1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utils._ 24import utility._ 25import xiangshan._ 26import xiangshan.backend.decode.{DecodeStage, FusionDecoder, ImmUnion} 27import xiangshan.backend.dispatch.{Dispatch, Dispatch2Rs, DispatchQueue} 28import xiangshan.backend.fu.PFEvent 29import xiangshan.backend.rename.{Rename, RenameTableWrapper} 30import xiangshan.backend.rob.{Rob, RobCSRIO, RobLsqIO} 31import xiangshan.frontend.{FtqRead, Ftq_RF_Components} 32import xiangshan.mem.mdp.{LFST, SSIT, WaitTable} 33import xiangshan.ExceptionNO._ 34import xiangshan.backend.exu.ExuConfig 35import xiangshan.backend.regfile.RfReadPort 36import xiangshan.mem.{LsqEnqCtrl, LsqEnqIO} 37 38class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 39 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 40 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 41 val redirect = Valid(new Redirect) 42} 43 44class RedirectGenerator(implicit p: Parameters) extends XSModule 45 with HasCircularQueuePtrHelper { 46 47 class RedirectGeneratorIO(implicit p: Parameters) extends XSBundle { 48 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 49 val hartId = Input(UInt(8.W)) 50 val exuMispredict = Vec(numRedirect, Flipped(ValidIO(new ExuOutput))) 51 val loadReplay = Flipped(ValidIO(new Redirect)) 52 val flush = Input(Bool()) 53 val redirectPcRead = new FtqRead(UInt(VAddrBits.W)) 54 val stage2Redirect = ValidIO(new Redirect) 55 val stage3Redirect = ValidIO(new Redirect) 56 val memPredUpdate = Output(new MemPredUpdateReq) 57 val memPredPcRead = new FtqRead(UInt(VAddrBits.W)) // read req send form stage 2 58 val isMisspreRedirect = Output(Bool()) 59 } 60 val io = IO(new RedirectGeneratorIO) 61 /* 62 LoadQueue Jump ALU0 ALU1 ALU2 ALU3 exception Stage1 63 | | | | | | | 64 |============= reg & compare =====| | ======== 65 | | 66 | | 67 | | Stage2 68 | | 69 redirect (flush backend) | 70 | | 71 === reg === | ======== 72 | | 73 |----- mux (exception first) -----| Stage3 74 | 75 redirect (send to frontend) 76 */ 77 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 78 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 79 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 80 (if (j < i) !xs(j).valid || compareVec(i)(j) 81 else if (j == i) xs(i).valid 82 else !xs(j).valid || !compareVec(j)(i)) 83 )).andR)) 84 resultOnehot 85 } 86 87 def getRedirect(exuOut: Valid[ExuOutput]): ValidIO[Redirect] = { 88 val redirect = Wire(Valid(new Redirect)) 89 redirect.valid := exuOut.valid && exuOut.bits.redirect.cfiUpdate.isMisPred 90 redirect.bits := exuOut.bits.redirect 91 redirect 92 } 93 94 val jumpOut = io.exuMispredict.head 95 val allRedirect = VecInit(io.exuMispredict.map(x => getRedirect(x)) :+ io.loadReplay) 96 val oldestOneHot = selectOldestRedirect(allRedirect) 97 val needFlushVec = VecInit(allRedirect.map(_.bits.robIdx.needFlush(io.stage2Redirect) || io.flush)) 98 val oldestValid = VecInit(oldestOneHot.zip(needFlushVec).map{ case (v, f) => v && !f }).asUInt.orR 99 val oldestExuOutput = Mux1H(io.exuMispredict.indices.map(oldestOneHot), io.exuMispredict) 100 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 101 io.isMisspreRedirect := VecInit(io.exuMispredict.map(x => getRedirect(x).valid)).asUInt.orR 102 io.redirectPcRead.ptr := oldestRedirect.bits.ftqIdx 103 io.redirectPcRead.offset := oldestRedirect.bits.ftqOffset 104 105 val s1_jumpTarget = RegEnable(jumpOut.bits.redirect.cfiUpdate.target, jumpOut.valid) 106 val s1_imm12_reg = RegNext(oldestExuOutput.bits.uop.ctrl.imm(11, 0)) 107 val s1_pd = RegNext(oldestExuOutput.bits.uop.cf.pd) 108 val s1_redirect_bits_reg = RegNext(oldestRedirect.bits) 109 val s1_redirect_valid_reg = RegNext(oldestValid) 110 val s1_redirect_onehot = RegNext(oldestOneHot) 111 112 // stage1 -> stage2 113 io.stage2Redirect.valid := s1_redirect_valid_reg && !io.flush 114 io.stage2Redirect.bits := s1_redirect_bits_reg 115 116 val s1_isReplay = s1_redirect_onehot.last 117 val s1_isJump = s1_redirect_onehot.head 118 val real_pc = io.redirectPcRead.data 119 val brTarget = real_pc + SignExt(ImmUnion.B.toImm32(s1_imm12_reg), XLEN) 120 val snpc = real_pc + Mux(s1_pd.isRVC, 2.U, 4.U) 121 val target = Mux(s1_isReplay, 122 real_pc, // replay from itself 123 Mux(s1_redirect_bits_reg.cfiUpdate.taken, 124 Mux(s1_isJump, s1_jumpTarget, brTarget), 125 snpc 126 ) 127 ) 128 129 val stage2CfiUpdate = io.stage2Redirect.bits.cfiUpdate 130 stage2CfiUpdate.pc := real_pc 131 stage2CfiUpdate.pd := s1_pd 132 // stage2CfiUpdate.predTaken := s1_redirect_bits_reg.cfiUpdate.predTaken 133 stage2CfiUpdate.target := target 134 // stage2CfiUpdate.taken := s1_redirect_bits_reg.cfiUpdate.taken 135 // stage2CfiUpdate.isMisPred := s1_redirect_bits_reg.cfiUpdate.isMisPred 136 137 val s2_target = RegEnable(target, s1_redirect_valid_reg) 138 val s2_pc = RegEnable(real_pc, s1_redirect_valid_reg) 139 val s2_redirect_bits_reg = RegEnable(s1_redirect_bits_reg, s1_redirect_valid_reg) 140 val s2_redirect_valid_reg = RegNext(s1_redirect_valid_reg && !io.flush, init = false.B) 141 142 io.stage3Redirect.valid := s2_redirect_valid_reg 143 io.stage3Redirect.bits := s2_redirect_bits_reg 144 145 // get pc from ftq 146 // valid only if redirect is caused by load violation 147 // store_pc is used to update store set 148 val store_pc = io.memPredPcRead(s1_redirect_bits_reg.stFtqIdx, s1_redirect_bits_reg.stFtqOffset) 149 150 // update load violation predictor if load violation redirect triggered 151 io.memPredUpdate.valid := RegNext(s1_isReplay && s1_redirect_valid_reg, init = false.B) 152 // update wait table 153 io.memPredUpdate.waddr := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 154 io.memPredUpdate.wdata := true.B 155 // update store set 156 io.memPredUpdate.ldpc := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 157 // store pc is ready 1 cycle after s1_isReplay is judged 158 io.memPredUpdate.stpc := XORFold(store_pc(VAddrBits-1, 1), MemPredPCWidth) 159 160 // // recover runahead checkpoint if redirect 161 // if (!env.FPGAPlatform) { 162 // val runahead_redirect = Module(new DifftestRunaheadRedirectEvent) 163 // runahead_redirect.io.clock := clock 164 // runahead_redirect.io.coreid := io.hartId 165 // runahead_redirect.io.valid := io.stage3Redirect.valid 166 // runahead_redirect.io.pc := s2_pc // for debug only 167 // runahead_redirect.io.target_pc := s2_target // for debug only 168 // runahead_redirect.io.checkpoint_id := io.stage3Redirect.bits.debug_runahead_checkpoint_id // make sure it is right 169 // } 170} 171 172class CtrlBlock(dpExuConfigs: Seq[Seq[Seq[ExuConfig]]])(implicit p: Parameters) extends LazyModule 173 with HasWritebackSink with HasWritebackSource { 174 val rob = LazyModule(new Rob) 175 176 override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 177 rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 178 super.addWritebackSink(source, index) 179 } 180 181 // duplicated dispatch2 here to avoid cross-module timing path loop. 182 val dispatch2 = dpExuConfigs.map(c => LazyModule(new Dispatch2Rs(c))) 183 lazy val module = new CtrlBlockImp(this) 184 185 override lazy val writebackSourceParams: Seq[WritebackSourceParams] = { 186 writebackSinksParams 187 } 188 override lazy val writebackSourceImp: HasWritebackSourceImp = module 189 190 override def generateWritebackIO( 191 thisMod: Option[HasWritebackSource] = None, 192 thisModImp: Option[HasWritebackSourceImp] = None 193 ): Unit = { 194 module.io.writeback.zip(writebackSinksImp(thisMod, thisModImp)).foreach(x => x._1 := x._2) 195 } 196} 197 198class CtrlBlockImp(outer: CtrlBlock)(implicit p: Parameters) extends LazyModuleImp(outer) 199 with HasXSParameter 200 with HasCircularQueuePtrHelper 201 with HasWritebackSourceImp 202 with HasPerfEvents 203{ 204 val writebackLengths = outer.writebackSinksParams.map(_.length) 205 206 val io = IO(new Bundle { 207 val hartId = Input(UInt(8.W)) 208 val cpu_halt = Output(Bool()) 209 val frontend = Flipped(new FrontendToCtrlIO) 210 // to exu blocks 211 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 212 val dispatch = Vec(3*dpParams.IntDqDeqWidth, DecoupledIO(new MicroOp)) 213 val rsReady = Vec(outer.dispatch2.map(_.module.io.out.length).sum, Input(Bool())) 214 val enqLsq = Flipped(new LsqEnqIO) 215 val lqCancelCnt = Input(UInt(log2Up(LoadQueueSize + 1).W)) 216 val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) 217 val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) 218 219 val vconfigReadPort = Flipped(new RfReadPort(XLEN, PhyRegIdxWidth)) 220 // from int block 221 val exuRedirect = Vec(exuParameters.AluCnt + exuParameters.JmpCnt, Flipped(ValidIO(new ExuOutput))) 222 val stIn = Vec(exuParameters.StuCnt, Flipped(ValidIO(new ExuInput))) 223 val memoryViolation = Flipped(ValidIO(new Redirect)) 224 val jumpPc = Output(UInt(VAddrBits.W)) 225 val jalr_target = Output(UInt(VAddrBits.W)) 226 val robio = new Bundle { 227 // to int block 228 val toCSR = new RobCSRIO 229 val exception = ValidIO(new ExceptionInfo) 230 // to mem block 231 val lsq = new RobLsqIO 232 } 233 val csrCtrl = Input(new CustomCSRCtrlIO) 234 val perfInfo = Output(new Bundle{ 235 val ctrlInfo = new Bundle { 236 val robFull = Input(Bool()) 237 val intdqFull = Input(Bool()) 238 val fpdqFull = Input(Bool()) 239 val lsdqFull = Input(Bool()) 240 } 241 }) 242 val writeback = MixedVec(writebackLengths.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 243 // redirect out 244 val redirect = ValidIO(new Redirect) 245 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 246 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 247 val debug_vec_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) // TODO: use me 248 val debug_vconfig_rat = Output(UInt(PhyRegIdxWidth.W)) // TODO: use me 249 }) 250 251 override def writebackSource: Option[Seq[Seq[Valid[ExuOutput]]]] = { 252 Some(io.writeback.map(writeback => { 253 val exuOutput = WireInit(writeback) 254 val timer = GTimer() 255 for ((wb_next, wb) <- exuOutput.zip(writeback)) { 256 wb_next.valid := RegNext(wb.valid && !wb.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu))) 257 wb_next.bits := RegNext(wb.bits) 258 wb_next.bits.uop.debugInfo.writebackTime := timer 259 } 260 exuOutput 261 })) 262 } 263 264 val decode = Module(new DecodeStage) 265 val fusionDecoder = Module(new FusionDecoder) 266 val rat = Module(new RenameTableWrapper) 267 val ssit = Module(new SSIT) 268 val waittable = Module(new WaitTable) 269 val rename = Module(new Rename) 270 val dispatch = Module(new Dispatch) 271 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 272 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 273 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 274 val redirectGen = Module(new RedirectGenerator) 275 // jumpPc (2) + redirects (1) + loadPredUpdate (1) + jalr_target (1) + robFlush (1) 276 val pcMem = Module(new SyncDataModuleTemplate(new Ftq_RF_Components, FtqSize, 6, 1, "BackendPC")) 277 val rob = outer.rob.module 278 279 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 280 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 281 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 282 283 pcMem.io.raddr.last := rob.io.flushOut.bits.ftqIdx.value 284 val flushPC = pcMem.io.rdata.last.getPc(RegNext(rob.io.flushOut.bits.ftqOffset)) 285 286 val flushRedirect = Wire(Valid(new Redirect)) 287 flushRedirect.valid := RegNext(rob.io.flushOut.valid) 288 flushRedirect.bits := RegEnable(rob.io.flushOut.bits, rob.io.flushOut.valid) 289 290 val flushRedirectReg = Wire(Valid(new Redirect)) 291 flushRedirectReg.valid := RegNext(flushRedirect.valid, init = false.B) 292 flushRedirectReg.bits := RegEnable(flushRedirect.bits, flushRedirect.valid) 293 294 val isCommitWriteVconfigVec = rob.io.commits.commitValid.zip(rob.io.commits.info).map{case (valid, info) => valid && info.ldest === 32.U}.reverse 295 val isWalkWriteVconfigVec = rob.io.commits.walkValid.zip(rob.io.commits.info).map{case (valid, info) => valid && info.ldest === 32.U}.reverse 296 val pdestReverse = rob.io.commits.info.map(info => info.pdest).reverse 297 val commitSel = PriorityMux(isCommitWriteVconfigVec, pdestReverse) 298 val walkSel = PriorityMux(isWalkWriteVconfigVec, pdestReverse) 299 val vconfigAddr = Mux(rob.io.commits.isCommit, commitSel, walkSel) 300 io.vconfigReadPort.addr := RegNext(vconfigAddr) 301 decode.io.vconfig := io.vconfigReadPort.data 302 decode.io.isVsetFlushPipe := rob.io.isVsetFlushPipe 303 304 val stage2Redirect = Mux(flushRedirect.valid, flushRedirect, redirectGen.io.stage2Redirect) 305 // Redirect will be RegNext at ExuBlocks. 306 val redirectForExu = RegNextWithEnable(stage2Redirect) 307 308 val exuRedirect = io.exuRedirect.map(x => { 309 val valid = x.valid && x.bits.redirectValid 310 val killedByOlder = x.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)) 311 val delayed = Wire(Valid(new ExuOutput)) 312 delayed.valid := RegNext(valid && !killedByOlder, init = false.B) 313 delayed.bits := RegEnable(x.bits, x.valid) 314 delayed 315 }) 316 val loadReplay = Wire(Valid(new Redirect)) 317 loadReplay.valid := RegNext(io.memoryViolation.valid && 318 !io.memoryViolation.bits.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)), 319 init = false.B 320 ) 321 loadReplay.bits := RegEnable(io.memoryViolation.bits, io.memoryViolation.valid) 322 pcMem.io.raddr(2) := redirectGen.io.redirectPcRead.ptr.value 323 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(2).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 324 pcMem.io.raddr(3) := redirectGen.io.memPredPcRead.ptr.value 325 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(3).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 326 redirectGen.io.hartId := io.hartId 327 redirectGen.io.exuMispredict <> exuRedirect 328 redirectGen.io.loadReplay <> loadReplay 329 redirectGen.io.flush := flushRedirect.valid 330 331 val frontendFlushValid = DelayN(flushRedirect.valid, 5) 332 val frontendFlushBits = RegEnable(flushRedirect.bits, flushRedirect.valid) 333 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 334 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 335 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 336 for (i <- 0 until CommitWidth) { 337 // why flushOut: instructions with flushPipe are not commited to frontend 338 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 339 val is_commit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && rob.io.commits.info(i).uopIdx.andR && !rob.io.flushOut.valid 340 io.frontend.toFtq.rob_commits(i).valid := RegNext(is_commit) 341 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), is_commit) 342 } 343 io.frontend.toFtq.redirect.valid := frontendFlushValid || redirectGen.io.stage2Redirect.valid 344 io.frontend.toFtq.redirect.bits := Mux(frontendFlushValid, frontendFlushBits, redirectGen.io.stage2Redirect.bits) 345 // Be careful here: 346 // T0: flushRedirect.valid, exception.valid 347 // T1: csr.redirect.valid 348 // T2: csr.exception.valid 349 // T3: csr.trapTarget 350 // T4: ctrlBlock.trapTarget 351 // T5: io.frontend.toFtq.stage2Redirect.valid 352 val pc_from_csr = io.robio.toCSR.isXRet || DelayN(rob.io.exception.valid, 4) 353 val rob_flush_pc = RegEnable(Mux(flushRedirect.bits.flushItself(), 354 flushPC, // replay inst 355 flushPC + 4.U // flush pipe 356 ), flushRedirect.valid) 357 val flushTarget = Mux(pc_from_csr, io.robio.toCSR.trapTarget, rob_flush_pc) 358 when (frontendFlushValid) { 359 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 360 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 361 } 362 363 364 val pendingRedirect = RegInit(false.B) 365 when (stage2Redirect.valid) { 366 pendingRedirect := true.B 367 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 368 pendingRedirect := false.B 369 } 370 371 if (env.EnableTopDown) { 372 val stage2Redirect_valid_when_pending = pendingRedirect && stage2Redirect.valid 373 374 val stage2_redirect_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect 375 val MissPredPending = RegInit(false.B); val branch_resteers_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->branch_resteers 376 val RobFlushPending = RegInit(false.B); val robFlush_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->robflush_bubble 377 val LdReplayPending = RegInit(false.B); val ldReplay_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->ldReplay_bubble 378 379 when(redirectGen.io.isMisspreRedirect) { MissPredPending := true.B } 380 when(flushRedirect.valid) { RobFlushPending := true.B } 381 when(redirectGen.io.loadReplay.valid) { LdReplayPending := true.B } 382 383 when (RegNext(io.frontend.toFtq.redirect.valid)) { 384 when(pendingRedirect) { stage2_redirect_cycles := true.B } 385 when(MissPredPending) { MissPredPending := false.B; branch_resteers_cycles := true.B } 386 when(RobFlushPending) { RobFlushPending := false.B; robFlush_bubble_cycles := true.B } 387 when(LdReplayPending) { LdReplayPending := false.B; ldReplay_bubble_cycles := true.B } 388 } 389 390 when(VecInit(decode.io.out.map(x => x.valid)).asUInt.orR){ 391 when(stage2_redirect_cycles) { stage2_redirect_cycles := false.B } 392 when(branch_resteers_cycles) { branch_resteers_cycles := false.B } 393 when(robFlush_bubble_cycles) { robFlush_bubble_cycles := false.B } 394 when(ldReplay_bubble_cycles) { ldReplay_bubble_cycles := false.B } 395 } 396 397 XSPerfAccumulate("stage2_redirect_cycles", stage2_redirect_cycles) 398 XSPerfAccumulate("branch_resteers_cycles", branch_resteers_cycles) 399 XSPerfAccumulate("robFlush_bubble_cycles", robFlush_bubble_cycles) 400 XSPerfAccumulate("ldReplay_bubble_cycles", ldReplay_bubble_cycles) 401 XSPerfAccumulate("s2Redirect_pend_cycles", stage2Redirect_valid_when_pending) 402 } 403 404 decode.io.in <> io.frontend.cfVec 405 decode.io.csrCtrl := RegNext(io.csrCtrl) 406 decode.io.intRat <> rat.io.intReadPorts 407 decode.io.fpRat <> rat.io.fpReadPorts 408 decode.io.vecRat <> rat.io.vecReadPorts 409 decode.io.isRedirect <> stage2Redirect.valid 410 decode.io.robCommits <> rob.io.commits 411 412 // memory dependency predict 413 // when decode, send fold pc to mdp 414 for (i <- 0 until DecodeWidth) { 415 val mdp_foldpc = Mux( 416 decode.io.out(i).fire, 417 decode.io.out(i).bits.cf.foldpc, 418 rename.io.in(i).bits.cf.foldpc 419 ) 420 ssit.io.raddr(i) := mdp_foldpc 421 waittable.io.raddr(i) := mdp_foldpc 422 } 423 // currently, we only update mdp info when isReplay 424 ssit.io.update <> RegNext(redirectGen.io.memPredUpdate) 425 ssit.io.csrCtrl := RegNext(io.csrCtrl) 426 waittable.io.update <> RegNext(redirectGen.io.memPredUpdate) 427 waittable.io.csrCtrl := RegNext(io.csrCtrl) 428 429 // LFST lookup and update 430 val lfst = Module(new LFST) 431 lfst.io.redirect <> RegNext(io.redirect) 432 lfst.io.storeIssue <> RegNext(io.stIn) 433 lfst.io.csrCtrl <> RegNext(io.csrCtrl) 434 lfst.io.dispatch <> dispatch.io.lfst 435 436 rat.io.redirect := stage2Redirect.valid 437 rat.io.robCommits := rob.io.commits 438 rat.io.intRenamePorts := rename.io.intRenamePorts 439 rat.io.fpRenamePorts := rename.io.fpRenamePorts 440 rat.io.vecRenamePorts := rename.io.vecRenamePorts 441 442 io.debug_int_rat := rat.io.debug_int_rat 443 io.debug_fp_rat := rat.io.debug_fp_rat 444 io.debug_vec_rat := rat.io.debug_vec_rat 445 io.debug_vconfig_rat := rat.io.debug_vconfig_rat 446 447 // pipeline between decode and rename 448 for (i <- 0 until RenameWidth) { 449 // fusion decoder 450 val decodeHasException = decode.io.out(i).bits.cf.exceptionVec(instrPageFault) || decode.io.out(i).bits.cf.exceptionVec(instrAccessFault) 451 val disableFusion = decode.io.csrCtrl.singlestep || !decode.io.csrCtrl.fusion_enable 452 fusionDecoder.io.in(i).valid := decode.io.out(i).valid && !(decodeHasException || disableFusion) 453 fusionDecoder.io.in(i).bits := decode.io.out(i).bits.cf.instr 454 if (i > 0) { 455 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 456 } 457 458 // Pipeline 459 val renamePipe = PipelineNext(decode.io.out(i), rename.io.in(i).ready, 460 stage2Redirect.valid || pendingRedirect) 461 renamePipe.ready := rename.io.in(i).ready 462 rename.io.in(i).valid := renamePipe.valid && !fusionDecoder.io.clear(i) 463 rename.io.in(i).bits := renamePipe.bits 464 rename.io.intReadPorts(i) := rat.io.intReadPorts(i).map(_.data) 465 rename.io.fpReadPorts(i) := rat.io.fpReadPorts(i).map(_.data) 466 rename.io.vecReadPorts(i) := rat.io.vecReadPorts(i).map(_.data) 467 rename.io.waittable(i) := RegEnable(waittable.io.rdata(i), decode.io.out(i).fire) 468 469 if (i < RenameWidth - 1) { 470 // fusion decoder sees the raw decode info 471 fusionDecoder.io.dec(i) := renamePipe.bits.ctrl 472 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 473 474 // update the first RenameWidth - 1 instructions 475 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 476 when (fusionDecoder.io.out(i).valid) { 477 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits.ctrl) 478 // TODO: remove this dirty code for ftq update 479 val sameFtqPtr = rename.io.in(i).bits.cf.ftqPtr.value === rename.io.in(i + 1).bits.cf.ftqPtr.value 480 val ftqOffset0 = rename.io.in(i).bits.cf.ftqOffset 481 val ftqOffset1 = rename.io.in(i + 1).bits.cf.ftqOffset 482 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 483 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 484 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 485 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 486 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 487 rename.io.in(i).bits.ctrl.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 488 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 489 } 490 } 491 } 492 493 rename.io.redirect <> stage2Redirect 494 rename.io.robCommits <> rob.io.commits 495 rename.io.ssit <> ssit.io.rdata 496 rename.io.debug_int_rat <> rat.io.debug_int_rat 497 rename.io.debug_vconfig_rat <> rat.io.debug_vconfig_rat 498 rename.io.debug_fp_rat <> rat.io.debug_fp_rat 499 500 // pipeline between rename and dispatch 501 for (i <- 0 until RenameWidth) { 502 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), stage2Redirect.valid) 503 } 504 505 dispatch.io.hartId := io.hartId 506 dispatch.io.redirect <> stage2Redirect 507 dispatch.io.enqRob <> rob.io.enq 508 dispatch.io.toIntDq <> intDq.io.enq 509 dispatch.io.toFpDq <> fpDq.io.enq 510 dispatch.io.toLsDq <> lsDq.io.enq 511 dispatch.io.allocPregs <> io.allocPregs 512 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 513 514 intDq.io.redirect <> redirectForExu 515 fpDq.io.redirect <> redirectForExu 516 lsDq.io.redirect <> redirectForExu 517 518 val dpqOut = intDq.io.deq ++ lsDq.io.deq ++ fpDq.io.deq 519 io.dispatch <> dpqOut 520 521 for (dp2 <- outer.dispatch2.map(_.module.io)) { 522 dp2.redirect := redirectForExu 523 if (dp2.readFpState.isDefined) { 524 dp2.readFpState.get := DontCare 525 } 526 if (dp2.readIntState.isDefined) { 527 dp2.readIntState.get := DontCare 528 } 529 if (dp2.enqLsq.isDefined) { 530 val lsqCtrl = Module(new LsqEnqCtrl) 531 lsqCtrl.io.redirect <> redirectForExu 532 lsqCtrl.io.enq <> dp2.enqLsq.get 533 lsqCtrl.io.lcommit := rob.io.lsq.lcommit 534 lsqCtrl.io.scommit := io.sqDeq 535 lsqCtrl.io.lqCancelCnt := io.lqCancelCnt 536 lsqCtrl.io.sqCancelCnt := io.sqCancelCnt 537 io.enqLsq <> lsqCtrl.io.enqLsq 538 } 539 } 540 for ((dp2In, i) <- outer.dispatch2.flatMap(_.module.io.in).zipWithIndex) { 541 dp2In.valid := dpqOut(i).valid 542 dp2In.bits := dpqOut(i).bits 543 // override ready here to avoid cross-module loop path 544 dpqOut(i).ready := dp2In.ready 545 } 546 for ((dp2Out, i) <- outer.dispatch2.flatMap(_.module.io.out).zipWithIndex) { 547 dp2Out.ready := io.rsReady(i) 548 } 549 550 val pingpong = RegInit(false.B) 551 pingpong := !pingpong 552 pcMem.io.raddr(0) := intDq.io.deqNext(0).cf.ftqPtr.value 553 pcMem.io.raddr(1) := intDq.io.deqNext(2).cf.ftqPtr.value 554 val jumpPcRead0 = pcMem.io.rdata(0).getPc(RegNext(intDq.io.deqNext(0).cf.ftqOffset)) 555 val jumpPcRead1 = pcMem.io.rdata(1).getPc(RegNext(intDq.io.deqNext(2).cf.ftqOffset)) 556 io.jumpPc := Mux(pingpong && (exuParameters.AluCnt > 2).B, jumpPcRead1, jumpPcRead0) 557 val jalrTargetReadPtr = Mux(pingpong && (exuParameters.AluCnt > 2).B, 558 io.dispatch(2).bits.cf.ftqPtr, 559 io.dispatch(0).bits.cf.ftqPtr) 560 pcMem.io.raddr(4) := (jalrTargetReadPtr + 1.U).value 561 val jalrTargetRead = pcMem.io.rdata(4).startAddr 562 val read_from_newest_entry = RegNext(jalrTargetReadPtr) === RegNext(io.frontend.fromFtq.newest_entry_ptr) 563 io.jalr_target := Mux(read_from_newest_entry, RegNext(io.frontend.fromFtq.newest_entry_target), jalrTargetRead) 564 565 rob.io.hartId := io.hartId 566 io.cpu_halt := DelayN(rob.io.cpu_halt, 5) 567 rob.io.redirect <> stage2Redirect 568 outer.rob.generateWritebackIO(Some(outer), Some(this)) 569 570 io.redirect <> stage2Redirect 571 572 // rob to int block 573 io.robio.toCSR <> rob.io.csr 574 // When wfi is disabled, it will not block ROB commit. 575 rob.io.csr.wfiEvent := io.robio.toCSR.wfiEvent 576 rob.io.wfi_enable := decode.io.csrCtrl.wfi_enable 577 io.robio.toCSR.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 578 io.robio.exception := rob.io.exception 579 io.robio.exception.bits.uop.cf.pc := flushPC 580 581 io.robio.toCSR.vcsrFlag := RegNext(rob.io.commits.isCommit && Cat(isCommitWriteVconfigVec).orR) 582 583 // rob to mem block 584 io.robio.lsq <> rob.io.lsq 585 586 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 587 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 588 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 589 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 590 591 val pfevent = Module(new PFEvent) 592 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 593 val csrevents = pfevent.io.hpmevent.slice(8,16) 594 595 val perfinfo = IO(new Bundle(){ 596 val perfEventsRs = Input(Vec(NumRs, new PerfEvent)) 597 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 598 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 599 }) 600 601 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 602 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 603 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 604 generatePerfEvent() 605} 606