xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 068bf978a62360db6c16671704497c3e01d6843f)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38  override def cloneType = (new RobPtr).asInstanceOf[this.type]
39}
40
41object RobPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
43    val ptr = Wire(new RobPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class RobCSRIO(implicit p: Parameters) extends XSBundle {
51  val intrBitSet = Input(Bool())
52  val trapTarget = Input(UInt(VAddrBits.W))
53  val isXRet = Input(Bool())
54
55  val fflags = Output(Valid(UInt(5.W)))
56  val dirty_fs = Output(Bool())
57  val perfinfo = new Bundle {
58    val retiredInstr = Output(UInt(3.W))
59  }
60}
61
62class RobLsqIO(implicit p: Parameters) extends XSBundle {
63  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val pendingld = Output(Bool())
66  val pendingst = Output(Bool())
67  val commit = Output(Bool())
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool() // TODO add frontend hit beneath
165  val crossPageIPFFix = Bool()
166  val trigger = new TriggerCf
167
168//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
169//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
170  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.getHitBackend || trigger.frontendException
171  // only exceptions are allowed to writeback when enqueue
172  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.getHitBackend || trigger.frontendException
173}
174
175class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
176  val io = IO(new Bundle {
177    val redirect = Input(Valid(new Redirect))
178    val flush = Input(Bool())
179    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
180    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
181    val out = ValidIO(new RobExceptionInfo)
182    val state = ValidIO(new RobExceptionInfo)
183  })
184
185  val current = Reg(Valid(new RobExceptionInfo))
186
187  // orR the exceptionVec
188  val lastCycleFlush = RegNext(io.flush)
189  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
190  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
191
192  // s0: compare wb(1),wb(2) and wb(3),wb(4)
193  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
194  val csr_wb_bits = io.wb(0).bits
195  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
196  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
197  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
198  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
199
200  // s1: compare last four and current flush
201  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
202  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
203  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
204  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
205  val s1_out_bits = RegNext(compare_bits)
206  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
207
208  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
209  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
210
211  // s2: compare the input exception with the current one
212  // priorities:
213  // (1) system reset
214  // (2) current is valid: flush, remain, merge, update
215  // (3) current is not valid: s1 or enq
216  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
217  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
218  when (reset.asBool) {
219    current.valid := false.B
220  }.elsewhen (current.valid) {
221    when (current_flush) {
222      current.valid := Mux(s1_flush, false.B, s1_out_valid)
223    }
224    when (s1_out_valid && !s1_flush) {
225      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
226        current.bits := s1_out_bits
227      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
228        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
229        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
230        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
231        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
232        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
233      }
234    }
235  }.elsewhen (s1_out_valid && !s1_flush) {
236    current.valid := true.B
237    current.bits := s1_out_bits
238  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
239    current.valid := true.B
240    current.bits := enq_bits
241  }
242
243  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
244  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
245  io.state := current
246
247}
248
249class RobFlushInfo(implicit p: Parameters) extends XSBundle {
250  val ftqIdx = new FtqPtr
251  val robIdx = new RobPtr
252  val ftqOffset = UInt(log2Up(PredictWidth).W)
253  val replayInst = Bool()
254}
255
256class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
257
258  lazy val module = new RobImp(this)
259
260  override def generateWritebackIO(
261    thisMod: Option[HasWritebackSource] = None,
262    thisModImp: Option[HasWritebackSourceImp] = None
263  ): Unit = {
264    val sources = writebackSinksImp(thisMod, thisModImp)
265    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
266  }
267}
268
269class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
270  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
271  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
272  val numWbPorts = wbExuConfigs.map(_.length)
273
274  val io = IO(new Bundle() {
275    val hartId = Input(UInt(8.W))
276    val redirect = Input(Valid(new Redirect))
277    val enq = new RobEnqIO
278    val flushOut = ValidIO(new Redirect)
279    val exception = ValidIO(new ExceptionInfo)
280    // exu + brq
281    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
282    val commits = new RobCommitIO
283    val lsq = new RobLsqIO
284    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
285    val robDeqPtr = Output(new RobPtr)
286    val csr = new RobCSRIO
287    val robFull = Output(Bool())
288  })
289
290  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
291    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
292  }
293  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
294  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
295  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
296  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
297  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
298  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
299  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
300  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
301  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
302  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
303  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
304
305
306  val exuWriteback = exuWbPorts.map(_._2)
307  val stdWriteback = stdWbPorts.map(_._2)
308
309  // instvalid field
310  val valid = Mem(RobSize, Bool())
311  // writeback status
312  val writebacked = Mem(RobSize, Bool())
313  val store_data_writebacked = Mem(RobSize, Bool())
314  // data for redirect, exception, etc.
315  val flagBkup = Mem(RobSize, Bool())
316  // some instructions are not allowed to trigger interrupts
317  // They have side effects on the states of the processor before they write back
318  val interrupt_safe = Mem(RobSize, Bool())
319
320  // data for debug
321  // Warn: debug_* prefix should not exist in generated verilog.
322  val debug_microOp = Mem(RobSize, new MicroOp)
323  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
324  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
325
326  // pointers
327  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
328  val enqPtr = Wire(new RobPtr)
329  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
330
331  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
332  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
333  val allowEnqueue = RegInit(true.B)
334
335  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
336  val deqPtr = deqPtrVec(0)
337  val walkPtr = walkPtrVec(0)
338
339  val isEmpty = enqPtr === deqPtr
340  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
341
342  /**
343    * states of Rob
344    */
345  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
346  val state = RegInit(s_idle)
347
348  /**
349    * Data Modules
350    *
351    * CommitDataModule: data from dispatch
352    * (1) read: commits/walk/exception
353    * (2) write: enqueue
354    *
355    * WritebackData: data from writeback
356    * (1) read: commits/walk/exception
357    * (2) write: write back from exe units
358    */
359  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
360  val dispatchDataRead = dispatchData.io.rdata
361
362  val exceptionGen = Module(new ExceptionGen)
363  val exceptionDataRead = exceptionGen.io.state
364  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
365
366  io.robDeqPtr := deqPtr
367
368  /**
369    * Enqueue (from dispatch)
370    */
371  // special cases
372  val hasBlockBackward = RegInit(false.B)
373  val hasNoSpecExec = RegInit(false.B)
374  val doingSvinval = RegInit(false.B)
375  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
376  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
377  when (isEmpty) { hasBlockBackward:= false.B }
378  // When any instruction commits, hasNoSpecExec should be set to false.B
379  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
380
381  io.enq.canAccept := allowEnqueue && !hasBlockBackward
382  io.enq.resp      := enqPtrVec
383  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
384  val timer = GTimer()
385  for (i <- 0 until RenameWidth) {
386    // we don't check whether io.redirect is valid here since redirect has higher priority
387    when (canEnqueue(i)) {
388      val enqUop = io.enq.req(i).bits
389      // store uop in data module and debug_microOp Vec
390      debug_microOp(enqPtrVec(i).value) := enqUop
391      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
392      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
393      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
394      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
395      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
396      when (enqUop.ctrl.blockBackward) {
397        hasBlockBackward := true.B
398      }
399      when (enqUop.ctrl.noSpecExec) {
400        hasNoSpecExec := true.B
401      }
402      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
403      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
404      when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
405      {
406        doingSvinval := true.B
407      }
408      // the end instruction of Svinval enqs so clear doingSvinval
409      when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
410      {
411        doingSvinval := false.B
412      }
413      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
414      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
415        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
416    }
417  }
418  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
419  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
420
421  // debug info for enqueue (dispatch)
422  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
423  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
424
425
426  /**
427    * Writeback (from execution units)
428    */
429  for (wb <- exuWriteback) {
430    when (wb.valid) {
431      val wbIdx = wb.bits.uop.robIdx.value
432      debug_microOp(wbIdx).diffTestDebugLrScValid := wb.bits.uop.diffTestDebugLrScValid
433      debug_exuData(wbIdx) := wb.bits.data
434      debug_exuDebug(wbIdx) := wb.bits.debug
435      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
436      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
437      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
438      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
439
440      val debug_Uop = debug_microOp(wbIdx)
441      XSInfo(true.B,
442        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
443        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
444        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
445      )
446    }
447  }
448  val writebackNum = PopCount(exuWriteback.map(_.valid))
449  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
450
451
452  /**
453    * RedirectOut: Interrupt and Exceptions
454    */
455  val deqDispatchData = dispatchDataRead(0)
456  val debug_deqUop = debug_microOp(deqPtr.value)
457
458  val intrBitSetReg = RegNext(io.csr.intrBitSet)
459  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
460  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
461  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
462    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.getHitFrontend || exceptionDataRead.bits.trigger.getHitBackend)
463  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
464  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
465  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
466
467  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
468  XSDebug(deqHasException && exceptionDataRead.bits.trigger.frontendException, "Debug Mode: Deq has frontend trigger exception\n")
469  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
470
471  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
472
473  // io.flushOut will trigger redirect at the next cycle.
474  // Block any redirect or commit at the next cycle.
475  val lastCycleFlush = RegNext(io.flushOut.valid)
476
477  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
478  io.flushOut.bits := DontCare
479  io.flushOut.bits.robIdx := deqPtr
480  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
481  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
482  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
483  io.flushOut.bits.interrupt := true.B
484  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
485  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
486  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
487  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
488
489  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
490  io.exception.valid := RegNext(exceptionHappen)
491  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
492  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
493  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
494  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
495  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
496  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
497  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
498
499  XSDebug(io.flushOut.valid,
500    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
501    p"excp $exceptionEnable flushPipe $isFlushPipe " +
502    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
503
504
505  /**
506    * Commits (and walk)
507    * They share the same width.
508    */
509  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
510  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
511  val walkFinished = walkCounter <= CommitWidth.U
512
513  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
514  require(RenameWidth <= CommitWidth)
515  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
516  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
517  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
518    usedSpaceForMPR := io.enq.needAlloc
519    extraSpaceForMPR := dispatchData.io.wdata
520    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
521  }
522
523  // wiring to csr
524  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
525    val v = io.commits.valid(i)
526    val info = io.commits.info(i)
527    (v & info.wflags, v & info.fpWen)
528  }).unzip
529  val fflags = Wire(Valid(UInt(5.W)))
530  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
531  fflags.bits := wflags.zip(fflagsDataRead).map({
532    case (w, f) => Mux(w, f, 0.U)
533  }).reduce(_|_)
534  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
535
536  // when mispredict branches writeback, stop commit in the next 2 cycles
537  // TODO: don't check all exu write back
538  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
539    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
540  ))).orR()
541  val misPredBlockCounter = Reg(UInt(3.W))
542  misPredBlockCounter := Mux(misPredWb,
543    "b111".U,
544    misPredBlockCounter >> 1.U
545  )
546  val misPredBlock = misPredBlockCounter(0)
547
548  io.commits.isWalk := state =/= s_idle
549  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
550  // store will be commited iff both sta & std have been writebacked
551  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
552  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
553  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
554  val allowOnlyOneCommit = commit_exception || intrBitSetReg
555  // for instructions that may block others, we don't allow them to commit
556  for (i <- 0 until CommitWidth) {
557    // defaults: state === s_idle and instructions commit
558    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
559    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
560    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
561    io.commits.info(i)  := dispatchDataRead(i)
562
563    when (state === s_walk) {
564      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
565    }.elsewhen(state === s_extrawalk) {
566      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
567      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
568    }
569
570    XSInfo(state === s_idle && io.commits.valid(i),
571      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
572      debug_microOp(deqPtrVec(i).value).cf.pc,
573      io.commits.info(i).rfWen,
574      io.commits.info(i).ldest,
575      io.commits.info(i).pdest,
576      io.commits.info(i).old_pdest,
577      debug_exuData(deqPtrVec(i).value),
578      fflagsDataRead(i)
579    )
580    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
581      debug_microOp(walkPtrVec(i).value).cf.pc,
582      io.commits.info(i).rfWen,
583      io.commits.info(i).ldest,
584      debug_exuData(walkPtrVec(i).value)
585    )
586    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
587      io.commits.info(i).rfWen,
588      io.commits.info(i).ldest
589    )
590  }
591  if (env.EnableDifftest) {
592    io.commits.info.map(info => dontTouch(info.pc))
593  }
594
595  // sync fflags/dirty_fs to csr
596  io.csr.fflags := fflags
597  io.csr.dirty_fs := dirty_fs
598
599  // commit branch to brq
600  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
601  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
602
603  // commit load/store to lsq
604  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
605  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
606  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
607  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
608  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
609  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
610  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
611
612  /**
613    * state changes
614    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
615    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
616    * (3) walk: when walking comes to the end, switch to s_walk
617    * (4) s_extrawalk to s_walk
618    */
619  val state_next = Mux(io.redirect.valid,
620    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
621    Mux(state === s_walk && walkFinished,
622      s_idle,
623      Mux(state === s_extrawalk, s_walk, state)
624    )
625  )
626  state := state_next
627
628  /**
629    * pointers and counters
630    */
631  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
632  deqPtrGenModule.io.state := state
633  deqPtrGenModule.io.deq_v := commit_v
634  deqPtrGenModule.io.deq_w := commit_w
635  deqPtrGenModule.io.exception_state := exceptionDataRead
636  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
637  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
638  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
639
640  deqPtrGenModule.io.misPredBlock := misPredBlock
641  deqPtrGenModule.io.isReplaying := isReplaying
642  deqPtrVec := deqPtrGenModule.io.out
643  val deqPtrVec_next = deqPtrGenModule.io.next_out
644
645  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
646  enqPtrGenModule.io.redirect := io.redirect
647  enqPtrGenModule.io.allowEnqueue := allowEnqueue
648  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
649  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
650  enqPtr := enqPtrGenModule.io.out
651
652  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
653  // next walkPtrVec:
654  // (1) redirect occurs: update according to state
655  // (2) walk: move backwards
656  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
657    Mux(state === s_walk,
658      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
659      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
660    ),
661    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
662  )
663  walkPtrVec := walkPtrVec_next
664
665  val lastCycleRedirect = RegNext(io.redirect.valid)
666  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
667  val commitCnt = PopCount(io.commits.valid)
668  validCounter := Mux(state === s_idle,
669    (validCounter - commitCnt) + dispatchNum,
670    trueValidCounter
671  )
672
673  allowEnqueue := Mux(state === s_idle,
674    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
675    trueValidCounter <= (RobSize - RenameWidth).U
676  )
677
678  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
679  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
680  when (io.redirect.valid) {
681    walkCounter := Mux(state === s_walk,
682      // NOTE: +& is used here because:
683      // When rob is full and the head instruction causes an exception,
684      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
685      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
686      // Since exceptions flush the instruction itself, flushItSelf is true.B.
687      // Previously we use `+` to count the walk distance and it causes overflows
688      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
689      // The width of walkCounter also needs to be changed.
690      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
691      redirectWalkDistance +& io.redirect.bits.flushItself()
692    )
693  }.elsewhen (state === s_walk) {
694    walkCounter := walkCounter - commitCnt
695    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
696  }
697
698
699  /**
700    * States
701    * We put all the stage bits changes here.
702
703    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
704    * All states: (1) valid; (2) writebacked; (3) flagBkup
705    */
706  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
707
708  // enqueue logic writes 6 valid
709  for (i <- 0 until RenameWidth) {
710    when (canEnqueue(i) && !io.redirect.valid) {
711      valid(enqPtrVec(i).value) := true.B
712    }
713  }
714  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
715  for (i <- 0 until CommitWidth) {
716    when (io.commits.valid(i) && state =/= s_extrawalk) {
717      valid(commitReadAddr(i)) := false.B
718    }
719  }
720  // reset: when exception, reset all valid to false
721  when (reset.asBool) {
722    for (i <- 0 until RobSize) {
723      valid(i) := false.B
724    }
725  }
726
727  // status field: writebacked
728  // enqueue logic set 6 writebacked to false
729  for (i <- 0 until RenameWidth) {
730    when (canEnqueue(i)) {
731      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
732      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !enqHasException.asUInt.orR
733      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
734      store_data_writebacked(enqPtrVec(i).value) := !isStu
735    }
736  }
737  when (exceptionGen.io.out.valid) {
738    val wbIdx = exceptionGen.io.out.bits.robIdx.value
739    writebacked(wbIdx) := true.B
740    store_data_writebacked(wbIdx) := true.B
741  }
742  // writeback logic set numWbPorts writebacked to true
743  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
744    when (wb.valid) {
745      val wbIdx = wb.bits.uop.robIdx.value
746      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
747      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
748      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
749      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst
750      writebacked(wbIdx) := !block_wb
751    }
752  }
753  // store data writeback logic mark store as data_writebacked
754  for (wb <- stdWriteback) {
755    when(RegNext(wb.valid)) {
756      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
757    }
758  }
759
760  // flagBkup
761  // enqueue logic set 6 flagBkup at most
762  for (i <- 0 until RenameWidth) {
763    when (canEnqueue(i)) {
764      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
765    }
766  }
767
768  // interrupt_safe
769  for (i <- 0 until RenameWidth) {
770    // We RegNext the updates for better timing.
771    // Note that instructions won't change the system's states in this cycle.
772    when (RegNext(canEnqueue(i))) {
773      // For now, we allow non-load-store instructions to trigger interrupts
774      // For MMIO instructions, they should not trigger interrupts since they may
775      // be sent to lower level before it writes back.
776      // However, we cannot determine whether a load/store instruction is MMIO.
777      // Thus, we don't allow load/store instructions to trigger an interrupt.
778      // TODO: support non-MMIO load-store instructions to trigger interrupts
779      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
780      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
781    }
782  }
783
784  /**
785    * read and write of data modules
786    */
787  val commitReadAddr_next = Mux(state_next === s_idle,
788    VecInit(deqPtrVec_next.map(_.value)),
789    VecInit(walkPtrVec_next.map(_.value))
790  )
791  dispatchData.io.wen := canEnqueue
792  dispatchData.io.waddr := enqPtrVec.map(_.value)
793  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
794    wdata.ldest := req.ctrl.ldest
795    wdata.rfWen := req.ctrl.rfWen
796    wdata.fpWen := req.ctrl.fpWen
797    wdata.wflags := req.ctrl.fpu.wflags
798    wdata.commitType := req.ctrl.commitType
799    wdata.pdest := req.pdest
800    wdata.old_pdest := req.old_pdest
801    wdata.ftqIdx := req.cf.ftqPtr
802    wdata.ftqOffset := req.cf.ftqOffset
803    wdata.pc := req.cf.pc
804  }
805  dispatchData.io.raddr := commitReadAddr_next
806
807  exceptionGen.io.redirect <> io.redirect
808  exceptionGen.io.flush := io.flushOut.valid
809  for (i <- 0 until RenameWidth) {
810    exceptionGen.io.enq(i).valid := canEnqueue(i)
811    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
812    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
813    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
814    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
815    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
816    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
817    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
818    exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger
819  }
820
821  println(s"ExceptionGen:")
822  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
823  require(exceptionCases.length == exceptionGen.io.wb.length)
824  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
825    exc_wb.valid                := wb.valid
826    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
827    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
828    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
829    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
830    exc_wb.bits.singleStep      := false.B
831    exc_wb.bits.crossPageIPFFix := false.B
832    // TODO: make trigger configurable
833    exc_wb.bits.trigger         := wb.bits.uop.cf.trigger
834    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
835      s"flushPipe ${configs.exists(_.flushPipe)}, " +
836      s"replayInst ${configs.exists(_.replayInst)}")
837  }
838
839  val fflags_wb = fflagsPorts.map(_._2)
840  val fflagsDataModule = Module(new SyncDataModuleTemplate(
841    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
842  )
843  for(i <- fflags_wb.indices){
844    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
845    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
846    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
847  }
848  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
849  fflagsDataRead := fflagsDataModule.io.rdata
850
851
852  val instrCnt = RegInit(0.U(64.W))
853  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
854  val trueCommitCnt = commitCnt +& fuseCommitCnt
855  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
856  instrCnt := instrCnt + retireCounter
857  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
858  io.robFull := !allowEnqueue
859
860  /**
861    * debug info
862    */
863  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
864  XSDebug("")
865  for(i <- 0 until RobSize){
866    XSDebug(false, !valid(i), "-")
867    XSDebug(false, valid(i) && writebacked(i), "w")
868    XSDebug(false, valid(i) && !writebacked(i), "v")
869  }
870  XSDebug(false, true.B, "\n")
871
872  for(i <- 0 until RobSize) {
873    if(i % 4 == 0) XSDebug("")
874    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
875    XSDebug(false, !valid(i), "- ")
876    XSDebug(false, valid(i) && writebacked(i), "w ")
877    XSDebug(false, valid(i) && !writebacked(i), "v ")
878    if(i % 4 == 3) XSDebug(false, true.B, "\n")
879  }
880
881  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
882
883  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
884  XSPerfAccumulate("clock_cycle", 1.U)
885  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
886  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
887  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
888  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
889  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
890  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
891  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
892  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
893  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
894  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
895  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
896  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
897  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
898  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
899  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
900  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
901  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
902  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
903  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
904  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
905  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
906  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
907  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
908  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
909  val deqUopCommitType = io.commits.info(0).commitType
910  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
911  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
912  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
913  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
914  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
915  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
916  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
917  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
918  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
919  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
920  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
921  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
922  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
923    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
924  }
925  for (fuType <- FuType.functionNameMap.keys) {
926    val fuName = FuType.functionNameMap(fuType)
927    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
928    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
929    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
930    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
931    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
932    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
933    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
934    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
935    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
936    if (fuType == FuType.fmac.litValue()) {
937      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
938      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
939      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
940      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
941    }
942  }
943
944  //difftest signals
945  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
946
947  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
948  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
949
950  for(i <- 0 until CommitWidth) {
951    val idx = deqPtrVec(i).value
952    wdata(i) := debug_exuData(idx)
953    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
954  }
955  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
956  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
957  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
958
959  if (env.EnableDifftest) {
960    for (i <- 0 until CommitWidth) {
961      val difftest = Module(new DifftestInstrCommit)
962      difftest.io.clock    := clock
963      difftest.io.coreid   := io.hartId
964      difftest.io.index    := i.U
965
966      val ptr = deqPtrVec(i).value
967      val uop = commitDebugUop(i)
968      val exuOut = debug_exuDebug(ptr)
969      val exuData = debug_exuData(ptr)
970      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
971      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
972      difftest.io.instr    := RegNext(uop.cf.instr)
973      difftest.io.special  := RegNext(CommitType.isFused(io.commits.info(i).commitType))
974      // when committing an eliminated move instruction,
975      // we must make sure that skip is properly set to false (output from EXU is random value)
976      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
977      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
978      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
979        uop.ctrl.fuType === FuType.mou &&
980        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
981      difftest.io.wen      := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)
982      difftest.io.wpdest   := RegNext(io.commits.info(i).pdest)
983      difftest.io.wdest    := RegNext(io.commits.info(i).ldest)
984
985      // runahead commit hint
986      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
987      runahead_commit.io.clock := clock
988      runahead_commit.io.coreid := io.hartId
989      runahead_commit.io.index := i.U
990      runahead_commit.io.valid := difftest.io.valid &&
991        (commitBranchValid(i) || commitIsStore(i))
992      // TODO: is branch or store
993      runahead_commit.io.pc    := difftest.io.pc
994    }
995  }
996  else if (env.AlwaysBasicDiff) {
997    // These are the structures used by difftest only and should be optimized after synthesis.
998    val dt_eliminatedMove = Mem(RobSize, Bool())
999    val dt_isRVC = Mem(RobSize, Bool())
1000    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1001    for (i <- 0 until RenameWidth) {
1002      when (canEnqueue(i)) {
1003        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1004        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1005      }
1006    }
1007    for (wb <- exuWriteback) {
1008      when (wb.valid) {
1009        val wbIdx = wb.bits.uop.robIdx.value
1010        dt_exuDebug(wbIdx) := wb.bits.debug
1011      }
1012    }
1013    // Always instantiate basic difftest modules.
1014    for (i <- 0 until CommitWidth) {
1015      val commitInfo = io.commits.info(i)
1016      val ptr = deqPtrVec(i).value
1017      val exuOut = dt_exuDebug(ptr)
1018      val eliminatedMove = dt_eliminatedMove(ptr)
1019      val isRVC = dt_isRVC(ptr)
1020
1021      val difftest = Module(new DifftestBasicInstrCommit)
1022      difftest.io.clock   := clock
1023      difftest.io.coreid  := io.hartId
1024      difftest.io.index   := i.U
1025      difftest.io.valid   := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1026      difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType))
1027      difftest.io.skip    := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
1028      difftest.io.isRVC   := RegNext(isRVC)
1029      difftest.io.wen     := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)
1030      difftest.io.wpdest  := RegNext(commitInfo.pdest)
1031      difftest.io.wdest   := RegNext(commitInfo.ldest)
1032    }
1033  }
1034
1035  if (env.EnableDifftest) {
1036    for (i <- 0 until CommitWidth) {
1037      val difftest = Module(new DifftestLoadEvent)
1038      difftest.io.clock  := clock
1039      difftest.io.coreid := io.hartId
1040      difftest.io.index  := i.U
1041
1042      val ptr = deqPtrVec(i).value
1043      val uop = commitDebugUop(i)
1044      val exuOut = debug_exuDebug(ptr)
1045      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1046      difftest.io.paddr  := RegNext(exuOut.paddr)
1047      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
1048      difftest.io.fuType := RegNext(uop.ctrl.fuType)
1049    }
1050  }
1051
1052  // Always instantiate basic difftest modules.
1053  if (env.EnableDifftest) {
1054    val dt_isXSTrap = Mem(RobSize, Bool())
1055    for (i <- 0 until RenameWidth) {
1056      when (canEnqueue(i)) {
1057        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1058      }
1059    }
1060    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1061    val hitTrap = trapVec.reduce(_||_)
1062    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1063    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1064    val difftest = Module(new DifftestTrapEvent)
1065    difftest.io.clock    := clock
1066    difftest.io.coreid   := io.hartId
1067    difftest.io.valid    := hitTrap
1068    difftest.io.code     := trapCode
1069    difftest.io.pc       := trapPC
1070    difftest.io.cycleCnt := timer
1071    difftest.io.instrCnt := instrCnt
1072  }
1073  else if (env.AlwaysBasicDiff) {
1074    val dt_isXSTrap = Mem(RobSize, Bool())
1075    for (i <- 0 until RenameWidth) {
1076      when (canEnqueue(i)) {
1077        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1078      }
1079    }
1080    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1081    val hitTrap = trapVec.reduce(_||_)
1082    val difftest = Module(new DifftestBasicTrapEvent)
1083    difftest.io.clock    := clock
1084    difftest.io.coreid   := io.hartId
1085    difftest.io.valid    := hitTrap
1086    difftest.io.cycleCnt := timer
1087    difftest.io.instrCnt := instrCnt
1088  }
1089
1090  val perfEvents = Seq(
1091    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1092    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1093    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1094    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1095    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1096    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1097    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1098    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1099    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1100    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1101    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1102    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1103    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1104    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1105    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1106    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1107    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1108    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1109  )
1110  generatePerfEvent()
1111}
1112