xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 0c7ebb58175b51109677230e8cbab09e73166956)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuConfig, FuType}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.fu.vector.Bundles.VType
35import xiangshan.backend.rename.SnapshotGenerator
36
37
38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
39  entries
40) with HasCircularQueuePtrHelper {
41
42  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
43
44  def needFlush(redirect: Valid[Redirect]): Bool = {
45    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
46    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
47  }
48
49  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
50}
51
52object RobPtr {
53  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
54    val ptr = Wire(new RobPtr)
55    ptr.flag := f
56    ptr.value := v
57    ptr
58  }
59}
60
61class RobCSRIO(implicit p: Parameters) extends XSBundle {
62  val intrBitSet = Input(Bool())
63  val trapTarget = Input(UInt(VAddrBits.W))
64  val isXRet     = Input(Bool())
65  val wfiEvent   = Input(Bool())
66
67  val fflags     = Output(Valid(UInt(5.W)))
68  val vxsat      = Output(Valid(Bool()))
69  val vstart     = Output(Valid(UInt(XLEN.W)))
70  val dirty_fs   = Output(Bool())
71  val perfinfo   = new Bundle {
72    val retiredInstr = Output(UInt(3.W))
73  }
74
75  val vcsrFlag   = Output(Bool())
76}
77
78class RobLsqIO(implicit p: Parameters) extends XSBundle {
79  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
81  val pendingld = Output(Bool())
82  val pendingst = Output(Bool())
83  val commit = Output(Bool())
84  val pendingPtr = Output(new RobPtr)
85  val pendingPtrNext = Output(new RobPtr)
86
87  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
88  // Todo: what's this?
89  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
90}
91
92class RobEnqIO(implicit p: Parameters) extends XSBundle {
93  val canAccept = Output(Bool())
94  val isEmpty = Output(Bool())
95  // valid vector, for robIdx gen and walk
96  val needAlloc = Vec(RenameWidth, Input(Bool()))
97  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
98  val resp = Vec(RenameWidth, Output(new RobPtr))
99}
100
101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
102  val robHeadVaddr = Valid(UInt(VAddrBits.W))
103  val robHeadPaddr = Valid(UInt(PAddrBits.W))
104}
105
106class RobDispatchTopDownIO extends Bundle {
107  val robTrueCommit = Output(UInt(64.W))
108  val robHeadLsIssue = Output(Bool())
109}
110
111class RobDebugRollingIO extends Bundle {
112  val robTrueCommit = Output(UInt(64.W))
113}
114
115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
116
117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
118  val io = IO(new Bundle {
119    // for commits/flush
120    val state = Input(UInt(2.W))
121    val deq_v = Vec(CommitWidth, Input(Bool()))
122    val deq_w = Vec(CommitWidth, Input(Bool()))
123    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
124    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
125    val intrBitSetReg = Input(Bool())
126    val hasNoSpecExec = Input(Bool())
127    val interrupt_safe = Input(Bool())
128    val blockCommit = Input(Bool())
129    // output: the CommitWidth deqPtr
130    val out = Vec(CommitWidth, Output(new RobPtr))
131    val next_out = Vec(CommitWidth, Output(new RobPtr))
132    val commitCnt = Output(UInt(log2Up(CommitWidth+1).W))
133    val canCommitPriorityCond = Output(Vec(CommitWidth+1,Bool()))
134    val commitEn = Output(Bool())
135  })
136
137  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
138
139  // for exceptions (flushPipe included) and interrupts:
140  // only consider the first instruction
141  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
142  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
143  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
144
145  // for normal commits: only to consider when there're no exceptions
146  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
147  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
148  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
149  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
150  // when io.intrBitSetReg or there're possible exceptions in these instructions,
151  // only one instruction is allowed to commit
152  val allowOnlyOne = commit_exception || io.intrBitSetReg
153  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
154  val allowOnlyOneCond = Wire(chiselTypeOf(io.canCommitPriorityCond))
155  allowOnlyOneCond.zipWithIndex.map{ case (value,i) => value := (if (i==0) !canCommit(0) else true.B)}
156  io.canCommitPriorityCond := Mux(allowOnlyOne, allowOnlyOneCond, VecInit(canCommit.map(c => !c) :+ true.B))
157
158  val commitDeqPtrAll = VecInit((0 until 2*CommitWidth).map{case i => deqPtrVec(0) + i.U})
159  val commitDeqPtrVec = Wire(chiselTypeOf(deqPtrVec))
160  for (i <- 0 until CommitWidth){
161    commitDeqPtrVec(i) := PriorityMuxDefault(io.canCommitPriorityCond.zip(commitDeqPtrAll.drop(i).take(CommitWidth+1)), deqPtrVec(i))
162  }
163  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
164
165  deqPtrVec := deqPtrVec_next
166
167  io.next_out := deqPtrVec_next
168  io.out      := deqPtrVec
169  io.commitCnt := commitCnt
170  io.commitEn := io.state === 0.U && !redirectOutValid && !io.blockCommit
171
172  when (io.state === 0.U) {
173    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
174  }
175
176}
177
178class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
179  val io = IO(new Bundle {
180    // for input redirect
181    val redirect = Input(Valid(new Redirect))
182    // for enqueue
183    val allowEnqueue = Input(Bool())
184    val hasBlockBackward = Input(Bool())
185    val enq = Vec(RenameWidth, Input(Bool()))
186    val out = Output(Vec(RenameWidth, new RobPtr))
187  })
188
189  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
190
191  // enqueue
192  val canAccept = io.allowEnqueue && !io.hasBlockBackward
193  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
194
195  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
196    when(io.redirect.valid) {
197      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
198    }.otherwise {
199      ptr := ptr + dispatchNum
200    }
201  }
202
203  io.out := enqPtrVec
204
205}
206
207class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
208  // val valid = Bool()
209  val robIdx = new RobPtr
210  val exceptionVec = ExceptionVec()
211  val flushPipe = Bool()
212  val isVset = Bool()
213  val replayInst = Bool() // redirect to that inst itself
214  val singleStep = Bool() // TODO add frontend hit beneath
215  val crossPageIPFFix = Bool()
216  val trigger = new TriggerCf
217  val vstartEn = Bool()
218  val vstart = UInt(XLEN.W)
219
220  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire
221  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire
222  // only exceptions are allowed to writeback when enqueue
223  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire
224}
225
226class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
227  val io = IO(new Bundle {
228    val redirect = Input(Valid(new Redirect))
229    val flush = Input(Bool())
230    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
231    // csr + load + store + varith + vload + vstore
232    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
233    val out = ValidIO(new RobExceptionInfo)
234    val state = ValidIO(new RobExceptionInfo)
235  })
236
237  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
238
239  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
240    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
241      assert(valid.length == bits.length)
242      if (valid.length == 1) {
243        (valid, bits)
244      } else if (valid.length == 2) {
245        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
246        for (i <- res.indices) {
247          res(i).valid := valid(i)
248          res(i).bits := bits(i)
249        }
250        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
251        (Seq(oldest.valid), Seq(oldest.bits))
252      } else {
253        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
254        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
255        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
256      }
257    }
258    getOldest_recursion(valid, bits)._2.head
259  }
260
261
262  val currentValid = RegInit(false.B)
263  val current = Reg(new RobExceptionInfo)
264
265  // orR the exceptionVec
266  val lastCycleFlush = RegNext(io.flush)
267  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
268
269  // s0: compare wb in 6 groups
270  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
271  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
272  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
273  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
274  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
275  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
276
277  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
278  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
279  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
280    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
281  }
282  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
283
284  val s0_out_valid = wb_valid.map(x => RegNext(x))
285  val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)}
286
287  // s1: compare last six and current flush
288  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
289  val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR)
290  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
291
292  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
293  val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
294
295  // s2: compare the input exception with the current one
296  // priorities:
297  // (1) system reset
298  // (2) current is valid: flush, remain, merge, update
299  // (3) current is not valid: s1 or enq
300  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
301  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
302  when (currentValid) {
303    when (current_flush) {
304      currentValid := Mux(s1_flush, false.B, s1_out_valid)
305    }
306    when (s1_out_valid && !s1_flush) {
307      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
308        current := s1_out_bits
309      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
310        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
311        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
312        current.replayInst := s1_out_bits.replayInst || current.replayInst
313        current.singleStep := s1_out_bits.singleStep || current.singleStep
314        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
315      }
316    }
317  }.elsewhen (s1_out_valid && !s1_flush) {
318    currentValid := true.B
319    current := s1_out_bits
320  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
321    currentValid := true.B
322    current := enq_bits
323  }
324
325  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
326  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
327  io.state.valid := currentValid
328  io.state.bits  := current
329
330}
331
332class RobFlushInfo(implicit p: Parameters) extends XSBundle {
333  val ftqIdx = new FtqPtr
334  val robIdx = new RobPtr
335  val ftqOffset = UInt(log2Up(PredictWidth).W)
336  val replayInst = Bool()
337}
338
339class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
340  override def shouldBeInlined: Boolean = false
341
342  lazy val module = new RobImp(this)(p, params)
343}
344
345class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
346  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
347
348  private val LduCnt = params.LduCnt
349  private val StaCnt = params.StaCnt
350  private val HyuCnt = params.HyuCnt
351
352  val io = IO(new Bundle() {
353    val hartId = Input(UInt(8.W))
354    val redirect = Input(Valid(new Redirect))
355    val enq = new RobEnqIO
356    val flushOut = ValidIO(new Redirect)
357    val exception = ValidIO(new ExceptionInfo)
358    // exu + brq
359    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
360    val commits = Output(new RobCommitIO)
361    val rabCommits = Output(new RabCommitIO)
362    val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None
363    val isVsetFlushPipe = Output(Bool())
364    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
365    val lsq = new RobLsqIO
366    val robDeqPtr = Output(new RobPtr)
367    val csr = new RobCSRIO
368    val snpt = Input(new SnapshotPort)
369    val robFull = Output(Bool())
370    val headNotReady = Output(Bool())
371    val cpu_halt = Output(Bool())
372    val wfi_enable = Input(Bool())
373    val toDecode = new Bundle {
374      val vtype = ValidIO(VType())
375    }
376
377    val debug_ls = Flipped(new DebugLSIO)
378    val debugRobHead = Output(new DynInst)
379    val debugEnqLsq = Input(new LsqEnqIO)
380    val debugHeadLsIssue = Input(Bool())
381    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
382    val debugTopDown = new Bundle {
383      val toCore = new RobCoreTopDownIO
384      val toDispatch = new RobDispatchTopDownIO
385      val robHeadLqIdx = Valid(new LqPtr)
386    }
387    val debugRolling = new RobDebugRollingIO
388  })
389
390  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
391  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
392  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
393  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
394  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
395  val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
396
397  val numExuWbPorts = exuWBs.length
398  val numStdWbPorts = stdWBs.length
399
400
401  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
402//  println(s"exuPorts: ${exuWbs.map(_._1.map(_.name))}")
403//  println(s"stdPorts: ${stdWbs.map(_._1.map(_.name))}")
404//  println(s"fflagsPorts: ${fflagsWBs.map(_._1.map(_.name))}")
405
406
407  // instvalid field
408  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
409  // writeback status
410
411  val stdWritebacked = Reg(Vec(RobSize, Bool()))
412  val commitTrigger = Mem(RobSize, Bool())
413  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
414  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
415  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
416  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
417  val vls                = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
418
419  val stdWritebackedDeqGroup   = Reg(Vec(CommitWidth, Bool()))
420  val uopNumVecDeqGroup        = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
421  val realDestSizeDeqGroup     = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
422  val fflagsDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(5.W))))
423  val vxsatDataModuleDeqGroup  = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
424  def isWritebacked(ptr: UInt): Bool = {
425    !uopNumVec(ptr).orR && stdWritebacked(ptr)
426  }
427
428  def isUopWritebacked(ptr: UInt): Bool = {
429    !uopNumVec(ptr).orR
430  }
431
432  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
433
434  // data for redirect, exception, etc.
435  val flagBkup = Mem(RobSize, Bool())
436  // some instructions are not allowed to trigger interrupts
437  // They have side effects on the states of the processor before they write back
438  val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B)))
439  val interrupt_safeDeqGroup = Reg(Vec(CommitWidth, Bool()))
440
441  // data for debug
442  // Warn: debug_* prefix should not exist in generated verilog.
443  val debug_microOp = DebugMem(RobSize, new DynInst)
444  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
445  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
446  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
447  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
448  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
449  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
450
451  // pointers
452  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
453  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
454  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
455
456  if(backendParams.debugEn) {
457    dontTouch(enqPtrVec)
458    dontTouch(deqPtrVec)
459  }
460
461  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
462  val lastWalkPtr = Reg(new RobPtr)
463  val allowEnqueue = RegInit(true.B)
464
465  val enqPtr = enqPtrVec.head
466  val deqPtr = deqPtrVec(0)
467  val walkPtr = walkPtrVec(0)
468
469  val isEmpty = enqPtr === deqPtr
470  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
471
472  val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _)
473  val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr))
474  snapshotPtrVec(0) := io.enq.req(0).bits.robIdx
475  for (i <- 1 until RenameWidth) {
476    snapshotPtrVec(i) := snapshotPtrVec(0) + i.U
477  }
478  val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
479  val debug_lsIssue = WireDefault(debug_lsIssued)
480  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
481
482  /**
483    * states of Rob
484    */
485  val s_idle :: s_walk :: Nil = Enum(2)
486  val state = RegInit(s_idle)
487
488  /**
489    * Data Modules
490    *
491    * CommitDataModule: data from dispatch
492    * (1) read: commits/walk/exception
493    * (2) write: enqueue
494    *
495    * WritebackData: data from writeback
496    * (1) read: commits/walk/exception
497    * (2) write: write back from exe units
498    */
499  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
500  val dispatchDataRead = dispatchData.io.rdata
501
502  val exceptionGen = Module(new ExceptionGen(params))
503  val exceptionDataRead = exceptionGen.io.state
504  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
505  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
506
507  io.robDeqPtr := deqPtr
508  io.debugRobHead := debug_microOp(deqPtr.value)
509
510  val rab = Module(new RenameBuffer(RabSize))
511  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
512
513  /**
514   * connection of [[rab]]
515   */
516  rab.io.redirect.valid := io.redirect.valid
517
518  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
519    dest.bits := src.bits
520    dest.valid := src.valid && io.enq.canAccept
521  }
522
523  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
524  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
525
526  val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
527  val commitSizeSumSeq = (0 until CommitWidth).map(i => realDestSizeDeqGroup.take(i+1).reduce(_ +& _))
528  val walkSizeSumSeq = (0 until CommitWidth).map(i => walkDestSizeDeqGroup.take(i+1).reduce(_ +& _))
529  val commitSizeSumCond = io.commits.commitValid.map(_ && io.commits.isCommit)
530  val walkSizeSumCond = io.commits.walkValid.map(_ && io.commits.isWalk)
531  val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U)
532  val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U)
533
534  rab.io.fromRob.commitSize := commitSizeSum
535  rab.io.fromRob.walkSize := walkSizeSum
536  rab.io.snpt := io.snpt
537  rab.io.snpt.snptEnq := snptEnq
538
539  io.rabCommits := rab.io.commits
540  io.diffCommits.foreach(_ := rab.io.diffCommits.get)
541
542  /**
543   * connection of [[vtypeBuffer]]
544   */
545
546  vtypeBuffer.io.redirect.valid := io.redirect.valid
547
548  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
549    sink.valid := source.valid && io.enq.canAccept
550    sink.bits := source.bits
551  }
552
553  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset })
554  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset })
555  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
556  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
557  vtypeBuffer.io.snpt := io.snpt
558  vtypeBuffer.io.snpt.snptEnq := snptEnq
559  io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype
560
561  /**
562    * Enqueue (from dispatch)
563    */
564  // special cases
565  val hasBlockBackward = RegInit(false.B)
566  val hasWaitForward = RegInit(false.B)
567  val doingSvinval = RegInit(false.B)
568  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
569  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
570  when (isEmpty) { hasBlockBackward:= false.B }
571  // When any instruction commits, hasNoSpecExec should be set to false.B
572  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
573
574  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
575  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
576  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
577  val hasWFI = RegInit(false.B)
578  io.cpu_halt := hasWFI
579  // WFI Timeout: 2^20 = 1M cycles
580  val wfi_cycles = RegInit(0.U(20.W))
581  when (hasWFI) {
582    wfi_cycles := wfi_cycles + 1.U
583  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
584    wfi_cycles := 0.U
585  }
586  val wfi_timeout = wfi_cycles.andR
587  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
588    hasWFI := false.B
589  }
590
591  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
592  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq
593  io.enq.resp      := allocatePtrVec
594  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
595  val timer = GTimer()
596  for (i <- 0 until RenameWidth) {
597    // we don't check whether io.redirect is valid here since redirect has higher priority
598    when (canEnqueue(i)) {
599      val enqUop = io.enq.req(i).bits
600      val enqIndex = allocatePtrVec(i).value
601      // store uop in data module and debug_microOp Vec
602      debug_microOp(enqIndex) := enqUop
603      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
604      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
605      debug_microOp(enqIndex).debugInfo.selectTime := timer
606      debug_microOp(enqIndex).debugInfo.issueTime := timer
607      debug_microOp(enqIndex).debugInfo.writebackTime := timer
608      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
609      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
610      debug_lsInfo(enqIndex) := DebugLsInfo.init
611      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
612      debug_lqIdxValid(enqIndex) := false.B
613      debug_lsIssued(enqIndex) := false.B
614
615      when (enqUop.blockBackward) {
616        hasBlockBackward := true.B
617      }
618      when (enqUop.waitForward) {
619        hasWaitForward := true.B
620      }
621      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
622      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
623      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
624      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
625      {
626        doingSvinval := true.B
627      }
628      // the end instruction of Svinval enqs so clear doingSvinval
629      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
630      {
631        doingSvinval := false.B
632      }
633      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
634      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
635      when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
636        hasWFI := true.B
637      }
638
639      mmio(enqIndex) := false.B
640
641      vls(enqIndex) := enqUop.vlsInstr
642    }
643  }
644  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
645  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
646
647  when (!io.wfi_enable) {
648    hasWFI := false.B
649  }
650  // sel vsetvl's flush position
651  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
652  val vsetvlState = RegInit(vs_idle)
653
654  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
655  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
656  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
657
658  val enq0            = io.enq.req(0)
659  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
660  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
661  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
662  // for vs_idle
663  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
664  // for vs_waitVinstr
665  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
666  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
667  when(vsetvlState === vs_idle){
668    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
669    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
670    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
671  }.elsewhen(vsetvlState === vs_waitVinstr){
672    when(Cat(enqIsVInstrOrVset).orR){
673      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
674      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
675      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
676    }
677  }
678
679  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
680  when(vsetvlState === vs_idle && !io.redirect.valid){
681    when(enq0IsVsetFlush){
682      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
683    }
684  }.elsewhen(vsetvlState === vs_waitVinstr){
685    when(io.redirect.valid){
686      vsetvlState := vs_idle
687    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
688      vsetvlState := vs_waitFlush
689    }
690  }.elsewhen(vsetvlState === vs_waitFlush){
691    when(io.redirect.valid){
692      vsetvlState := vs_idle
693    }
694  }
695
696  // lqEnq
697  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
698    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
699      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
700      debug_lqIdxValid(req.bits.robIdx.value) := true.B
701    }
702  }
703
704  // lsIssue
705  when(io.debugHeadLsIssue) {
706    debug_lsIssued(deqPtr.value) := true.B
707  }
708
709  /**
710    * Writeback (from execution units)
711    */
712  for (wb <- exuWBs) {
713    when (wb.valid) {
714      val wbIdx = wb.bits.robIdx.value
715      debug_exuData(wbIdx) := wb.bits.data
716      debug_exuDebug(wbIdx) := wb.bits.debug
717      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
718      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
719      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
720      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
721
722      // debug for lqidx and sqidx
723      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
724      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
725
726      val debug_Uop = debug_microOp(wbIdx)
727      XSInfo(true.B,
728        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
729        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
730        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
731      )
732    }
733  }
734
735  val writebackNum = PopCount(exuWBs.map(_.valid))
736  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
737
738  for (i <- 0 until LoadPipelineWidth) {
739    when (RegNext(io.lsq.mmio(i))) {
740      mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B
741    }
742  }
743
744  /**
745    * RedirectOut: Interrupt and Exceptions
746    */
747  val deqDispatchData = dispatchDataRead(0)
748  val debug_deqUop = debug_microOp(deqPtr.value)
749
750  val intrBitSetReg = RegNext(io.csr.intrBitSet)
751  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safeDeqGroup(0)
752  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
753  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
754    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire)
755  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
756  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
757  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
758
759  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
760  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
761  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
762
763  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
764
765  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
766//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
767  val needModifyFtqIdxOffset = false.B
768  io.isVsetFlushPipe := isVsetFlushPipe
769  io.vconfigPdest := rab.io.vconfigPdest
770  // io.flushOut will trigger redirect at the next cycle.
771  // Block any redirect or commit at the next cycle.
772  val lastCycleFlush = RegNext(io.flushOut.valid)
773
774  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
775  io.flushOut.bits := DontCare
776  io.flushOut.bits.isRVC := deqDispatchData.isRVC
777  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
778  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
779  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
780  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
781  io.flushOut.bits.interrupt := true.B
782  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
783  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
784  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
785  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
786
787  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
788  io.exception.valid                := RegNext(exceptionHappen)
789  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
790  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
791  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
792  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
793  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
794  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
795  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
796  io.exception.bits.vls             := RegEnable(vls(deqPtr.value), exceptionHappen)
797  io.exception.bits.trigger         := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
798  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
799  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
800
801  XSDebug(io.flushOut.valid,
802    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
803    p"excp $exceptionEnable flushPipe $isFlushPipe " +
804    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
805
806
807  /**
808    * Commits (and walk)
809    * They share the same width.
810    */
811  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
812  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
813  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
814  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
815
816  require(RenameWidth <= CommitWidth)
817
818  // wiring to csr
819  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
820    val v = io.commits.commitValid(i)
821    val info = io.commits.info(i)
822    (v & info.wflags, v & info.dirtyFs)
823  }).unzip
824  val fflags = Wire(Valid(UInt(5.W)))
825  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
826  fflags.bits := wflags.zip(fflagsDataRead).map({
827    case (w, f) => Mux(w, f, 0.U)
828  }).reduce(_|_)
829  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
830
831  val vxsat = Wire(Valid(Bool()))
832  vxsat.valid := io.commits.isCommit && vxsat.bits
833  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
834    case (valid, vxsat) => valid & vxsat
835  }.reduce(_ | _)
836
837  // when mispredict branches writeback, stop commit in the next 2 cycles
838  // TODO: don't check all exu write back
839  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
840    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
841  ).toSeq)).orR
842  val misPredBlockCounter = Reg(UInt(3.W))
843  misPredBlockCounter := Mux(misPredWb,
844    "b111".U,
845    misPredBlockCounter >> 1.U
846  )
847  val misPredBlock = misPredBlockCounter(0)
848  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
849
850  io.commits.isWalk := state === s_walk
851  io.commits.isCommit := state === s_idle && !blockCommit
852  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
853  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
854  dontTouch(commit_v)
855  val commit_vDeqGroup = Reg(chiselTypeOf(walk_v))
856  // store will be commited iff both sta & std have been writebacked
857  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value)))
858  val commit_wDeqGroup = Reg(chiselTypeOf(walk_v))
859  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
860  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i)))
861  val allowOnlyOneCommit = commit_exception || intrBitSetReg
862  // for instructions that may block others, we don't allow them to commit
863  for (i <- 0 until CommitWidth) {
864    // defaults: state === s_idle and instructions commit
865    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
866    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
867    io.commits.commitValid(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked
868    io.commits.info(i) := dispatchDataRead(i)
869    io.commits.robIdx(i) := deqPtrVec(i)
870
871    io.commits.walkValid(i) := shouldWalkVec(i)
872    when (state === s_walk) {
873      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
874        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
875      }
876    }
877
878    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
879      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
880      debug_microOp(deqPtrVec(i).value).pc,
881      io.commits.info(i).rfWen,
882      io.commits.info(i).ldest,
883      io.commits.info(i).pdest,
884      debug_exuData(deqPtrVec(i).value),
885      fflagsDataRead(i),
886      vxsatDataRead(i)
887    )
888    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
889      debug_microOp(walkPtrVec(i).value).pc,
890      io.commits.info(i).rfWen,
891      io.commits.info(i).ldest,
892      debug_exuData(walkPtrVec(i).value)
893    )
894  }
895  if (env.EnableDifftest) {
896    io.commits.info.map(info => dontTouch(info.pc))
897  }
898
899  // sync fflags/dirty_fs/vxsat to csr
900  io.csr.fflags := RegNext(fflags)
901  io.csr.dirty_fs := RegNext(dirty_fs)
902  io.csr.vxsat := RegNext(vxsat)
903
904  // sync v csr to csr
905  // for difftest
906  if(env.AlwaysBasicDiff || env.EnableDifftest) {
907    val isDiffWriteVconfigVec = io.diffCommits.get.commitValid.zip(io.diffCommits.get.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
908    io.csr.vcsrFlag := RegNext(io.diffCommits.get.isCommit && Cat(isDiffWriteVconfigVec).orR)
909  }
910  else{
911    io.csr.vcsrFlag := false.B
912  }
913
914  // commit load/store to lsq
915  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
916  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
917  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
918  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
919  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
920  // indicate a pending load or store
921  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
922  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
923  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
924  io.lsq.pendingPtr := RegNext(deqPtr)
925  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
926
927  /**
928    * state changes
929    * (1) redirect: switch to s_walk
930    * (2) walk: when walking comes to the end, switch to s_idle
931    */
932  val state_next = Mux(
933    io.redirect.valid, s_walk,
934    Mux(
935      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
936      state
937    )
938  )
939  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
940  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
941  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
942  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
943  state := state_next
944
945  /**
946    * pointers and counters
947    */
948  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
949  deqPtrGenModule.io.state := state
950  deqPtrGenModule.io.deq_v := commit_vDeqGroup
951  deqPtrGenModule.io.deq_w := commit_wDeqGroup
952  deqPtrGenModule.io.exception_state := exceptionDataRead
953  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
954  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
955  deqPtrGenModule.io.interrupt_safe := interrupt_safeDeqGroup(0)
956  deqPtrGenModule.io.blockCommit := blockCommit
957  deqPtrVec := deqPtrGenModule.io.out
958  deqPtrVec_next := deqPtrGenModule.io.next_out
959
960  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
961  enqPtrGenModule.io.redirect := io.redirect
962  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
963  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
964  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
965  enqPtrVec := enqPtrGenModule.io.out
966
967  // next walkPtrVec:
968  // (1) redirect occurs: update according to state
969  // (2) walk: move forwards
970  val walkPtrVec_next = Mux(io.redirect.valid,
971    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
972    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
973  )
974  walkPtrVec := walkPtrVec_next
975  walkDestSizeDeqGroup.zip(walkPtrVec_next).map{
976    case (reg, ptrNext) => reg := realDestSize(ptrNext.value)
977  }
978  val numValidEntries = distanceBetween(enqPtr, deqPtr)
979  val commitCnt = PopCount(io.commits.commitValid)
980
981  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
982
983  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
984  when (io.redirect.valid) {
985    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
986  }
987
988
989  /**
990    * States
991    * We put all the stage bits changes here.
992
993    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
994    * All states: (1) valid; (2) writebacked; (3) flagBkup
995    */
996
997  // update commit_vDeqGroup
998  val deqPtrValue = Wire(Vec(2 * CommitWidth, new RobPtr))
999  deqPtrValue.zipWithIndex.map{case (deq, i) => deq := deqPtrVec(0) + i.U}
1000  val commit_vReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0))))
1001  val commit_vNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0))))
1002  dontTouch(commit_vDeqGroup)
1003  dontTouch(commit_vReadVec)
1004  dontTouch(commit_vNextVec)
1005  dontTouch(deqPtrValue)
1006  for (i <- 0 until 2 * CommitWidth) {
1007    commit_vReadVec(i) := valid(deqPtrValue(i).value)
1008    commit_vNextVec(i) := commit_vReadVec(i)
1009  }
1010  (0 until CommitWidth).map { case i =>
1011    val nextVec = commit_vNextVec
1012    val commitEn = deqPtrGenModule.io.commitEn
1013    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1014    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1015    val originValue = nextVec(i)
1016    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1017    commit_vDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1018  }
1019  // update commit_wDeqGroup
1020  val commit_wReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0))))
1021  val commit_wNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0))))
1022  dontTouch(commit_wDeqGroup)
1023  dontTouch(commit_wReadVec)
1024  dontTouch(commit_wNextVec)
1025  dontTouch(commit_w)
1026  for (i <- 0 until 2 * CommitWidth) {
1027    commit_wReadVec(i) := isWritebacked(deqPtrValue(i).value)
1028    commit_wNextVec(i) := commit_vReadVec(i)
1029  }
1030  (0 until CommitWidth).map { case i =>
1031    val nextVec = commit_wNextVec
1032    val commitEn = deqPtrGenModule.io.commitEn
1033    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1034    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1035    val originValue = nextVec(i)
1036    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis),originValue)
1037    commit_wDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1038  }
1039  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
1040
1041  // redirect logic writes 6 valid
1042  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
1043  val redirectTail = Reg(new RobPtr)
1044  val redirectIdle :: redirectBusy :: Nil = Enum(2)
1045  val redirectState = RegInit(redirectIdle)
1046  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
1047  when(redirectState === redirectBusy) {
1048    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
1049    redirectHeadVec zip invMask foreach {
1050      case (redirectHead, inv) => when(inv) {
1051        valid(redirectHead.value) := false.B
1052        for (j <- 0 until 2 * CommitWidth) {
1053          when(redirectHead.value === deqPtrValue(j).value) {
1054            commit_vNextVec(j) := false.B
1055          }
1056        }
1057      }
1058    }
1059    when(!invMask.last) {
1060      redirectState := redirectIdle
1061    }
1062  }
1063  when(io.redirect.valid) {
1064    redirectState := redirectBusy
1065    when(redirectState === redirectIdle) {
1066      redirectTail := enqPtr
1067    }
1068    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
1069      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
1070    }
1071  }
1072  // enqueue logic writes 6 valid
1073  for (i <- 0 until RenameWidth) {
1074    when (canEnqueue(i) && !io.redirect.valid) {
1075      valid(allocatePtrVec(i).value) := true.B
1076      for (j <- 0 until 2*CommitWidth) {
1077        when(allocatePtrVec(i).value === deqPtrValue(j).value){
1078          commit_vNextVec(j) := true.B
1079        }
1080      }
1081    }
1082  }
1083  // dequeue logic writes 6 valid
1084  for (i <- 0 until CommitWidth) {
1085    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
1086    when (commitValid) {
1087      valid(commitReadAddr(i)) := false.B
1088      for (j <- 0 until 2 * CommitWidth) {
1089        when(commitReadAddr(i) === deqPtrValue(j).value) {
1090          commit_vNextVec(j) := false.B
1091        }
1092      }
1093    }
1094  }
1095
1096  // debug_inst update
1097  for(i <- 0 until (LduCnt + StaCnt)) {
1098    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
1099    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
1100  }
1101  for (i <- 0 until LduCnt) {
1102    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
1103    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
1104  }
1105
1106  // status field: writebacked
1107  // enqueue logic set 6 writebacked to false
1108  for (i <- 0 until RenameWidth) {
1109    when(canEnqueue(i)) {
1110      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
1111      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
1112      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
1113      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
1114      commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
1115    }
1116  }
1117  when(exceptionGen.io.out.valid) {
1118    val wbIdx = exceptionGen.io.out.bits.robIdx.value
1119    commitTrigger(wbIdx) := true.B
1120  }
1121
1122  // writeback logic set numWbPorts writebacked to true
1123  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
1124  blockWbSeq.map(_ := false.B)
1125  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
1126    when(wb.valid) {
1127      val wbIdx = wb.bits.robIdx.value
1128      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
1129      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
1130      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
1131      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
1132      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
1133      commitTrigger(wbIdx) := !blockWb
1134    }
1135  }
1136
1137  // if the first uop of an instruction is valid , write writebackedCounter
1138  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
1139  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1140  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1141  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1142  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1143  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
1144  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1145
1146  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1147    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1148  })
1149  val fflags_wb = fflagsWBs
1150  val vxsat_wb = vxsatWBs
1151  for(i <- 0 until RobSize){
1152
1153    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1154    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1155    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1156    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1157
1158    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1159
1160    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1161    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1162    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1163    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1164
1165    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1166    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1167    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1168    val wbCnt = PopCount(canWbNoBlockSeq)
1169
1170    val exceptionHas = RegInit(false.B)
1171    val exceptionHasWire = Wire(Bool())
1172    exceptionHasWire := MuxCase(exceptionHas, Seq(
1173      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1174      !valid(i) -> false.B
1175    ))
1176    exceptionHas := exceptionHasWire
1177
1178    when (exceptionHas || exceptionHasWire) {
1179      // exception flush
1180      uopNumVec(i) := 0.U
1181      stdWritebacked(i) := true.B
1182      for (j <- 0 until 2 * CommitWidth) {
1183        when(i.U === deqPtrValue(j).value) {
1184          commit_wNextVec(j) := true.B
1185        }
1186      }
1187    }.elsewhen(!valid(i) && instCanEnqFlag) {
1188      // enq set num of uops
1189      uopNumVec(i) := enqWBNum
1190      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1191      for (j <- 0 until 2 * CommitWidth) {
1192        when(i.U === deqPtrValue(j).value) {
1193          commit_wNextVec(j) := !enqUopNum.orR && Mux(enqWriteStd, false.B, true.B)
1194        }
1195      }
1196    }.elsewhen(valid(i)) {
1197      // update by writing back
1198      uopNumVec(i) := uopNumVec(i) - wbCnt
1199      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!")
1200      for (j <- 0 until 2 * CommitWidth) {
1201        when(i.U === deqPtrValue(j).value) {
1202          commit_wNextVec(j) := (uopNumVec(i) === wbCnt) && stdWritebacked(i)
1203        }
1204      }
1205      when (canStdWbSeq.asUInt.orR) {
1206        stdWritebacked(i) := true.B
1207        for (j <- 0 until 2 * CommitWidth) {
1208          when(i.U === deqPtrValue(j).value) {
1209            commit_wNextVec(j) := uopNumVec(i) === wbCnt
1210          }
1211        }
1212      }
1213    }.otherwise {
1214      uopNumVec(i) := 0.U
1215      for (j <- 0 until 2 * CommitWidth) {
1216        when(i.U === deqPtrValue(j).value) {
1217          commit_wNextVec(j) := stdWritebacked(i)
1218        }
1219      }
1220    }
1221
1222    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1223    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1224    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1225
1226    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1227    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1228    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1229  }
1230  // update uopNumVecDeqGroup
1231  val realDestSizeReadVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0))))
1232  val realDestSizeNextVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0))))
1233  for(i <- 0 until 2*CommitWidth) {
1234    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === deqPtrValue(i).value)
1235    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1236    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1237    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1238    realDestSizeReadVec(i) := realDestSize(deqPtrValue(i).value)
1239    realDestSizeNextVec(i) := Mux(valid(deqPtrValue(i).value) || instCanEnqFlag, realDestSizeReadVec(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }), 0.U)
1240  }
1241  (0 until CommitWidth).map{ case i =>
1242    val nextVec = realDestSizeNextVec
1243    val commitEn = deqPtrGenModule.io.commitEn
1244    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1245    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1246    val originValue = nextVec(i)
1247    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1248    realDestSizeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1249  }
1250  // flagBkup
1251  // enqueue logic set 6 flagBkup at most
1252  for (i <- 0 until RenameWidth) {
1253    when (canEnqueue(i)) {
1254      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1255    }
1256  }
1257
1258  // interrupt_safe
1259
1260  val interrupt_safeReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0))))
1261  val interrupt_safeNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0))))
1262  dontTouch(interrupt_safeDeqGroup)
1263  dontTouch(interrupt_safeReadVec)
1264  dontTouch(interrupt_safeNextVec)
1265  for (i <- 0 until 2 * CommitWidth) {
1266    interrupt_safeReadVec(i) := interrupt_safe(deqPtrValue(i).value)
1267    interrupt_safeNextVec(i) := interrupt_safeReadVec(i)
1268  }
1269  (0 until CommitWidth).map { case i =>
1270    val nextVec = interrupt_safeNextVec
1271    val commitEn = deqPtrGenModule.io.commitEn
1272    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1273    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1274    val originValue = nextVec(i)
1275    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1276    interrupt_safeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1277  }
1278  for (i <- 0 until RenameWidth) {
1279    // We RegNext the updates for better timing.
1280    // Note that instructions won't change the system's states in this cycle.
1281    when (RegNext(canEnqueue(i))) {
1282      // For now, we allow non-load-store instructions to trigger interrupts
1283      // For MMIO instructions, they should not trigger interrupts since they may
1284      // be sent to lower level before it writes back.
1285      // However, we cannot determine whether a load/store instruction is MMIO.
1286      // Thus, we don't allow load/store instructions to trigger an interrupt.
1287      // TODO: support non-MMIO load-store instructions to trigger interrupts
1288      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1289      interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i))
1290      for (j <- 0 until 2 * CommitWidth) {
1291        when(RegNext(allocatePtrVec(i).value) === deqPtrValue(j).value) {
1292          interrupt_safeNextVec(j) := RegNext(allow_interrupts)
1293        }
1294      }
1295    }
1296  }
1297
1298  /**
1299    * read and write of data modules
1300    */
1301  val commitReadAddr_next = Mux(state_next === s_idle,
1302    VecInit(deqPtrVec_next.map(_.value)),
1303    VecInit(walkPtrVec_next.map(_.value))
1304  )
1305  dispatchData.io.wen := canEnqueue
1306  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1307  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1308    wdata.ldest := req.ldest
1309    wdata.rfWen := req.rfWen
1310    wdata.dirtyFs := req.dirtyFs
1311    wdata.vecWen := req.vecWen
1312    wdata.wflags := req.wfflags
1313    wdata.commitType := req.commitType
1314    wdata.pdest := req.pdest
1315    wdata.ftqIdx := req.ftqPtr
1316    wdata.ftqOffset := req.ftqOffset
1317    wdata.isMove := req.eliminatedMove
1318    wdata.isRVC := req.preDecodeInfo.isRVC
1319    wdata.pc := req.pc
1320    wdata.vtype := req.vpu.vtype
1321    wdata.isVset := req.isVset
1322    wdata.instrSize := req.instrSize
1323  }
1324  dispatchData.io.raddr := commitReadAddr_next
1325
1326  exceptionGen.io.redirect <> io.redirect
1327  exceptionGen.io.flush := io.flushOut.valid
1328
1329  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1330  for (i <- 0 until RenameWidth) {
1331    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1332    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1333    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1334    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1335    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1336    exceptionGen.io.enq(i).bits.replayInst := false.B
1337    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1338    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1339    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1340    exceptionGen.io.enq(i).bits.trigger.clear()
1341    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1342    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1343    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1344    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1345  }
1346
1347  println(s"ExceptionGen:")
1348  println(s"num of exceptions: ${params.numException}")
1349  require(exceptionWBs.length == exceptionGen.io.wb.length,
1350    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1351      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1352  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1353    exc_wb.valid                := wb.valid
1354    exc_wb.bits.robIdx          := wb.bits.robIdx
1355    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1356    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1357    exc_wb.bits.isVset          := false.B
1358    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1359    exc_wb.bits.singleStep      := false.B
1360    exc_wb.bits.crossPageIPFFix := false.B
1361    // TODO: make trigger configurable
1362    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1363    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1364    exc_wb.bits.trigger.backendHit := trigger.backendHit
1365    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1366    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1367    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1368//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1369//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1370//      s"replayInst ${configs.exists(_.replayInst)}")
1371  }
1372
1373  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1374  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1375
1376  val instrCntReg = RegInit(0.U(64.W))
1377  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1378  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1379  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1380  val instrCnt = instrCntReg + retireCounter
1381  instrCntReg := instrCnt
1382  io.csr.perfinfo.retiredInstr := retireCounter
1383  io.robFull := !allowEnqueue
1384  io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head
1385
1386  /**
1387    * debug info
1388    */
1389  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1390  XSDebug("")
1391  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1392  for(i <- 0 until RobSize) {
1393    XSDebug(false, !valid(i), "-")
1394    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1395    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1396  }
1397  XSDebug(false, true.B, "\n")
1398
1399  for(i <- 0 until RobSize) {
1400    if (i % 4 == 0) XSDebug("")
1401    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1402    XSDebug(false, !valid(i), "- ")
1403    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1404    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1405    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1406  }
1407
1408  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1409  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1410
1411  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1412  XSPerfAccumulate("clock_cycle", 1.U)
1413  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1414  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1415  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1416  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1417  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1418  val commitIsMove = commitDebugUop.map(_.isMove)
1419  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1420  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1421  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1422  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1423  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1424  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1425  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1426  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1427  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1428  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1429  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1430  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1431  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1432  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1433  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1434  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1435  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1436  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1437  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1438  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1439  private val walkCycle = RegInit(0.U(8.W))
1440  private val waitRabWalkCycle = RegInit(0.U(8.W))
1441  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1442  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1443
1444  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1445  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1446  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1447
1448  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1449  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1450  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1451  private val deqHeadInfo = debug_microOp(deqPtr.value)
1452  val deqUopCommitType = io.commits.info(0).commitType
1453
1454  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1455  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1456  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1457  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1458  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1459  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1460  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1461  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1462  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1463  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1464  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1465  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1466  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1467
1468  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1469  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1470  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1471  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1472  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1473  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1474  (2 to RenameWidth).foreach(i =>
1475    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1476  )
1477  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1478  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1479  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1480  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1481  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1482  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1483  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1484  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1485  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1486    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1487  }
1488  for (fuType <- FuType.functionNameMap.keys) {
1489    val fuName = FuType.functionNameMap(fuType)
1490    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1491    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1492    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1493    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1494    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1495    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1496    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1497    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1498    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1499    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1500  }
1501  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1502
1503  // top-down info
1504  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1505  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1506  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1507  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1508  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1509  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1510  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1511  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1512
1513  // rolling
1514  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1515
1516  /**
1517    * DataBase info:
1518    * log trigger is at writeback valid
1519    * */
1520
1521  /**
1522    * @todo add InstInfoEntry back
1523    * @author Maxpicca-Li
1524    */
1525
1526  //difftest signals
1527  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1528
1529  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1530  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1531
1532  for(i <- 0 until CommitWidth) {
1533    val idx = deqPtrVec(i).value
1534    wdata(i) := debug_exuData(idx)
1535    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1536  }
1537
1538  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1539    // These are the structures used by difftest only and should be optimized after synthesis.
1540    val dt_eliminatedMove = Mem(RobSize, Bool())
1541    val dt_isRVC = Mem(RobSize, Bool())
1542    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1543    for (i <- 0 until RenameWidth) {
1544      when (canEnqueue(i)) {
1545        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1546        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1547      }
1548    }
1549    for (wb <- exuWBs) {
1550      when (wb.valid) {
1551        val wbIdx = wb.bits.robIdx.value
1552        dt_exuDebug(wbIdx) := wb.bits.debug
1553      }
1554    }
1555    // Always instantiate basic difftest modules.
1556    for (i <- 0 until CommitWidth) {
1557      val uop = commitDebugUop(i)
1558      val commitInfo = io.commits.info(i)
1559      val ptr = deqPtrVec(i).value
1560      val exuOut = dt_exuDebug(ptr)
1561      val eliminatedMove = dt_eliminatedMove(ptr)
1562      val isRVC = dt_isRVC(ptr)
1563
1564      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1565      difftest.coreid  := io.hartId
1566      difftest.index   := i.U
1567      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1568      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1569      difftest.isRVC   := isRVC
1570      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1571      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1572      difftest.wpdest  := commitInfo.pdest
1573      difftest.wdest   := commitInfo.ldest
1574      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1575      when(difftest.valid) {
1576        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1577      }
1578      if (env.EnableDifftest) {
1579        val uop = commitDebugUop(i)
1580        difftest.pc       := SignExt(uop.pc, XLEN)
1581        difftest.instr    := uop.instr
1582        difftest.robIdx   := ZeroExt(ptr, 10)
1583        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1584        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1585        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1586        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1587      }
1588    }
1589  }
1590
1591  if (env.EnableDifftest) {
1592    for (i <- 0 until CommitWidth) {
1593      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1594      difftest.coreid := io.hartId
1595      difftest.index  := i.U
1596
1597      val ptr = deqPtrVec(i).value
1598      val uop = commitDebugUop(i)
1599      val exuOut = debug_exuDebug(ptr)
1600      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1601      difftest.paddr  := exuOut.paddr
1602      difftest.opType := uop.fuOpType
1603      difftest.fuType := uop.fuType
1604    }
1605  }
1606
1607  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1608    val dt_isXSTrap = Mem(RobSize, Bool())
1609    for (i <- 0 until RenameWidth) {
1610      when (canEnqueue(i)) {
1611        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1612      }
1613    }
1614    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1615      io.commits.isCommit && v && dt_isXSTrap(d.value)
1616    }
1617    val hitTrap = trapVec.reduce(_||_)
1618    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1619    difftest.coreid   := io.hartId
1620    difftest.hasTrap  := hitTrap
1621    difftest.cycleCnt := timer
1622    difftest.instrCnt := instrCnt
1623    difftest.hasWFI   := hasWFI
1624
1625    if (env.EnableDifftest) {
1626      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1627      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1628      difftest.code     := trapCode
1629      difftest.pc       := trapPC
1630    }
1631  }
1632
1633  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1634  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1635  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1636  val commitLoadVec = VecInit(commitLoadValid)
1637  val commitBranchVec = VecInit(commitBranchValid)
1638  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1639  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1640  val perfEvents = Seq(
1641    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1642    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1643    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1644    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1645    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1646    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1647    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1648    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1649    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1650    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1651    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1652    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1653    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1654    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1655    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1656    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1657    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1658    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1659  )
1660  generatePerfEvent()
1661}
1662