEST(pthread,pthread_setaffinity_np_failure)3158 TEST(pthread, pthread_setaffinity_np_failure) {
3159 // Trivial test of the errno-preserving/returning behavior.
3160 #pragma clang diagnostic push
3161 #pragma clang diagnostic ignored "-Wnonnull"
3162 errno = 0;
3163 ASSERT_EQ(EINVAL, pthread_setaffinity_np(pthread_self(), 0, nullptr));
3164 ASSERT_ERRNO(0);
3165 #pragma clang diagnostic pop
3166 }
3167
TEST(pthread,pthread_setaffinity)3168 TEST(pthread, pthread_setaffinity) {
3169 cpu_set_t set;
3170 CPU_ZERO(&set);
3171 ASSERT_EQ(0, pthread_getaffinity_np(pthread_self(), sizeof(set), &set));
3172 // It's hard to make any more general claim than this,
3173 // but it ought to be safe to ask for the same affinity you already have.
3174 ASSERT_EQ(0, pthread_setaffinity_np(pthread_self(), sizeof(set), &set));
3175 }
3176