1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "calibration/sphere_fit/sphere_fit_calibration.h"
18
19 #include <errno.h>
20 #include <stdarg.h>
21 #include <stdio.h>
22 #include <string.h>
23
24 #ifdef SPHERE_FIT_DBG_ENABLED
25 #include "calibration/util/cal_log.h"
26 #endif // SPHERE_FIT_DBG_ENABLED
27
28 #include "common/math/mat.h"
29 #include "common/math/vec.h"
30 #include "chre/util/nanoapp/assert.h"
31
32 // FORWARD DECLARATIONS
33 ///////////////////////////////////////////////////////////////////////////////
34 // Utility for converting solver state to a calibration data structure.
35 static void convertStateToCalStruct(const float x[SF_STATE_DIM],
36 struct ThreeAxisCalData *calstruct);
37
38 static bool runCalibration(struct SphereFitCal *sphere_cal,
39 const struct SphereFitData *data,
40 uint64_t timestamp_nanos);
41
42 #define MIN_VALID_DATA_NORM (1e-4f)
43
44 // FUNCTION IMPLEMENTATIONS
45 //////////////////////////////////////////////////////////////////////////////
sphereFitInit(struct SphereFitCal * sphere_cal,const struct LmParams * lm_params,const size_t min_num_points_for_cal)46 void sphereFitInit(struct SphereFitCal *sphere_cal,
47 const struct LmParams *lm_params,
48 const size_t min_num_points_for_cal) {
49 CHRE_ASSERT_NOT_NULL(sphere_cal);
50 CHRE_ASSERT_NOT_NULL(lm_params);
51
52 // Initialize LM solver.
53 lmSolverInit(&sphere_cal->lm_solver, lm_params,
54 &sphereFitResidAndJacobianFunc);
55
56 // Reset other parameters.
57 sphereFitReset(sphere_cal);
58
59 // Set num points for calibration, checking that it is above min.
60 if (min_num_points_for_cal < MIN_NUM_SPHERE_FIT_POINTS) {
61 sphere_cal->min_points_for_cal = MIN_NUM_SPHERE_FIT_POINTS;
62 } else {
63 sphere_cal->min_points_for_cal = min_num_points_for_cal;
64 }
65 }
66
sphereFitReset(struct SphereFitCal * sphere_cal)67 void sphereFitReset(struct SphereFitCal *sphere_cal) {
68 CHRE_ASSERT_NOT_NULL(sphere_cal);
69
70 // Set state to default (diagonal scale matrix and zero offset).
71 memset(&sphere_cal->x0[0], 0, sizeof(float) * SF_STATE_DIM);
72 sphere_cal->x0[eParamScaleMatrix11] = 1.f;
73 sphere_cal->x0[eParamScaleMatrix22] = 1.f;
74 sphere_cal->x0[eParamScaleMatrix33] = 1.f;
75 memcpy(sphere_cal->x, sphere_cal->x0, sizeof(sphere_cal->x));
76
77 // Reset time.
78 sphere_cal->estimate_time_nanos = 0;
79 }
80
sphereFitSetSolverData(struct SphereFitCal * sphere_cal,struct LmData * lm_data)81 void sphereFitSetSolverData(struct SphereFitCal *sphere_cal,
82 struct LmData *lm_data) {
83 CHRE_ASSERT_NOT_NULL(sphere_cal);
84 CHRE_ASSERT_NOT_NULL(lm_data);
85
86 // Set solver data.
87 lmSolverSetData(&sphere_cal->lm_solver, lm_data);
88 }
89
sphereFitRunCal(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)90 bool sphereFitRunCal(struct SphereFitCal *sphere_cal,
91 const struct SphereFitData *data,
92 uint64_t timestamp_nanos) {
93 CHRE_ASSERT_NOT_NULL(sphere_cal);
94 CHRE_ASSERT_NOT_NULL(data);
95
96 // Run calibration if have enough points.
97 if (data->num_fit_points >= sphere_cal->min_points_for_cal) {
98 return runCalibration(sphere_cal, data, timestamp_nanos);
99 }
100
101 return false;
102 }
103
sphereFitSetInitialBias(struct SphereFitCal * sphere_cal,const float initial_bias[THREE_AXIS_DIM])104 void sphereFitSetInitialBias(struct SphereFitCal *sphere_cal,
105 const float initial_bias[THREE_AXIS_DIM]) {
106 CHRE_ASSERT_NOT_NULL(sphere_cal);
107 sphere_cal->x0[eParamOffset1] = initial_bias[0];
108 sphere_cal->x0[eParamOffset2] = initial_bias[1];
109 sphere_cal->x0[eParamOffset3] = initial_bias[2];
110 }
111
sphereFitGetLatestCal(const struct SphereFitCal * sphere_cal,struct ThreeAxisCalData * cal_data)112 void sphereFitGetLatestCal(const struct SphereFitCal *sphere_cal,
113 struct ThreeAxisCalData *cal_data) {
114 CHRE_ASSERT_NOT_NULL(sphere_cal);
115 CHRE_ASSERT_NOT_NULL(cal_data);
116 convertStateToCalStruct(sphere_cal->x, cal_data);
117 cal_data->calibration_time_nanos = sphere_cal->estimate_time_nanos;
118 }
119
sphereFitResidAndJacobianFunc(const float * state,const void * f_data,float * residual,float * jacobian)120 void sphereFitResidAndJacobianFunc(const float *state, const void *f_data,
121 float *residual, float *jacobian) {
122 CHRE_ASSERT_NOT_NULL(state);
123 CHRE_ASSERT_NOT_NULL(f_data);
124 CHRE_ASSERT_NOT_NULL(residual);
125
126 const struct SphereFitData *data = (const struct SphereFitData *)f_data;
127
128 // Verify that expected norm is non-zero, else use default of 1.0.
129 float expected_norm = 1.0;
130 CHRE_ASSERT(data->expected_norm > MIN_VALID_DATA_NORM);
131 if (data->expected_norm > MIN_VALID_DATA_NORM) {
132 expected_norm = data->expected_norm;
133 }
134
135 // Convert parameters to calibration structure.
136 struct ThreeAxisCalData calstruct;
137 convertStateToCalStruct(state, &calstruct);
138
139 // Compute Jacobian helper matrix if Jacobian requested.
140 //
141 // J = d(||M(x_data - bias)|| - expected_norm)/dstate
142 // = (M(x_data - bias) / ||M(x_data - bias)||) * d(M(x_data - bias))/dstate
143 // = x_corr / ||x_corr|| * A
144 // A = d(M(x_data - bias))/dstate
145 // = [dy/dM11, dy/dM21, dy/dM22, dy/dM31, dy/dM32, dy/dM3,...
146 // dy/db1, dy/db2, dy/db3]'
147 // where:
148 // dy/dM11 = [x_data[0] - bias[0], 0, 0]
149 // dy/dM21 = [0, x_data[0] - bias[0], 0]
150 // dy/dM22 = [0, x_data[1] - bias[1], 0]
151 // dy/dM31 = [0, 0, x_data[0] - bias[0]]
152 // dy/dM32 = [0, 0, x_data[1] - bias[1]]
153 // dy/dM33 = [0, 0, x_data[2] - bias[2]]
154 // dy/db1 = [-scale_factor_x, 0, 0]
155 // dy/db2 = [0, -scale_factor_y, 0]
156 // dy/db3 = [0, 0, -scale_factor_z]
157 float A[SF_STATE_DIM * THREE_AXIS_DIM];
158 if (jacobian) {
159 memset(jacobian, 0, sizeof(float) * SF_STATE_DIM * data->num_fit_points);
160 memset(A, 0, sizeof(A));
161 A[0 * SF_STATE_DIM + eParamOffset1] = -calstruct.scale_factor_x;
162 A[1 * SF_STATE_DIM + eParamOffset2] = -calstruct.scale_factor_y;
163 A[2 * SF_STATE_DIM + eParamOffset3] = -calstruct.scale_factor_z;
164 }
165
166 // Loop over all data points to compute residual and Jacobian.
167 // TODO(dvitus): Use fit_data_std when available to weight residuals.
168 float x_corr[THREE_AXIS_DIM];
169 float x_bias_corr[THREE_AXIS_DIM];
170 size_t i;
171 for (i = 0; i < data->num_fit_points; ++i) {
172 const float *x_data = &data->fit_data[i * THREE_AXIS_DIM];
173
174 // Compute corrected sensor data
175 calDataCorrectData(&calstruct, x_data, x_corr);
176
177 // Compute norm of x_corr.
178 const float norm = vecNorm(x_corr, THREE_AXIS_DIM);
179
180 // Compute residual error: f_x = norm - exp_norm
181 residual[i] = norm - data->expected_norm;
182
183 // Compute Jacobian if valid pointer.
184 if (jacobian) {
185 if (norm < MIN_VALID_DATA_NORM) {
186 return;
187 }
188 const float scale = 1.f / norm;
189
190 // Compute bias corrected data.
191 vecSub(x_bias_corr, x_data, calstruct.bias, THREE_AXIS_DIM);
192
193 // Populate non-bias terms for A
194 A[0 + eParamScaleMatrix11] = x_bias_corr[0];
195 A[1 * SF_STATE_DIM + eParamScaleMatrix21] = x_bias_corr[0];
196 A[1 * SF_STATE_DIM + eParamScaleMatrix22] = x_bias_corr[1];
197 A[2 * SF_STATE_DIM + eParamScaleMatrix31] = x_bias_corr[0];
198 A[2 * SF_STATE_DIM + eParamScaleMatrix32] = x_bias_corr[1];
199 A[2 * SF_STATE_DIM + eParamScaleMatrix33] = x_bias_corr[2];
200
201 // Compute J = x_corr / ||x_corr|| * A
202 matTransposeMultiplyVec(&jacobian[i * SF_STATE_DIM], A, x_corr,
203 THREE_AXIS_DIM, SF_STATE_DIM);
204 vecScalarMulInPlace(&jacobian[i * SF_STATE_DIM], scale, SF_STATE_DIM);
205 }
206 }
207 }
208
convertStateToCalStruct(const float x[SF_STATE_DIM],struct ThreeAxisCalData * calstruct)209 void convertStateToCalStruct(const float x[SF_STATE_DIM],
210 struct ThreeAxisCalData *calstruct) {
211 memcpy(&calstruct->bias[0], &x[eParamOffset1],
212 sizeof(float) * THREE_AXIS_DIM);
213 calstruct->scale_factor_x = x[eParamScaleMatrix11];
214 calstruct->skew_yx = x[eParamScaleMatrix21];
215 calstruct->scale_factor_y = x[eParamScaleMatrix22];
216 calstruct->skew_zx = x[eParamScaleMatrix31];
217 calstruct->skew_zy = x[eParamScaleMatrix32];
218 calstruct->scale_factor_z = x[eParamScaleMatrix33];
219 }
220
runCalibration(struct SphereFitCal * sphere_cal,const struct SphereFitData * data,uint64_t timestamp_nanos)221 bool runCalibration(struct SphereFitCal *sphere_cal,
222 const struct SphereFitData *data,
223 uint64_t timestamp_nanos) {
224 float x_sol[SF_STATE_DIM];
225
226 // Run calibration
227 const enum LmStatus status =
228 lmSolverSolve(&sphere_cal->lm_solver, sphere_cal->x0, (void *)data,
229 SF_STATE_DIM, data->num_fit_points, x_sol);
230
231 // Check if solver was successful
232 if (status == RELATIVE_STEP_SUFFICIENTLY_SMALL ||
233 status == GRADIENT_SUFFICIENTLY_SMALL) {
234 // TODO(dvitus): Check quality of new fit before using.
235 // Store new fit.
236 #ifdef SPHERE_FIT_DBG_ENABLED
237 CAL_DEBUG_LOG("[SPHERE CAL]",
238 "Solution found in %d iterations with status %d.\n",
239 sphere_cal->lm_solver.num_iter, status);
240 CAL_DEBUG_LOG("[SPHERE CAL]", "Solution:\n {"
241 CAL_FORMAT_6DIGITS " [M(1,1)], "
242 CAL_FORMAT_6DIGITS " [M(2,1)], "
243 CAL_FORMAT_6DIGITS " [M(2,2)], \n"
244 CAL_FORMAT_6DIGITS " [M(3,1)], "
245 CAL_FORMAT_6DIGITS " [M(3,2)], "
246 CAL_FORMAT_6DIGITS " [M(3,3)], \n"
247 CAL_FORMAT_6DIGITS " [b(1)], "
248 CAL_FORMAT_6DIGITS " [b(2)], "
249 CAL_FORMAT_6DIGITS " [b(3)]}.",
250 CAL_ENCODE_FLOAT(x_sol[0], 6), CAL_ENCODE_FLOAT(x_sol[1], 6),
251 CAL_ENCODE_FLOAT(x_sol[2], 6), CAL_ENCODE_FLOAT(x_sol[3], 6),
252 CAL_ENCODE_FLOAT(x_sol[4], 6), CAL_ENCODE_FLOAT(x_sol[5], 6),
253 CAL_ENCODE_FLOAT(x_sol[6], 6), CAL_ENCODE_FLOAT(x_sol[7], 6),
254 CAL_ENCODE_FLOAT(x_sol[8], 6));
255 #endif // SPHERE_FIT_DBG_ENABLED
256 memcpy(sphere_cal->x, x_sol, sizeof(x_sol));
257 sphere_cal->estimate_time_nanos = timestamp_nanos;
258 return true;
259 } else {
260 #ifdef SPHERE_FIT_DBG_ENABLED
261 CAL_DEBUG_LOG("[SPHERE CAL]",
262 "Solution failed in %d iterations with status %d.\n",
263 sphere_cal->lm_solver.num_iter, status);
264 #endif // SPHERE_FIT_DBG_ENABLED
265 }
266
267 return false;
268 }
269