1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.fu 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.util._ 24import utility.MaskedRegMap.WritableMask 25import utils._ 26import utility._ 27import xiangshan.ExceptionNO._ 28import xiangshan._ 29import xiangshan.backend.fu.util._ 30import xiangshan.cache._ 31import xiangshan.backend.Bundles.ExceptionInfo 32import xiangshan.backend.fu.util.CSR.CSRNamedConstant.ContextStatus 33import utils.MathUtils.{BigIntGenMask, BigIntNot} 34 35// Trigger Tdata1 bundles 36trait HasTriggerConst { 37 def I_Trigger = 0.U 38 def S_Trigger = 1.U 39 def L_Trigger = 2.U 40 def GenESL(triggerType: UInt) = Cat((triggerType === I_Trigger), (triggerType === S_Trigger), (triggerType === L_Trigger)) 41} 42 43class FpuCsrIO extends Bundle { 44 val fflags = Output(Valid(UInt(5.W))) 45 val isIllegal = Output(Bool()) 46 val dirty_fs = Output(Bool()) 47 val frm = Input(UInt(3.W)) 48} 49 50class VpuCsrIO(implicit p: Parameters) extends XSBundle { 51 val vstart = Input(UInt(XLEN.W)) 52 val vxsat = Input(UInt(1.W)) 53 val vxrm = Input(UInt(2.W)) 54 val vcsr = Input(UInt(XLEN.W)) 55 val vl = Input(UInt(XLEN.W)) 56 val vtype = Input(UInt(XLEN.W)) 57 val vlenb = Input(UInt(XLEN.W)) 58 59 val vill = Input(UInt(1.W)) 60 val vma = Input(UInt(1.W)) 61 val vta = Input(UInt(1.W)) 62 val vsew = Input(UInt(3.W)) 63 val vlmul = Input(UInt(3.W)) 64 65 val set_vstart = Output(Valid(UInt(XLEN.W))) 66 val set_vl = Output(Valid(UInt(XLEN.W))) 67 val set_vtype = Output(Valid(UInt(XLEN.W))) 68 val set_vxsat = Output(Valid(UInt(1.W))) 69 70 val dirty_vs = Output(Bool()) 71} 72 73 74class PerfCounterIO(implicit p: Parameters) extends XSBundle { 75 val perfEventsFrontend = Vec(numCSRPCntFrontend, new PerfEvent) 76 val perfEventsCtrl = Vec(numCSRPCntCtrl, new PerfEvent) 77 val perfEventsLsu = Vec(numCSRPCntLsu, new PerfEvent) 78 val perfEventsHc = Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent) 79 val retiredInstr = UInt(3.W) 80 val frontendInfo = new Bundle { 81 val ibufFull = Bool() 82 val bpuInfo = new Bundle { 83 val bpRight = UInt(XLEN.W) 84 val bpWrong = UInt(XLEN.W) 85 } 86 } 87 val ctrlInfo = new Bundle { 88 val robFull = Bool() 89 val intdqFull = Bool() 90 val fpdqFull = Bool() 91 val lsdqFull = Bool() 92 } 93 val memInfo = new Bundle { 94 val sqFull = Bool() 95 val lqFull = Bool() 96 val dcacheMSHRFull = Bool() 97 } 98} 99 100class CSRFileIO(implicit p: Parameters) extends XSBundle { 101 val hartId = Input(UInt(8.W)) 102 // output (for func === CSROpType.jmp) 103 val perf = Input(new PerfCounterIO) 104 val isPerfCnt = Output(Bool()) 105 // to FPU 106 val fpu = Flipped(new FpuCsrIO) 107 // to VPU 108 val vpu = Flipped(new VpuCsrIO) 109 // from rob 110 val exception = Flipped(ValidIO(new ExceptionInfo)) 111 // to ROB 112 val isXRet = Output(Bool()) 113 val trapTarget = Output(UInt(VAddrBits.W)) 114 val interrupt = Output(Bool()) 115 val wfi_event = Output(Bool()) 116 // from LSQ 117 val memExceptionVAddr = Input(UInt(VAddrBits.W)) 118 // from outside cpu,externalInterrupt 119 val externalInterrupt = new ExternalInterruptIO 120 // TLB 121 val tlb = Output(new TlbCsrBundle) 122 // Debug Mode 123 // val singleStep = Output(Bool()) 124 val debugMode = Output(Bool()) 125 // to Fence to disable sfence 126 val disableSfence = Output(Bool()) 127 // Custom microarchiture ctrl signal 128 val customCtrl = Output(new CustomCSRCtrlIO) 129 // distributed csr write 130 val distributedUpdate = Vec(2, Flipped(new DistributedCSRUpdateReq)) 131} 132 133class VtypeStruct(implicit p: Parameters) extends XSBundle { 134 val vill = UInt(1.W) 135 val reserved = UInt((XLEN - 9).W) 136 val vma = UInt(1.W) 137 val vta = UInt(1.W) 138 val vsew = UInt(3.W) 139 val vlmul = UInt(3.W) 140} 141 142class CSR(cfg: FuConfig)(implicit p: Parameters) extends FuncUnit(cfg) 143 with HasCSRConst 144 with PMPMethod 145 with PMAMethod 146 with HasTriggerConst 147 with HasXSParameter 148 with SdtrigExt 149 with DebugCSR 150{ 151 val csrio = io.csrio.get 152 153 val flushPipe = Wire(Bool()) 154 155 val (valid, src1, src2, func) = ( 156 io.in.valid, 157 io.in.bits.data.src(0), 158 io.in.bits.data.imm, 159 io.in.bits.ctrl.fuOpType 160 ) 161 162 // CSR define 163 164 class Priv extends Bundle { 165 val m = Output(Bool()) 166 val h = Output(Bool()) 167 val s = Output(Bool()) 168 val u = Output(Bool()) 169 } 170 171 class MstatusStruct extends Bundle { 172 val sd = Output(UInt(1.W)) 173 174 val pad1 = if (XLEN == 64) Output(UInt(25.W)) else null 175 val mbe = if (XLEN == 64) Output(UInt(1.W)) else null 176 val sbe = if (XLEN == 64) Output(UInt(1.W)) else null 177 val sxl = if (XLEN == 64) Output(UInt(2.W)) else null 178 val uxl = if (XLEN == 64) Output(UInt(2.W)) else null 179 val pad0 = if (XLEN == 64) Output(UInt(9.W)) else Output(UInt(8.W)) 180 181 val tsr = Output(UInt(1.W)) 182 val tw = Output(UInt(1.W)) 183 val tvm = Output(UInt(1.W)) 184 val mxr = Output(UInt(1.W)) 185 val sum = Output(UInt(1.W)) 186 val mprv = Output(UInt(1.W)) 187 val xs = Output(UInt(2.W)) 188 val fs = Output(UInt(2.W)) 189 val mpp = Output(UInt(2.W)) 190 val vs = Output(UInt(2.W)) 191 val spp = Output(UInt(1.W)) 192 val pie = new Priv 193 val ie = new Priv 194 assert(this.getWidth == XLEN) 195 196 def ube = pie.h // a little ugly 197 def ube_(r: UInt): Unit = { 198 pie.h := r(0) 199 } 200 } 201 202 class Interrupt extends Bundle { 203// val d = Output(Bool()) // Debug 204 val e = new Priv 205 val t = new Priv 206 val s = new Priv 207 } 208 209 val csrNotImplemented = RegInit(UInt(XLEN.W), 0.U) 210 211 // Debug CSRs 212 val dcsr = RegInit(UInt(32.W), DcsrStruct.init) 213 val dpc = Reg(UInt(64.W)) 214 val dscratch0 = Reg(UInt(64.W)) 215 val dscratch1 = Reg(UInt(64.W)) 216 val debugMode = RegInit(false.B) 217 val debugIntrEnable = RegInit(true.B) // debug interrupt will be handle only when debugIntrEnable 218 csrio.debugMode := debugMode 219 220 val dpcPrev = RegNext(dpc) 221 XSDebug(dpcPrev =/= dpc, "Debug Mode: dpc is altered! Current is %x, previous is %x\n", dpc, dpcPrev) 222 223 val dcsrData = Wire(new DcsrStruct) 224 dcsrData := dcsr.asTypeOf(new DcsrStruct) 225 val dcsrMask = ZeroExt(GenMask(15) | GenMask(13, 11) | GenMask(4) | GenMask(2, 0), XLEN)// Dcsr write mask 226 def dcsrUpdateSideEffect(dcsr: UInt): UInt = { 227 val dcsrOld = WireInit(dcsr.asTypeOf(new DcsrStruct)) 228 val dcsrNew = dcsr | (dcsrOld.prv(0) | dcsrOld.prv(1)).asUInt // turn 10 priv into 11 229 dcsrNew 230 } 231 // csrio.singleStep := dcsrData.step 232 csrio.customCtrl.singlestep := dcsrData.step && !debugMode 233 234 // Trigger CSRs 235 private val tselectPhy = RegInit(0.U(log2Up(TriggerNum).W)) 236 237 private val tdata1RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(Tdata1Bundle.default))) 238 private val tdata2RegVec = RegInit(VecInit(Seq.fill(TriggerNum)(0.U(64.W)))) 239 private val tdata1WireVec = tdata1RegVec.map(_.asTypeOf(new Tdata1Bundle)) 240 private val tdata2WireVec = tdata2RegVec 241 private val tdata1Selected = tdata1RegVec(tselectPhy).asTypeOf(new Tdata1Bundle) 242 private val tdata2Selected = tdata2RegVec(tselectPhy) 243 private val newTriggerChainVec = UIntToOH(tselectPhy, TriggerNum).asBools | tdata1WireVec.map(_.data.asTypeOf(new MControlData).chain) 244 private val newTriggerChainIsLegal = TriggerCheckChainLegal(newTriggerChainVec, TriggerChainMaxLength) 245 val tinfo = RegInit((BigInt(1) << TrigTypeEnum.MCONTROL.litValue.toInt).U(XLEN.W)) // This value should be 4.U 246 247 248 def WriteTselect(wdata: UInt) = { 249 Mux(wdata < TriggerNum.U, wdata(3, 0), tselectPhy) 250 } 251 252 def GenTdataDistribute(tdata1: Tdata1Bundle, tdata2: UInt): MatchTriggerIO = { 253 val res = Wire(new MatchTriggerIO) 254 val mcontrol: MControlData = WireInit(tdata1.data.asTypeOf(new MControlData)) 255 res.matchType := mcontrol.match_.asUInt 256 res.select := mcontrol.select 257 res.timing := mcontrol.timing 258 res.action := mcontrol.action.asUInt 259 res.chain := mcontrol.chain 260 res.execute := mcontrol.execute 261 res.load := mcontrol.load 262 res.store := mcontrol.store 263 res.tdata2 := tdata2 264 res 265 } 266 267 csrio.customCtrl.frontend_trigger.tUpdate.bits.addr := tselectPhy 268 csrio.customCtrl.mem_trigger.tUpdate.bits.addr := tselectPhy 269 csrio.customCtrl.frontend_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) 270 csrio.customCtrl.mem_trigger.tUpdate.bits.tdata := GenTdataDistribute(tdata1Selected, tdata2Selected) 271 272 // Machine-Level CSRs 273 // mtvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 274 val mtvecMask = ~(0x2.U(XLEN.W)) 275 val mtvec = RegInit(UInt(XLEN.W), 0.U) 276 val mcounteren = RegInit(UInt(XLEN.W), 0.U) 277 val mcause = RegInit(UInt(XLEN.W), 0.U) 278 val mtval = RegInit(UInt(XLEN.W), 0.U) 279 val mepc = Reg(UInt(XLEN.W)) 280 // Page 36 in riscv-priv: The low bit of mepc (mepc[0]) is always zero. 281 val mepcMask = ~(0x1.U(XLEN.W)) 282 283 val mie = RegInit(0.U(XLEN.W)) 284 val mipWire = WireInit(0.U.asTypeOf(new Interrupt)) 285 val mipReg = RegInit(0.U(XLEN.W)) 286 val mipFixMask = ZeroExt(GenMask(9) | GenMask(5) | GenMask(1), XLEN) 287 val mip = (mipWire.asUInt | mipReg).asTypeOf(new Interrupt) 288 289 def getMisaMxl(mxl: BigInt): BigInt = mxl << (XLEN - 2) 290 def getMisaExt(ext: Char): Long = 1 << (ext.toInt - 'a'.toInt) 291 var extList = List('a', 's', 'i', 'u') 292 if (HasMExtension) { extList = extList :+ 'm' } 293 if (HasCExtension) { extList = extList :+ 'c' } 294 if (HasFPU) { extList = extList ++ List('f', 'd') } 295 if (HasVPU) { extList = extList :+ 'v' } 296 val misaInitVal = getMisaMxl(2) | extList.foldLeft(0L)((sum, i) => sum | getMisaExt(i)) //"h8000000000141105".U 297 val misa = RegInit(UInt(XLEN.W), misaInitVal.U) 298 println(s"[CSR] supported isa ext: $extList") 299 300 // MXL = 2 | 0 | EXT = b 00 0000 0100 0001 0001 0000 0101 301 // (XLEN-1, XLEN-2) | |(25, 0) ZY XWVU TSRQ PONM LKJI HGFE DCBA 302 303 val mvendorid = RegInit(UInt(XLEN.W), 0.U) // this is a non-commercial implementation 304 val marchid = RegInit(UInt(XLEN.W), 25.U) // architecture id for XiangShan is 25; see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md 305 val mimpid = RegInit(UInt(XLEN.W), 0.U) // provides a unique encoding of the version of the processor implementation 306 val mhartid = Reg(UInt(XLEN.W)) // the hardware thread running the code 307 when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { 308 mhartid := csrio.hartId 309 } 310 val mconfigptr = RegInit(UInt(XLEN.W), 0.U) // the read-only pointer pointing to the platform config structure, 0 for not supported. 311 val mstatus = RegInit("ha00002200".U(XLEN.W)) 312 313 // mstatus Value Table 314 // | sd | Read Only 315 // | pad1 | WPRI 316 // | sxl | hardlinked to 10, use 00 to pass xv6 test 317 // | uxl | hardlinked to 10 318 // | pad0 | 319 // | tsr | 320 // | tw | 321 // | tvm | 322 // | mxr | 323 // | sum | 324 // | mprv | 325 // | xs | 00 | 326 // | fs | 01 | 327 // | mpp | 00 | 328 // | vs | 01 | 329 // | spp | 0 | 330 // | pie | 0000 | pie.h is used as UBE 331 // | ie | 0000 | uie hardlinked to 0, as N ext is not implemented 332 333 val mstatusStruct = mstatus.asTypeOf(new MstatusStruct) 334 def mstatusUpdateSideEffect(mstatus: UInt): UInt = { 335 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 336 // Cat(sd, other) 337 val mstatusNew = Cat( 338 mstatusOld.xs === ContextStatus.dirty || mstatusOld.fs === ContextStatus.dirty || mstatusOld.vs === ContextStatus.dirty, 339 mstatus(XLEN-2, 0) 340 ) 341 mstatusNew 342 } 343 344 val mstatusWMask = (~ZeroExt(( 345 GenMask(63) | // SD is read-only 346 GenMask(62, 36) | // WPRI 347 GenMask(35, 32) | // SXL and UXL cannot be changed 348 GenMask(31, 23) | // WPRI 349 GenMask(16, 15) | // XS is read-only 350 GenMask(6) | // UBE, always little-endian (0) 351 GenMask(4) | // WPRI 352 GenMask(2) | // WPRI 353 GenMask(0) // WPRI 354 ), 64)).asUInt 355 356 val medeleg = RegInit(UInt(XLEN.W), 0.U) 357 val mideleg = RegInit(UInt(XLEN.W), 0.U) 358 val mscratch = RegInit(UInt(XLEN.W), 0.U) 359 360 // PMP Mapping 361 val pmp = Wire(Vec(NumPMP, new PMPEntry())) // just used for method parameter 362 val pma = Wire(Vec(NumPMA, new PMPEntry())) // just used for method parameter 363 val pmpMapping = pmp_gen_mapping(pmp_init, NumPMP, PmpcfgBase, PmpaddrBase, pmp) 364 val pmaMapping = pmp_gen_mapping(pma_init, NumPMA, PmacfgBase, PmaaddrBase, pma) 365 366 // Superviser-Level CSRs 367 368 val sstatusWNmask: BigInt = ( 369 BigIntGenMask(63) | // SD is read-only 370 BigIntGenMask(62, 34) | // WPRI 371 BigIntGenMask(33, 32) | // UXL is hard-wired to 64(b10) 372 BigIntGenMask(31, 20) | // WPRI 373 BigIntGenMask(17) | // WPRI 374 BigIntGenMask(16, 15) | // XS is read-only to zero 375 BigIntGenMask(12, 11) | // WPRI 376 BigIntGenMask(7) | // WPRI 377 BigIntGenMask(6) | // UBE is always little-endian (0) 378 BigIntGenMask(4, 2) | // WPRI 379 BigIntGenMask(0) // WPRI 380 ) 381 382 val sstatusWmask = BigIntNot(sstatusWNmask).U(XLEN.W) 383 val sstatusRmask = ( 384 BigIntGenMask(63) | // SD 385 BigIntGenMask(33, 32) | // UXL 386 BigIntGenMask(19) | // MXR 387 BigIntGenMask(18) | // SUM 388 BigIntGenMask(16, 15) | // XS 389 BigIntGenMask(14, 13) | // FS 390 BigIntGenMask(10, 9 ) | // VS 391 BigIntGenMask(8) | // SPP 392 BigIntGenMask(6) | // UBE: hard wired to 0 393 BigIntGenMask(5) | // SPIE 394 BigIntGenMask(1) 395 ).U(XLEN.W) 396 397 println(s"sstatusWNmask: 0x${sstatusWNmask.toString(16)}") 398 println(s"sstatusWmask: 0x${sstatusWmask.litValue.toString(16)}") 399 println(s"sstatusRmask: 0x${sstatusRmask.litValue.toString(16)}") 400 401 // stvec: {BASE (WARL), MODE (WARL)} where mode is 0 or 1 402 val stvecMask = ~(0x2.U(XLEN.W)) 403 val stvec = RegInit(UInt(XLEN.W), 0.U) 404 // val sie = RegInit(0.U(XLEN.W)) 405 val sieMask = "h222".U & mideleg 406 val sipMask = "h222".U & mideleg 407 val sipWMask = "h2".U(XLEN.W) // ssip is writeable in smode 408 val satp = if(EnbaleTlbDebug) RegInit(UInt(XLEN.W), "h8000000000087fbe".U) else RegInit(0.U(XLEN.W)) 409 // val satp = RegInit(UInt(XLEN.W), "h8000000000087fbe".U) // only use for tlb naive debug 410 // val satpMask = "h80000fffffffffff".U(XLEN.W) // disable asid, mode can only be 8 / 0 411 // TODO: use config to control the length of asid 412 // val satpMask = "h8fffffffffffffff".U(XLEN.W) // enable asid, mode can only be 8 / 0 413 val satpMask = Cat("h8".U(Satp_Mode_len.W), satp_part_wmask(Satp_Asid_len, AsidLength), satp_part_wmask(Satp_Addr_len, PAddrBits-12)) 414 val sepc = RegInit(UInt(XLEN.W), 0.U) 415 // Page 60 in riscv-priv: The low bit of sepc (sepc[0]) is always zero. 416 val sepcMask = ~(0x1.U(XLEN.W)) 417 val scause = RegInit(UInt(XLEN.W), 0.U) 418 val stval = Reg(UInt(XLEN.W)) 419 val sscratch = RegInit(UInt(XLEN.W), 0.U) 420 val scounteren = RegInit(UInt(XLEN.W), 0.U) 421 422 // sbpctl 423 // Bits 0-7: {LOOP, RAS, SC, TAGE, BIM, BTB, uBTB} 424 val sbpctl = RegInit(UInt(XLEN.W), "h7f".U) 425 csrio.customCtrl.bp_ctrl.ubtb_enable := sbpctl(0) 426 csrio.customCtrl.bp_ctrl.btb_enable := sbpctl(1) 427 csrio.customCtrl.bp_ctrl.bim_enable := sbpctl(2) 428 csrio.customCtrl.bp_ctrl.tage_enable := sbpctl(3) 429 csrio.customCtrl.bp_ctrl.sc_enable := sbpctl(4) 430 csrio.customCtrl.bp_ctrl.ras_enable := sbpctl(5) 431 csrio.customCtrl.bp_ctrl.loop_enable := sbpctl(6) 432 433 // spfctl Bit 0: L1I Cache Prefetcher Enable 434 // spfctl Bit 1: L2Cache Prefetcher Enable 435 // spfctl Bit 2: L1D Cache Prefetcher Enable 436 // spfctl Bit 3: L1D train prefetch on hit 437 // spfctl Bit 4: L1D prefetch enable agt 438 // spfctl Bit 5: L1D prefetch enable pht 439 // spfctl Bit [9:6]: L1D prefetch active page threshold 440 // spfctl Bit [15:10]: L1D prefetch active page stride 441 // turn off L2 BOP, turn on L1 SMS by default 442 val spfctl = RegInit(UInt(XLEN.W), Seq( 443 0 << 17, // L2 pf store only [17] init: false 444 1 << 16, // L1D pf enable stride [16] init: true 445 30 << 10, // L1D active page stride [15:10] init: 30 446 12 << 6, // L1D active page threshold [9:6] init: 12 447 1 << 5, // L1D enable pht [5] init: true 448 1 << 4, // L1D enable agt [4] init: true 449 0 << 3, // L1D train on hit [3] init: false 450 1 << 2, // L1D pf enable [2] init: true 451 1 << 1, // L2 pf enable [1] init: true 452 1 << 0, // L1I pf enable [0] init: true 453 ).reduce(_|_).U(XLEN.W)) 454 csrio.customCtrl.l1I_pf_enable := spfctl(0) 455 csrio.customCtrl.l2_pf_enable := spfctl(1) 456 csrio.customCtrl.l1D_pf_enable := spfctl(2) 457 csrio.customCtrl.l1D_pf_train_on_hit := spfctl(3) 458 csrio.customCtrl.l1D_pf_enable_agt := spfctl(4) 459 csrio.customCtrl.l1D_pf_enable_pht := spfctl(5) 460 csrio.customCtrl.l1D_pf_active_threshold := spfctl(9, 6) 461 csrio.customCtrl.l1D_pf_active_stride := spfctl(15, 10) 462 csrio.customCtrl.l1D_pf_enable_stride := spfctl(16) 463 csrio.customCtrl.l2_pf_store_only := spfctl(17) 464 465 // sfetchctl Bit 0: L1I Cache Parity check enable 466 val sfetchctl = RegInit(UInt(XLEN.W), "b0".U) 467 csrio.customCtrl.icache_parity_enable := sfetchctl(0) 468 469 // sdsid: Differentiated Services ID 470 val sdsid = RegInit(UInt(XLEN.W), 0.U) 471 csrio.customCtrl.dsid := sdsid 472 473 // slvpredctl: load violation predict settings 474 // Default reset period: 2^16 475 // Why this number: reset more frequently while keeping the overhead low 476 // Overhead: extra two redirections in every 64K cycles => ~0.1% overhead 477 val slvpredctl = Reg(UInt(XLEN.W)) 478 when(reset.asBool) { 479 slvpredctl := Constantin.createRecord("slvpredctl", "h60".U) 480 } 481 csrio.customCtrl.lvpred_disable := slvpredctl(0) 482 csrio.customCtrl.no_spec_load := slvpredctl(1) 483 csrio.customCtrl.storeset_wait_store := slvpredctl(2) 484 csrio.customCtrl.storeset_no_fast_wakeup := slvpredctl(3) 485 csrio.customCtrl.lvpred_timeout := slvpredctl(8, 4) 486 487 // smblockctl: memory block configurations 488 // +------------------------------+---+----+----+-----+--------+ 489 // |XLEN-1 8| 7 | 6 | 5 | 4 |3 0| 490 // +------------------------------+---+----+----+-----+--------+ 491 // | Reserved | O | CE | SP | LVC | Th | 492 // +------------------------------+---+----+----+-----+--------+ 493 // Description: 494 // Bit 3-0 : Store buffer flush threshold (Th). 495 // Bit 4 : Enable load violation check after reset (LVC). 496 // Bit 5 : Enable soft-prefetch after reset (SP). 497 // Bit 6 : Enable cache error after reset (CE). 498 // Bit 7 : Enable uncache write outstanding (O). 499 // Others : Reserved. 500 501 val smblockctl_init_val = 502 (0xf & StoreBufferThreshold) | 503 (EnableLdVioCheckAfterReset.toInt << 4) | 504 (EnableSoftPrefetchAfterReset.toInt << 5) | 505 (EnableCacheErrorAfterReset.toInt << 6) | 506 (EnableUncacheWriteOutstanding.toInt << 7) 507 val smblockctl = RegInit(UInt(XLEN.W), smblockctl_init_val.U) 508 csrio.customCtrl.sbuffer_threshold := smblockctl(3, 0) 509 // bits 4: enable load load violation check 510 csrio.customCtrl.ldld_vio_check_enable := smblockctl(4) 511 csrio.customCtrl.soft_prefetch_enable := smblockctl(5) 512 csrio.customCtrl.cache_error_enable := smblockctl(6) 513 csrio.customCtrl.uncache_write_outstanding_enable := smblockctl(7) 514 515 println("CSR smblockctl init value:") 516 println(" Store buffer replace threshold: " + StoreBufferThreshold) 517 println(" Enable ld-ld vio check after reset: " + EnableLdVioCheckAfterReset) 518 println(" Enable soft prefetch after reset: " + EnableSoftPrefetchAfterReset) 519 println(" Enable cache error after reset: " + EnableCacheErrorAfterReset) 520 println(" Enable uncache write outstanding: " + EnableUncacheWriteOutstanding) 521 522 val srnctl = RegInit(UInt(XLEN.W), "h7".U) 523 csrio.customCtrl.fusion_enable := srnctl(0) 524 csrio.customCtrl.svinval_enable := srnctl(1) 525 csrio.customCtrl.wfi_enable := srnctl(2) 526 527 val tlbBundle = Wire(new TlbCsrBundle) 528 tlbBundle.satp.apply(satp) 529 530 csrio.tlb := tlbBundle 531 532 // User-Level CSRs 533 val uepc = Reg(UInt(XLEN.W)) 534 535 // fcsr 536 class FcsrStruct extends Bundle { 537 val reserved = UInt((XLEN-3-5).W) 538 val frm = UInt(3.W) 539 val fflags = UInt(5.W) 540 assert(this.getWidth == XLEN) 541 } 542 val fcsr = RegInit(0.U(XLEN.W)) 543 // set mstatus->sd and mstatus->fs when true 544 val csrw_dirty_fp_state = WireInit(false.B) 545 546 def frm_wfn(wdata: UInt): UInt = { 547 val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) 548 csrw_dirty_fp_state := true.B 549 fcsrOld.frm := wdata(2,0) 550 fcsrOld.asUInt 551 } 552 def frm_rfn(rdata: UInt): UInt = rdata(7,5) 553 554 def fflags_wfn(update: Boolean)(wdata: UInt): UInt = { 555 val fcsrOld = fcsr.asTypeOf(new FcsrStruct) 556 val fcsrNew = WireInit(fcsrOld) 557 csrw_dirty_fp_state := true.B 558 if (update) { 559 fcsrNew.fflags := wdata(4,0) | fcsrOld.fflags 560 } else { 561 fcsrNew.fflags := wdata(4,0) 562 } 563 fcsrNew.asUInt 564 } 565 def fflags_rfn(rdata:UInt): UInt = rdata(4,0) 566 567 def fcsr_wfn(wdata: UInt): UInt = { 568 val fcsrOld = WireInit(fcsr.asTypeOf(new FcsrStruct)) 569 csrw_dirty_fp_state := true.B 570 Cat(fcsrOld.reserved, wdata.asTypeOf(fcsrOld).frm, wdata.asTypeOf(fcsrOld).fflags) 571 } 572 573 val fcsrMapping = Map( 574 MaskedRegMap(Fflags, fcsr, wfn = fflags_wfn(update = false), rfn = fflags_rfn), 575 MaskedRegMap(Frm, fcsr, wfn = frm_wfn, rfn = frm_rfn), 576 MaskedRegMap(Fcsr, fcsr, wfn = fcsr_wfn) 577 ) 578 579 // Vector extension CSRs 580 val vstart = RegInit(0.U(XLEN.W)) 581 val vcsr = RegInit(0.U(XLEN.W)) 582 val vl = Reg(UInt(XLEN.W)) 583 val vtype = Reg(UInt(XLEN.W)) 584 val vlenb = RegInit((VLEN / 8).U(XLEN.W)) 585 586 // set mstatus->sd and mstatus->vs when true 587 val csrw_dirty_vs_state = WireInit(false.B) 588 589 // vcsr is mapped to vxrm and vxsat 590 class VcsrStruct extends Bundle { 591 val reserved = UInt((XLEN-3).W) 592 val vxrm = UInt(2.W) 593 val vxsat = UInt(1.W) 594 assert(this.getWidth == XLEN) 595 } 596 597 def vxrm_wfn(wdata: UInt): UInt = { 598 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 599 csrw_dirty_vs_state := true.B 600 vcsrOld.vxrm := wdata(1,0) 601 vcsrOld.asUInt 602 } 603 def vxrm_rfn(rdata: UInt): UInt = rdata(2,1) 604 605 def vxsat_wfn(update: Boolean)(wdata: UInt): UInt = { 606 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 607 val vcsrNew = WireInit(vcsrOld) 608 csrw_dirty_vs_state := true.B 609 if (update) { 610 vcsrNew.vxsat := wdata(0) | vcsrOld.vxsat 611 } else { 612 vcsrNew.vxsat := wdata(0) 613 } 614 vcsrNew.asUInt 615 } 616 def vxsat_rfn(rdata: UInt): UInt = rdata(0) 617 618 def vcsr_wfn(wdata: UInt): UInt = { 619 val vcsrOld = WireInit(vcsr.asTypeOf(new VcsrStruct)) 620 csrw_dirty_vs_state := true.B 621 vcsrOld.vxrm := wdata.asTypeOf(vcsrOld).vxrm 622 vcsrOld.vxsat := wdata.asTypeOf(vcsrOld).vxsat 623 vcsrOld.asUInt 624 } 625 626 val vcsrMapping = Map( 627 MaskedRegMap(Vstart, vstart), 628 MaskedRegMap(Vxrm, vcsr, wfn = vxrm_wfn, rfn = vxrm_rfn), 629 MaskedRegMap(Vxsat, vcsr, wfn = vxsat_wfn(false), rfn = vxsat_rfn), 630 MaskedRegMap(Vcsr, vcsr, wfn = vcsr_wfn), 631 MaskedRegMap(Vl, vl), 632 MaskedRegMap(Vtype, vtype), 633 MaskedRegMap(Vlenb, vlenb), 634 ) 635 636 // Hart Priviledge Mode 637 val priviledgeMode = RegInit(UInt(2.W), ModeM) 638 639 //val perfEventscounten = List.fill(nrPerfCnts)(RegInit(false(Bool()))) 640 // Perf Counter 641 val nrPerfCnts = 29 // 3...31 642 val priviledgeModeOH = UIntToOH(priviledgeMode) 643 val perfEventscounten = RegInit(0.U.asTypeOf(Vec(nrPerfCnts, Bool()))) 644 val perfCnts = List.fill(nrPerfCnts)(RegInit(0.U(XLEN.W))) 645 val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ 646 List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ 647 List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ 648 List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) 649 for (i <-0 until nrPerfCnts) { 650 perfEventscounten(i) := (perfEvents(i)(63,60) & priviledgeModeOH).orR 651 } 652 653 val hpmEvents = Wire(Vec(numPCntHc * coreParams.L2NBanks, new PerfEvent)) 654 for (i <- 0 until numPCntHc * coreParams.L2NBanks) { 655 hpmEvents(i) := csrio.perf.perfEventsHc(i) 656 } 657 658 // print perfEvents 659 val allPerfEvents = hpmEvents.map(x => (s"Hc", x.value)) 660 if (printEventCoding) { 661 for (((name, inc), i) <- allPerfEvents.zipWithIndex) { 662 println("CSR perfEvents Set", name, inc, i) 663 } 664 } 665 666 val csrevents = perfEvents.slice(24, 29) 667 val hpm_hc = HPerfMonitor(csrevents, hpmEvents) 668 val mcountinhibit = RegInit(0.U(XLEN.W)) 669 val mcycle = RegInit(0.U(XLEN.W)) 670 mcycle := mcycle + 1.U 671 val minstret = RegInit(0.U(XLEN.W)) 672 val perf_events = csrio.perf.perfEventsFrontend ++ 673 csrio.perf.perfEventsCtrl ++ 674 csrio.perf.perfEventsLsu ++ 675 hpm_hc.getPerf 676 minstret := minstret + RegNext(csrio.perf.retiredInstr) 677 for(i <- 0 until 29){ 678 perfCnts(i) := Mux(mcountinhibit(i+3) | !perfEventscounten(i), perfCnts(i), perfCnts(i) + perf_events(i).value) 679 } 680 681 // CSR reg map 682 val basicPrivMapping = Map( 683 684 // Unprivileged Floating-Point CSRs 685 // Has been mapped above 686 687 // Unprivileged Counter/Timers 688 MaskedRegMap(Cycle, mcycle), 689 // We don't support read time CSR. 690 // MaskedRegMap(Time, mtime), 691 MaskedRegMap(Instret, minstret), 692 693 //--- Supervisor Trap Setup --- 694 MaskedRegMap(Sstatus, mstatus, sstatusWmask, mstatusUpdateSideEffect, sstatusRmask), 695 // MaskedRegMap(Sedeleg, Sedeleg), 696 // MaskedRegMap(Sideleg, Sideleg), 697 MaskedRegMap(Sie, mie, sieMask, MaskedRegMap.NoSideEffect, sieMask), 698 MaskedRegMap(Stvec, stvec, stvecMask, MaskedRegMap.NoSideEffect, stvecMask), 699 MaskedRegMap(Scounteren, scounteren), 700 701 //--- Supervisor Trap Handling --- 702 MaskedRegMap(Sscratch, sscratch), 703 MaskedRegMap(Sepc, sepc, sepcMask, MaskedRegMap.NoSideEffect, sepcMask), 704 MaskedRegMap(Scause, scause), 705 MaskedRegMap(Stval, stval), 706 MaskedRegMap(Sip, mip.asUInt, sipWMask, MaskedRegMap.Unwritable, sipMask), 707 708 //--- Supervisor Protection and Translation --- 709 MaskedRegMap(Satp, satp, satpMask, MaskedRegMap.NoSideEffect, satpMask), 710 711 //--- Supervisor Custom Read/Write Registers 712 MaskedRegMap(Sbpctl, sbpctl), 713 MaskedRegMap(Spfctl, spfctl), 714 MaskedRegMap(Sfetchctl, sfetchctl), 715 MaskedRegMap(Sdsid, sdsid), 716 MaskedRegMap(Slvpredctl, slvpredctl), 717 MaskedRegMap(Smblockctl, smblockctl), 718 MaskedRegMap(Srnctl, srnctl), 719 720 //--- Machine Information Registers --- 721 MaskedRegMap(Mvendorid, mvendorid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 722 MaskedRegMap(Marchid, marchid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 723 MaskedRegMap(Mimpid, mimpid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 724 MaskedRegMap(Mhartid, mhartid, 0.U(XLEN.W), MaskedRegMap.Unwritable), 725 MaskedRegMap(Mconfigptr, mconfigptr, 0.U(XLEN.W), MaskedRegMap.Unwritable), 726 727 //--- Machine Trap Setup --- 728 MaskedRegMap(Mstatus, mstatus, mstatusWMask, mstatusUpdateSideEffect), 729 MaskedRegMap(Misa, misa, 0.U, MaskedRegMap.Unwritable), // now whole misa is unchangeable 730 MaskedRegMap(Medeleg, medeleg, "hb3ff".U(XLEN.W)), 731 MaskedRegMap(Mideleg, mideleg, "h222".U(XLEN.W)), 732 MaskedRegMap(Mie, mie, "haaa".U(XLEN.W)), 733 MaskedRegMap(Mtvec, mtvec, mtvecMask, MaskedRegMap.NoSideEffect, mtvecMask), 734 MaskedRegMap(Mcounteren, mcounteren), 735 736 //--- Machine Trap Handling --- 737 MaskedRegMap(Mscratch, mscratch), 738 MaskedRegMap(Mepc, mepc, mepcMask, MaskedRegMap.NoSideEffect, mepcMask), 739 MaskedRegMap(Mcause, mcause), 740 MaskedRegMap(Mtval, mtval), 741 MaskedRegMap(Mip, mip.asUInt, 0.U(XLEN.W), MaskedRegMap.Unwritable), 742 743 //--- Trigger --- 744 MaskedRegMap(Tselect, tselectPhy, WritableMask, WriteTselect), 745 // Todo: support chain length = 2 746 MaskedRegMap(Tdata1, tdata1RegVec(tselectPhy), 747 WritableMask, 748 x => Tdata1Bundle.Write(x, tdata1RegVec(tselectPhy), newTriggerChainIsLegal, debug_mode = debugMode), 749 WritableMask, 750 x => Tdata1Bundle.Read(x)), 751 MaskedRegMap(Tdata2, tdata2RegVec(tselectPhy)), 752 MaskedRegMap(Tinfo, tinfo, 0.U(XLEN.W), MaskedRegMap.Unwritable), 753 754 //--- Debug Mode --- 755 MaskedRegMap(Dcsr, dcsr, dcsrMask, dcsrUpdateSideEffect), 756 MaskedRegMap(Dpc, dpc), 757 MaskedRegMap(Dscratch0, dscratch0), 758 MaskedRegMap(Dscratch1, dscratch1), 759 MaskedRegMap(Mcountinhibit, mcountinhibit), 760 MaskedRegMap(Mcycle, mcycle), 761 MaskedRegMap(Minstret, minstret), 762 ) 763 764 val perfCntMapping = (0 until 29).map(i => {Map( 765 MaskedRegMap(addr = Mhpmevent3 +i, 766 reg = perfEvents(i), 767 wmask = "hf87fff3fcff3fcff".U(XLEN.W)), 768 MaskedRegMap(addr = Mhpmcounter3 +i, 769 reg = perfCnts(i)), 770 MaskedRegMap(addr = Hpmcounter3 + i, 771 reg = perfCnts(i)) 772 )}).fold(Map())((a,b) => a ++ b) 773 // TODO: mechanism should be implemented later 774 // val MhpmcounterStart = Mhpmcounter3 775 // val MhpmeventStart = Mhpmevent3 776 // for (i <- 0 until nrPerfCnts) { 777 // perfCntMapping += MaskedRegMap(MhpmcounterStart + i, perfCnts(i)) 778 // perfCntMapping += MaskedRegMap(MhpmeventStart + i, perfEvents(i)) 779 // } 780 781 val cacheopRegs = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 782 name -> RegInit(0.U(attribute("width").toInt.W)) 783 }} 784 val cacheopMapping = CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 785 MaskedRegMap( 786 Scachebase + attribute("offset").toInt, 787 cacheopRegs(name) 788 ) 789 }} 790 791 val mapping = basicPrivMapping ++ 792 perfCntMapping ++ 793 pmpMapping ++ 794 pmaMapping ++ 795 (if (HasFPU) fcsrMapping else Nil) ++ 796 (if (HasVPU) vcsrMapping else Nil) ++ 797 (if (HasCustomCSRCacheOp) cacheopMapping else Nil) 798 799 800 println("XiangShan CSR Lists") 801 802 for (addr <- mapping.keys.toSeq.sorted) { 803 println(f"$addr%#03x ${mapping(addr)._1}") 804 } 805 806 val addr = src2(11, 0) 807 val csri = ZeroExt(src2(16, 12), XLEN) 808 val rdata = Wire(UInt(XLEN.W)) 809 val wdata = LookupTree(func, List( 810 CSROpType.wrt -> src1, 811 CSROpType.set -> (rdata | src1), 812 CSROpType.clr -> (rdata & (~src1).asUInt), 813 CSROpType.wrti -> csri, 814 CSROpType.seti -> (rdata | csri), 815 CSROpType.clri -> (rdata & (~csri).asUInt) 816 )) 817 818 val addrInPerfCnt = (addr >= Mcycle.U) && (addr <= Mhpmcounter31.U) || 819 (addr >= Mcountinhibit.U) && (addr <= Mhpmevent31.U) || 820 (addr >= Cycle.U) && (addr <= Hpmcounter31.U) || 821 addr === Mip.U 822 csrio.isPerfCnt := addrInPerfCnt && valid && func =/= CSROpType.jmp 823 824 // satp wen check 825 val satpLegalMode = (wdata.asTypeOf(new SatpStruct).mode===0.U) || (wdata.asTypeOf(new SatpStruct).mode===8.U) 826 827 // csr access check, special case 828 val tvmNotPermit = (priviledgeMode === ModeS && mstatusStruct.tvm.asBool) 829 val accessPermitted = !(addr === Satp.U && tvmNotPermit) 830 csrio.disableSfence := tvmNotPermit || priviledgeMode === ModeU 831 832 // general CSR wen check 833 val wen = valid && CSROpType.needAccess(func) && (addr=/=Satp.U || satpLegalMode) 834 val dcsrPermitted = dcsrPermissionCheck(addr, false.B, debugMode) 835 val triggerPermitted = triggerPermissionCheck(addr, true.B, debugMode) // todo dmode 836 val modePermitted = csrAccessPermissionCheck(addr, false.B, priviledgeMode) && dcsrPermitted && triggerPermitted 837 val perfcntPermitted = perfcntPermissionCheck(addr, priviledgeMode, mcounteren, scounteren) 838 val permitted = Mux(addrInPerfCnt, perfcntPermitted, modePermitted) && accessPermitted 839 840 MaskedRegMap.generate(mapping, addr, rdata, wen && permitted, wdata) 841 io.out.bits.res.data := rdata 842 io.out.bits.ctrl.flushPipe.get := flushPipe 843 connectNonPipedCtrlSingal 844 845 // send distribute csr a w signal 846 csrio.customCtrl.distribute_csr.w.valid := wen && permitted 847 csrio.customCtrl.distribute_csr.w.bits.data := wdata 848 csrio.customCtrl.distribute_csr.w.bits.addr := addr 849 850 // Fix Mip/Sip write 851 val fixMapping = Map( 852 MaskedRegMap(Mip, mipReg.asUInt, mipFixMask), 853 MaskedRegMap(Sip, mipReg.asUInt, sipWMask, MaskedRegMap.NoSideEffect, sipMask) 854 ) 855 val rdataFix = Wire(UInt(XLEN.W)) 856 val wdataFix = LookupTree(func, List( 857 CSROpType.wrt -> src1, 858 CSROpType.set -> (rdataFix | src1), 859 CSROpType.clr -> (rdataFix & (~src1).asUInt), 860 CSROpType.wrti -> csri, 861 CSROpType.seti -> (rdataFix | csri), 862 CSROpType.clri -> (rdataFix & (~csri).asUInt) 863 )) 864 MaskedRegMap.generate(fixMapping, addr, rdataFix, wen && permitted, wdataFix) 865 866 when (RegNext(csrio.fpu.fflags.valid)) { 867 fcsr := fflags_wfn(update = true)(RegNext(csrio.fpu.fflags.bits)) 868 } 869 when(RegNext(csrio.vpu.set_vxsat.valid)) { 870 vcsr := vxsat_wfn(update = true)(RegNext(csrio.vpu.set_vxsat.bits)) 871 } 872 // set fs and sd in mstatus 873 when (csrw_dirty_fp_state || RegNext(csrio.fpu.dirty_fs)) { 874 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 875 mstatusNew.fs := "b11".U 876 mstatusNew.sd := true.B 877 mstatus := mstatusNew.asUInt 878 } 879 csrio.fpu.frm := fcsr.asTypeOf(new FcsrStruct).frm 880 881 when (RegNext(csrio.vpu.set_vstart.valid)) { 882 vstart := RegNext(csrio.vpu.set_vstart.bits) 883 } 884 when (RegNext(csrio.vpu.set_vtype.valid)) { 885 vtype := RegNext(csrio.vpu.set_vtype.bits) 886 } 887 when (RegNext(csrio.vpu.set_vl.valid)) { 888 vl := RegNext(csrio.vpu.set_vl.bits) 889 } 890 // set vs and sd in mstatus 891 when(csrw_dirty_vs_state || RegNext(csrio.vpu.dirty_vs)) { 892 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 893 mstatusNew.vs := ContextStatus.dirty 894 mstatusNew.sd := true.B 895 mstatus := mstatusNew.asUInt 896 } 897 898 csrio.vpu.vstart := vstart 899 csrio.vpu.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm 900 csrio.vpu.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat 901 csrio.vpu.vcsr := vcsr 902 csrio.vpu.vtype := vtype 903 csrio.vpu.vl := vl 904 csrio.vpu.vlenb := vlenb 905 csrio.vpu.vill := vtype.asTypeOf(new VtypeStruct).vill 906 csrio.vpu.vma := vtype.asTypeOf(new VtypeStruct).vma 907 csrio.vpu.vta := vtype.asTypeOf(new VtypeStruct).vta 908 csrio.vpu.vsew := vtype.asTypeOf(new VtypeStruct).vsew 909 csrio.vpu.vlmul := vtype.asTypeOf(new VtypeStruct).vlmul 910 911 // Trigger Ctrl 912 val triggerEnableVec = tdata1RegVec.map { tdata1 => 913 val mcontrolData = tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData) 914 tdata1.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && ( 915 mcontrolData.m && priviledgeMode === ModeM || 916 mcontrolData.s && priviledgeMode === ModeS || 917 mcontrolData.u && priviledgeMode === ModeU) 918 } 919 val fetchTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { 920 case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger 921 } 922 val memAccTriggerEnableVec = triggerEnableVec.zip(tdata1WireVec).map { 923 case (tEnable, tdata1) => tEnable && tdata1.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger 924 } 925 csrio.customCtrl.frontend_trigger.tEnableVec := fetchTriggerEnableVec 926 csrio.customCtrl.mem_trigger.tEnableVec := memAccTriggerEnableVec 927 928 val tdata1Update = wen && (addr === Tdata1.U) 929 val tdata2Update = wen && (addr === Tdata2.U) 930 val triggerUpdate = wen && (addr === Tdata1.U || addr === Tdata2.U) 931 val frontendTriggerUpdate = 932 tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && 933 wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isFetchTrigger || 934 tdata1Selected.data.asTypeOf(new MControlData).isFetchTrigger && triggerUpdate 935 val memTriggerUpdate = 936 tdata1Update && wdata.asTypeOf(new Tdata1Bundle).type_.asUInt === TrigTypeEnum.MCONTROL && 937 wdata.asTypeOf(new Tdata1Bundle).data.asTypeOf(new MControlData).isMemAccTrigger || 938 tdata1Selected.data.asTypeOf(new MControlData).isMemAccTrigger && triggerUpdate 939 940 csrio.customCtrl.frontend_trigger.tUpdate.valid := RegNext(RegNext(frontendTriggerUpdate)) 941 csrio.customCtrl.mem_trigger.tUpdate.valid := RegNext(RegNext(memTriggerUpdate)) 942 XSDebug(triggerEnableVec.reduce(_ || _), p"Debug Mode: At least 1 trigger is enabled," + 943 p"trigger enable is ${Binary(triggerEnableVec.asUInt)}\n") 944 945 // CSR inst decode 946 val isEbreak = addr === privEbreak && func === CSROpType.jmp 947 val isEcall = addr === privEcall && func === CSROpType.jmp 948 val isMret = addr === privMret && func === CSROpType.jmp 949 val isSret = addr === privSret && func === CSROpType.jmp 950 val isUret = addr === privUret && func === CSROpType.jmp 951 val isDret = addr === privDret && func === CSROpType.jmp 952 val isWFI = func === CSROpType.wfi 953 954 XSDebug(wen, "csr write: pc %x addr %x rdata %x wdata %x func %x\n", io.in.bits.data.pc.get, addr, rdata, wdata, func) 955 XSDebug(wen, "pc %x mstatus %x mideleg %x medeleg %x mode %x\n", io.in.bits.data.pc.get, mstatus, mideleg , medeleg, priviledgeMode) 956 957 // Illegal priviledged operation list 958 val illegalMret = valid && isMret && priviledgeMode < ModeM 959 val illegalSret = valid && isSret && priviledgeMode < ModeS 960 val illegalSModeSret = valid && isSret && priviledgeMode === ModeS && mstatusStruct.tsr.asBool 961 // When TW=1, then if WFI is executed in any less-privileged mode, 962 // and it does not complete within an implementation-specific, bounded time limit, 963 // the WFI instruction causes an illegal instruction exception. 964 // The time limit may always be 0, in which case WFI always causes 965 // an illegal instruction exception in less-privileged modes when TW=1. 966 val illegalWFI = valid && isWFI && priviledgeMode < ModeM && mstatusStruct.tw === 1.U 967 968 // Illegal priviledged instruction check 969 val isIllegalAddr = valid && CSROpType.needAccess(func) && MaskedRegMap.isIllegalAddr(mapping, addr) 970 val isIllegalAccess = wen && !permitted 971 val isIllegalPrivOp = illegalMret || illegalSret || illegalSModeSret || illegalWFI 972 973 // expose several csr bits for tlb 974 tlbBundle.priv.mxr := mstatusStruct.mxr.asBool 975 tlbBundle.priv.sum := mstatusStruct.sum.asBool 976 tlbBundle.priv.imode := priviledgeMode 977 tlbBundle.priv.dmode := Mux(debugMode && dcsr.asTypeOf(new DcsrStruct).mprven, ModeM, Mux(mstatusStruct.mprv.asBool, mstatusStruct.mpp, priviledgeMode)) 978 979 // Branch control 980 val retTarget = WireInit(0.U) 981 val resetSatp = addr === Satp.U && wen // write to satp will cause the pipeline be flushed 982 983 val w_fcsr_change_rm = wen && addr === Fcsr.U && wdata(7, 5) =/= fcsr(7, 5) 984 val w_frm_change_rm = wen && addr === Frm.U && wdata(2, 0) =/= fcsr(7, 5) 985 val frm_change = w_fcsr_change_rm || w_frm_change_rm 986 val isXRet = valid && func === CSROpType.jmp && !isEcall && !isEbreak 987 flushPipe := resetSatp || frm_change || isXRet || frontendTriggerUpdate 988 989 990 private val illegalRetTarget = WireInit(false.B) 991 992 // Mux tree for wires 993 when(valid) { 994 when(isDret) { 995 retTarget := dpc(VAddrBits - 1, 0) 996 }.elsewhen(isMret && !illegalMret) { 997 retTarget := mepc(VAddrBits - 1, 0) 998 }.elsewhen(isSret && !illegalSret && !illegalSModeSret) { 999 retTarget := sepc(VAddrBits - 1, 0) 1000 }.elsewhen(isUret) { 1001 retTarget := uepc(VAddrBits - 1, 0) 1002 }.otherwise { 1003 illegalRetTarget := true.B 1004 } 1005 }.otherwise { 1006 illegalRetTarget := true.B // when illegalRetTarget setted, retTarget should never be used 1007 } 1008 1009 // Mux tree for regs 1010 when(valid) { 1011 when(isDret) { 1012 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1013 val debugModeNew = WireInit(debugMode) 1014 when(dcsr.asTypeOf(new DcsrStruct).prv =/= ModeM) { 1015 mstatusNew.mprv := 0.U 1016 } //If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared. 1017 mstatus := mstatusNew.asUInt 1018 priviledgeMode := dcsr.asTypeOf(new DcsrStruct).prv 1019 debugModeNew := false.B 1020 debugIntrEnable := true.B 1021 debugMode := debugModeNew 1022 XSDebug("Debug Mode: Dret executed, returning to %x.", retTarget) 1023 }.elsewhen(isMret && !illegalMret) { 1024 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1025 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1026 mstatusNew.ie.m := mstatusOld.pie.m 1027 priviledgeMode := mstatusOld.mpp 1028 mstatusNew.pie.m := true.B 1029 mstatusNew.mpp := ModeU 1030 when(mstatusOld.mpp =/= ModeM) { 1031 mstatusNew.mprv := 0.U 1032 } 1033 mstatus := mstatusNew.asUInt 1034 }.elsewhen(isSret && !illegalSret && !illegalSModeSret) { 1035 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1036 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1037 mstatusNew.ie.s := mstatusOld.pie.s 1038 priviledgeMode := Cat(0.U(1.W), mstatusOld.spp) 1039 mstatusNew.pie.s := true.B 1040 mstatusNew.spp := ModeU 1041 mstatus := mstatusNew.asUInt 1042 when(mstatusOld.spp =/= ModeM) { 1043 mstatusNew.mprv := 0.U 1044 } 1045 }.elsewhen(isUret) { 1046 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1047 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1048 // mstatusNew.mpp.m := ModeU //TODO: add mode U 1049 mstatusNew.ie.u := mstatusOld.pie.u 1050 priviledgeMode := ModeU 1051 mstatusNew.pie.u := true.B 1052 mstatus := mstatusNew.asUInt 1053 } 1054 } 1055 1056 io.in.ready := true.B 1057 io.out.valid := valid 1058 1059 // In this situation, hart will enter debug mode instead of handling a breakpoint exception simply. 1060 // Ebreak block instructions backwards, so it's ok to not keep extra info to distinguish between breakpoint 1061 // exception and enter-debug-mode exception. 1062 val ebreakEnterDebugMode = 1063 (priviledgeMode === ModeM && dcsrData.ebreakm) || 1064 (priviledgeMode === ModeS && dcsrData.ebreaks) || 1065 (priviledgeMode === ModeU && dcsrData.ebreaku) 1066 1067 // raise a debug exception waiting to enter debug mode, instead of a breakpoint exception 1068 val raiseDebugException = !debugMode && isEbreak && ebreakEnterDebugMode 1069 1070 val csrExceptionVec = WireInit(0.U.asTypeOf(ExceptionVec())) 1071 csrExceptionVec(breakPoint) := io.in.valid && isEbreak 1072 csrExceptionVec(ecallM) := priviledgeMode === ModeM && io.in.valid && isEcall 1073 csrExceptionVec(ecallS) := priviledgeMode === ModeS && io.in.valid && isEcall 1074 csrExceptionVec(ecallU) := priviledgeMode === ModeU && io.in.valid && isEcall 1075 // Trigger an illegal instr exception when: 1076 // * unimplemented csr is being read/written 1077 // * csr access is illegal 1078 csrExceptionVec(illegalInstr) := isIllegalAddr || isIllegalAccess || isIllegalPrivOp 1079 io.out.bits.ctrl.exceptionVec.get := csrExceptionVec 1080 1081 XSDebug(io.in.valid, s"Debug Mode: an Ebreak is executed, ebreak cause enter-debug-mode exception ? ${raiseDebugException}\n") 1082 1083 /** 1084 * Exception and Intr 1085 */ 1086 val ideleg = (mideleg & mip.asUInt) 1087 def priviledgedEnableDetect(x: Bool): Bool = Mux(x, ((priviledgeMode === ModeS) && mstatusStruct.ie.s) || (priviledgeMode < ModeS), 1088 ((priviledgeMode === ModeM) && mstatusStruct.ie.m) || (priviledgeMode < ModeM)) 1089 1090 val debugIntr = csrio.externalInterrupt.debug & debugIntrEnable 1091 XSDebug(debugIntr, "Debug Mode: debug interrupt is asserted and valid!") 1092 // send interrupt information to ROB 1093 val intrVecEnable = Wire(Vec(12, Bool())) 1094 val disableInterrupt = debugMode || (dcsrData.step && !dcsrData.stepie) 1095 intrVecEnable.zip(ideleg.asBools).map{case(x,y) => x := priviledgedEnableDetect(y) && !disableInterrupt} 1096 val intrVec = Cat(debugIntr && !debugMode, (mie(11,0) & mip.asUInt & intrVecEnable.asUInt)) 1097 val intrBitSet = intrVec.orR 1098 csrio.interrupt := intrBitSet 1099 // Page 45 in RISC-V Privileged Specification 1100 // The WFI instruction can also be executed when interrupts are disabled. The operation of WFI 1101 // must be unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation 1102 // register mideleg, but should honor the individual interrupt enables (e.g, MTIE). 1103 csrio.wfi_event := debugIntr || (mie(11, 0) & mip.asUInt).orR 1104 mipWire.t.m := csrio.externalInterrupt.mtip 1105 mipWire.s.m := csrio.externalInterrupt.msip 1106 mipWire.e.m := csrio.externalInterrupt.meip 1107 mipWire.e.s := csrio.externalInterrupt.seip 1108 1109 // interrupts 1110 val intrNO = IntPriority.foldRight(0.U)((i: Int, sum: UInt) => Mux(intrVec(i), i.U, sum)) 1111 val hasIntr = csrio.exception.valid && csrio.exception.bits.isInterrupt 1112 val ivmEnable = tlbBundle.priv.imode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U 1113 val iexceptionPC = Mux(ivmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) 1114 val dvmEnable = tlbBundle.priv.dmode < ModeM && satp.asTypeOf(new SatpStruct).mode === 8.U 1115 val dexceptionPC = Mux(dvmEnable, SignExt(csrio.exception.bits.pc, XLEN), csrio.exception.bits.pc) 1116 XSDebug(hasIntr, "interrupt: pc=0x%x, %d\n", dexceptionPC, intrNO) 1117 val hasDebugIntr = intrNO === IRQ_DEBUG.U && hasIntr 1118 1119 // exceptions from rob need to handle 1120 val exceptionVecFromRob = csrio.exception.bits.exceptionVec 1121 val hasException = csrio.exception.valid && !csrio.exception.bits.isInterrupt 1122 val hasInstrPageFault = hasException && exceptionVecFromRob(instrPageFault) 1123 val hasLoadPageFault = hasException && exceptionVecFromRob(loadPageFault) 1124 val hasStorePageFault = hasException && exceptionVecFromRob(storePageFault) 1125 val hasStoreAddrMisalign = hasException && exceptionVecFromRob(storeAddrMisaligned) 1126 val hasLoadAddrMisalign = hasException && exceptionVecFromRob(loadAddrMisaligned) 1127 val hasInstrAccessFault = hasException && exceptionVecFromRob(instrAccessFault) 1128 val hasLoadAccessFault = hasException && exceptionVecFromRob(loadAccessFault) 1129 val hasStoreAccessFault = hasException && exceptionVecFromRob(storeAccessFault) 1130 val hasBreakPoint = hasException && exceptionVecFromRob(breakPoint) 1131 val hasSingleStep = hasException && csrio.exception.bits.singleStep 1132 val hasTriggerFire = hasException && csrio.exception.bits.trigger.canFire 1133 val triggerFrontendHitVec = csrio.exception.bits.trigger.frontendHit 1134 val triggerMemHitVec = csrio.exception.bits.trigger.backendHit 1135 val triggerHitVec = triggerFrontendHitVec | triggerMemHitVec // Todo: update mcontrol.hit 1136 val triggerCanFireVec = csrio.exception.bits.trigger.frontendCanFire | csrio.exception.bits.trigger.backendCanFire 1137 // More than one triggers can hit at the same time, but only fire one 1138 // We select the first hit trigger to fire 1139 val triggerFireOH = PriorityEncoderOH(triggerCanFireVec) 1140 val triggerFireAction = PriorityMux(triggerFireOH, tdata1WireVec.map(_.getTriggerAction)).asUInt 1141 1142 1143 XSDebug(hasSingleStep, "Debug Mode: single step exception\n") 1144 XSDebug(hasTriggerFire, p"Debug Mode: trigger fire, frontend hit vec ${Binary(csrio.exception.bits.trigger.frontendHit.asUInt)} " + 1145 p"backend hit vec ${Binary(csrio.exception.bits.trigger.backendHit.asUInt)}\n") 1146 1147 val hasExceptionVec = csrio.exception.bits.exceptionVec 1148 val regularExceptionNO = ExceptionNO.priorities.foldRight(0.U)((i: Int, sum: UInt) => Mux(hasExceptionVec(i), i.U, sum)) 1149 val exceptionNO = Mux(hasSingleStep || hasTriggerFire, 3.U, regularExceptionNO) 1150 val causeNO = (hasIntr << (XLEN - 1)).asUInt | Mux(hasIntr, intrNO, exceptionNO) 1151 1152 1153 val hasExceptionIntr = csrio.exception.valid 1154 1155 val hasDebugEbreakException = hasBreakPoint && ebreakEnterDebugMode 1156 val hasDebugTriggerException = hasTriggerFire && triggerFireAction === TrigActionEnum.DEBUG_MODE 1157 val hasDebugException = hasDebugEbreakException || hasDebugTriggerException || hasSingleStep 1158 val hasDebugTrap = hasDebugException || hasDebugIntr 1159 val ebreakEnterParkLoop = debugMode && hasExceptionIntr 1160 1161 XSDebug(hasExceptionIntr, "int/exc: pc %x int (%d):%x exc: (%d):%x\n", 1162 dexceptionPC, intrNO, intrVec, exceptionNO, hasExceptionVec.asUInt 1163 ) 1164 XSDebug(hasExceptionIntr, 1165 "pc %x mstatus %x mideleg %x medeleg %x mode %x\n", 1166 dexceptionPC, 1167 mstatus, 1168 mideleg, 1169 medeleg, 1170 priviledgeMode 1171 ) 1172 1173 // mtval write logic 1174 // Due to timing reasons of memExceptionVAddr, we delay the write of mtval and stval 1175 val memExceptionAddr = SignExt(csrio.memExceptionVAddr, XLEN) 1176 val updateTval = VecInit(Seq( 1177 hasInstrPageFault, 1178 hasLoadPageFault, 1179 hasStorePageFault, 1180 hasInstrAccessFault, 1181 hasLoadAccessFault, 1182 hasStoreAccessFault, 1183 hasLoadAddrMisalign, 1184 hasStoreAddrMisalign 1185 )).asUInt.orR 1186 when (RegNext(RegNext(updateTval))) { 1187 val tval = Mux( 1188 RegNext(RegNext(hasInstrPageFault || hasInstrAccessFault)), 1189 RegNext(RegNext(Mux( 1190 csrio.exception.bits.crossPageIPFFix, 1191 SignExt(csrio.exception.bits.pc + 2.U, XLEN), 1192 iexceptionPC 1193 ))), 1194 memExceptionAddr 1195 ) 1196 when (RegNext(priviledgeMode === ModeM)) { 1197 mtval := tval 1198 }.otherwise { 1199 stval := tval 1200 } 1201 } 1202 1203 val debugTrapTarget = Mux(!isEbreak && debugMode, 0x38020808.U, 0x38020800.U) // 0x808 is when an exception occurs in debug mode prog buf exec 1204 val deleg = Mux(hasIntr, mideleg , medeleg) 1205 // val delegS = ((deleg & (1 << (causeNO & 0xf))) != 0) && (priviledgeMode < ModeM); 1206 val delegS = deleg(causeNO(3,0)) && (priviledgeMode < ModeM) 1207 val clearTval = !updateTval || hasIntr 1208 1209 // ctrl block will use theses later for flush 1210 val isXRetFlag = RegInit(false.B) 1211 when (DelayN(io.flush.valid, 5)) { 1212 isXRetFlag := false.B 1213 }.elsewhen (isXRet) { 1214 isXRetFlag := true.B 1215 } 1216 csrio.isXRet := isXRetFlag 1217 private val retTargetReg = RegEnable(retTarget, isXRet && !illegalRetTarget) 1218 private val illegalXret = RegEnable(illegalMret || illegalSret || illegalSModeSret, isXRet) 1219 1220 private val xtvec = Mux(delegS, stvec, mtvec) 1221 private val xtvecBase = xtvec(VAddrBits - 1, 2) 1222 // When MODE=Vectored, all synchronous exceptions into M/S mode 1223 // cause the pc to be set to the address in the BASE field, whereas 1224 // interrupts cause the pc to be set to the address in the BASE field 1225 // plus four times the interrupt cause number. 1226 private val pcFromXtvec = Cat(xtvecBase + Mux(xtvec(0) && hasIntr, causeNO(3, 0), 0.U), 0.U(2.W)) 1227 1228 // XRet sends redirect instead of Flush and isXRetFlag is true.B before redirect.valid. 1229 // ROB sends exception at T0 while CSR receives at T2. 1230 // We add a RegNext here and trapTarget is valid at T3. 1231 csrio.trapTarget := RegEnable( 1232 MuxCase(pcFromXtvec, Seq( 1233 (isXRetFlag && !illegalXret) -> retTargetReg, 1234 ((hasDebugTrap && !debugMode) || ebreakEnterParkLoop) -> debugTrapTarget 1235 )), 1236 isXRetFlag || csrio.exception.valid) 1237 1238 when(hasExceptionIntr) { 1239 val mstatusOld = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1240 val mstatusNew = WireInit(mstatus.asTypeOf(new MstatusStruct)) 1241 val dcsrNew = WireInit(dcsr.asTypeOf(new DcsrStruct)) 1242 val debugModeNew = WireInit(debugMode) 1243 when(hasDebugTrap && !debugMode) { 1244 import DcsrStruct._ 1245 debugModeNew := true.B 1246 dcsrNew.prv := priviledgeMode 1247 priviledgeMode := ModeM 1248 when(hasDebugIntr) { 1249 dpc := iexceptionPC 1250 dcsrNew.cause := CAUSE_HALTREQ 1251 XSDebug(hasDebugIntr, "Debug Mode: Trap to %x at pc %x\n", debugTrapTarget, dpc) 1252 }.otherwise { // hasDebugException 1253 dpc := iexceptionPC // TODO: check it when hasSingleStep 1254 dcsrNew.cause := MuxCase(0.U, Seq( 1255 hasTriggerFire -> CAUSE_TRIGGER, 1256 hasBreakPoint -> CAUSE_HALTREQ, 1257 hasSingleStep -> CAUSE_STEP 1258 )) 1259 } 1260 dcsr := dcsrNew.asUInt 1261 debugIntrEnable := false.B 1262 }.elsewhen (debugMode) { 1263 //do nothing 1264 }.elsewhen (delegS) { 1265 scause := causeNO 1266 sepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) 1267 mstatusNew.spp := priviledgeMode 1268 mstatusNew.pie.s := mstatusOld.ie.s 1269 mstatusNew.ie.s := false.B 1270 priviledgeMode := ModeS 1271 when (clearTval) { stval := 0.U } 1272 }.otherwise { 1273 mcause := causeNO 1274 mepc := Mux(hasInstrPageFault || hasInstrAccessFault, iexceptionPC, dexceptionPC) 1275 mstatusNew.mpp := priviledgeMode 1276 mstatusNew.pie.m := mstatusOld.ie.m 1277 mstatusNew.ie.m := false.B 1278 priviledgeMode := ModeM 1279 when (clearTval) { mtval := 0.U } 1280 } 1281 mstatus := mstatusNew.asUInt 1282 debugMode := debugModeNew 1283 } 1284 1285 XSDebug(hasExceptionIntr && delegS, "sepc is written!!! pc:%x\n", io.in.bits.data.pc.get) 1286 1287 // Distributed CSR update req 1288 // 1289 // For now we use it to implement customized cache op 1290 // It can be delayed if necessary 1291 1292 val delayedUpdate0 = DelayN(csrio.distributedUpdate(0), 2) 1293 val delayedUpdate1 = DelayN(csrio.distributedUpdate(1), 2) 1294 val distributedUpdateValid = delayedUpdate0.w.valid || delayedUpdate1.w.valid 1295 val distributedUpdateAddr = Mux(delayedUpdate0.w.valid, 1296 delayedUpdate0.w.bits.addr, 1297 delayedUpdate1.w.bits.addr 1298 ) 1299 val distributedUpdateData = Mux(delayedUpdate0.w.valid, 1300 delayedUpdate0.w.bits.data, 1301 delayedUpdate1.w.bits.data 1302 ) 1303 1304 assert(!(delayedUpdate0.w.valid && delayedUpdate1.w.valid)) 1305 1306 when(distributedUpdateValid){ 1307 // cacheopRegs can be distributed updated 1308 CacheInstrucion.CacheInsRegisterList.map{case (name, attribute) => { 1309 when((Scachebase + attribute("offset").toInt).U === distributedUpdateAddr){ 1310 cacheopRegs(name) := distributedUpdateData 1311 } 1312 }} 1313 } 1314 1315 // Cache error debug support 1316 if(HasCustomCSRCacheOp){ 1317 val cache_error_decoder = Module(new CSRCacheErrorDecoder) 1318 cache_error_decoder.io.encoded_cache_error := cacheopRegs("CACHE_ERROR") 1319 } 1320 1321 // Implicit add reset values for mepc[0] and sepc[0] 1322 // TODO: rewrite mepc and sepc using a struct-like style with the LSB always being 0 1323 when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { 1324 mepc := Cat(mepc(XLEN - 1, 1), 0.U(1.W)) 1325 sepc := Cat(sepc(XLEN - 1, 1), 0.U(1.W)) 1326 } 1327 1328 def readWithScala(addr: Int): UInt = mapping(addr)._1 1329 1330 val difftestIntrNO = Mux(hasIntr, causeNO, 0.U) 1331 1332 // Always instantiate basic difftest modules. 1333 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1334 val difftest = DifftestModule(new DiffArchEvent, delay = 3, dontCare = true) 1335 difftest.coreid := csrio.hartId 1336 difftest.valid := csrio.exception.valid 1337 difftest.interrupt := Mux(hasIntr, causeNO, 0.U) 1338 difftest.exception := Mux(hasException, causeNO, 0.U) 1339 difftest.exceptionPC := dexceptionPC 1340 if (env.EnableDifftest) { 1341 difftest.exceptionInst := csrio.exception.bits.instr 1342 } 1343 } 1344 1345 // Always instantiate basic difftest modules. 1346 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1347 val difftest = DifftestModule(new DiffCSRState) 1348 difftest.coreid := csrio.hartId 1349 difftest.priviledgeMode := priviledgeMode 1350 difftest.mstatus := mstatus 1351 difftest.sstatus := mstatus & sstatusRmask 1352 difftest.mepc := mepc 1353 difftest.sepc := sepc 1354 difftest.mtval:= mtval 1355 difftest.stval:= stval 1356 difftest.mtvec := mtvec 1357 difftest.stvec := stvec 1358 difftest.mcause := mcause 1359 difftest.scause := scause 1360 difftest.satp := satp 1361 difftest.mip := mipReg 1362 difftest.mie := mie 1363 difftest.mscratch := mscratch 1364 difftest.sscratch := sscratch 1365 difftest.mideleg := mideleg 1366 difftest.medeleg := medeleg 1367 } 1368 1369 if(env.AlwaysBasicDiff || env.EnableDifftest) { 1370 val difftest = DifftestModule(new DiffDebugMode) 1371 difftest.coreid := csrio.hartId 1372 difftest.debugMode := debugMode 1373 difftest.dcsr := dcsr 1374 difftest.dpc := dpc 1375 difftest.dscratch0 := dscratch0 1376 difftest.dscratch1 := dscratch1 1377 } 1378 1379 if (env.AlwaysBasicDiff || env.EnableDifftest) { 1380 val difftest = DifftestModule(new DiffVecCSRState) 1381 difftest.coreid := csrio.hartId 1382 difftest.vstart := vstart 1383 difftest.vxsat := vcsr.asTypeOf(new VcsrStruct).vxsat 1384 difftest.vxrm := vcsr.asTypeOf(new VcsrStruct).vxrm 1385 difftest.vcsr := vcsr 1386 difftest.vl := vl 1387 difftest.vtype := vtype 1388 difftest.vlenb := vlenb 1389 } 1390} 1391 1392class PFEvent(implicit p: Parameters) extends XSModule with HasCSRConst { 1393 val io = IO(new Bundle { 1394 val distribute_csr = Flipped(new DistributedCSRIO()) 1395 val hpmevent = Output(Vec(29, UInt(XLEN.W))) 1396 }) 1397 1398 val w = io.distribute_csr.w 1399 1400 val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++ 1401 List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++ 1402 List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++ 1403 List.fill(5)(RegInit("hc0300c0300".U(XLEN.W))) 1404 1405 val perfEventMapping = (0 until 29).map(i => {Map( 1406 MaskedRegMap(addr = Mhpmevent3 +i, 1407 reg = perfEvents(i), 1408 wmask = "hf87fff3fcff3fcff".U(XLEN.W)) 1409 )}).fold(Map())((a,b) => a ++ b) 1410 1411 val rdata = Wire(UInt(XLEN.W)) 1412 MaskedRegMap.generate(perfEventMapping, w.bits.addr, rdata, w.valid, w.bits.data) 1413 for(i <- 0 until 29){ 1414 io.hpmevent(i) := perfEvents(i) 1415 } 1416} 1417