xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 1b46b9591920008655d659ac88cd0250db769664)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import utility._
26import xiangshan._
27import xiangshan.backend.SnapshotGenerator
28import xiangshan.backend.exu.ExuConfig
29import xiangshan.frontend.FtqPtr
30import xiangshan.mem.{LsqEnqIO, LqPtr}
31
32class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
33  val ssid = UInt(SSIDWidth.W)
34  val waitAllStore = Bool()
35}
36
37class DebugLsInfo(implicit p: Parameters) extends XSBundle {
38  val s1 = new Bundle {
39    val isTlbFirstMiss = Bool() // in s1
40    val isBankConflict = Bool() // in s1
41    val isLoadToLoadForward = Bool()
42    val isReplayFast = Bool()
43  }
44  val s2 = new Bundle{
45    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
46    val isForwardFail = Bool() // in s2
47    val isReplaySlow = Bool()
48    val isLoadReplayTLBMiss = Bool()
49    val isLoadReplayCacheMiss = Bool()
50  }
51  val replayCnt = UInt(XLEN.W)
52
53  def s1SignalEnable(ena: DebugLsInfo) = {
54    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
55    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
56    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
57    when(ena.s1.isReplayFast) {
58      s1.isReplayFast := true.B
59      replayCnt := replayCnt + 1.U
60    }
61  }
62
63  def s2SignalEnable(ena: DebugLsInfo) = {
64    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
65    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
66    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
67    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
68    when(ena.s2.isReplaySlow) {
69      s2.isReplaySlow := true.B
70      replayCnt := replayCnt + 1.U
71    }
72  }
73
74}
75object DebugLsInfo {
76  def init(implicit p: Parameters): DebugLsInfo = {
77    val lsInfo = Wire(new DebugLsInfo)
78    lsInfo.s1.isTlbFirstMiss := false.B
79    lsInfo.s1.isBankConflict := false.B
80    lsInfo.s1.isLoadToLoadForward := false.B
81    lsInfo.s1.isReplayFast := false.B
82    lsInfo.s2.isDcacheFirstMiss := false.B
83    lsInfo.s2.isForwardFail := false.B
84    lsInfo.s2.isReplaySlow := false.B
85    lsInfo.s2.isLoadReplayTLBMiss := false.B
86    lsInfo.s2.isLoadReplayCacheMiss := false.B
87    lsInfo.replayCnt := 0.U
88    lsInfo
89  }
90
91}
92class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
93  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
94  val s1_robIdx = UInt(log2Ceil(RobSize).W)
95  val s2_robIdx = UInt(log2Ceil(RobSize).W)
96}
97class DebugLSIO(implicit p: Parameters) extends XSBundle {
98  val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle))
99}
100
101class LsTopdownInfo(implicit p: Parameters) extends XSBundle {
102  val s1 = new Bundle {
103    val robIdx = UInt(log2Ceil(RobSize).W)
104    val vaddr_valid = Bool()
105    val vaddr_bits = UInt(VAddrBits.W)
106  }
107  val s2 = new Bundle {
108    val robIdx = UInt(log2Ceil(RobSize).W)
109    val paddr_valid = Bool()
110    val paddr_bits = UInt(PAddrBits.W)
111  }
112
113  def s1SignalEnable(ena: LsTopdownInfo) = {
114    when(ena.s1.vaddr_valid) {
115      s1.vaddr_valid := true.B
116      s1.vaddr_bits := ena.s1.vaddr_bits
117    }
118  }
119
120  def s2SignalEnable(ena: LsTopdownInfo) = {
121    when(ena.s2.paddr_valid) {
122      s2.paddr_valid := true.B
123      s2.paddr_bits := ena.s2.paddr_bits
124    }
125  }
126}
127
128object LsTopdownInfo {
129  def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo)
130}
131
132class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
133  p => p(XSCoreParamsKey).RobSize
134) with HasCircularQueuePtrHelper {
135
136  def needFlush(redirect: Valid[Redirect]): Bool = {
137    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
138    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
139  }
140
141  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
142}
143
144object RobPtr {
145  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
146    val ptr = Wire(new RobPtr)
147    ptr.flag := f
148    ptr.value := v
149    ptr
150  }
151}
152
153class RobCSRIO(implicit p: Parameters) extends XSBundle {
154  val intrBitSet = Input(Bool())
155  val trapTarget = Input(UInt(VAddrBits.W))
156  val isXRet     = Input(Bool())
157  val wfiEvent   = Input(Bool())
158
159  val fflags     = Output(Valid(UInt(5.W)))
160  val dirty_fs   = Output(Bool())
161  val perfinfo   = new Bundle {
162    val retiredInstr = Output(UInt(3.W))
163  }
164}
165
166class RobLsqIO(implicit p: Parameters) extends XSBundle {
167  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
168  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
169  val pendingld = Output(Bool())
170  val pendingst = Output(Bool())
171  val commit = Output(Bool())
172  val pendingPtr = Output(new RobPtr)
173
174  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
175  val uop = Input(Vec(LoadPipelineWidth, new MicroOp))
176}
177
178class RobEnqIO(implicit p: Parameters) extends XSBundle {
179  val canAccept = Output(Bool())
180  val isEmpty = Output(Bool())
181  // valid vector, for robIdx gen and walk
182  val needAlloc = Vec(RenameWidth, Input(Bool()))
183  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
184  val resp = Vec(RenameWidth, Output(new RobPtr))
185}
186
187class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
188  val io = IO(new Bundle {
189    // for commits/flush
190    val state = Input(UInt(2.W))
191    val deq_v = Vec(CommitWidth, Input(Bool()))
192    val deq_w = Vec(CommitWidth, Input(Bool()))
193    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
194    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
195    val intrBitSetReg = Input(Bool())
196    val hasNoSpecExec = Input(Bool())
197    val interrupt_safe = Input(Bool())
198    val blockCommit = Input(Bool())
199    // output: the CommitWidth deqPtr
200    val out = Vec(CommitWidth, Output(new RobPtr))
201    val next_out = Vec(CommitWidth, Output(new RobPtr))
202  })
203
204  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
205
206  // for exceptions (flushPipe included) and interrupts:
207  // only consider the first instruction
208  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
209  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
210  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
211
212  // for normal commits: only to consider when there're no exceptions
213  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
214  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
215  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
216  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
217  // when io.intrBitSetReg or there're possible exceptions in these instructions,
218  // only one instruction is allowed to commit
219  val allowOnlyOne = commit_exception || io.intrBitSetReg
220  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
221
222  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
223  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
224
225  deqPtrVec := deqPtrVec_next
226
227  io.next_out := deqPtrVec_next
228  io.out      := deqPtrVec
229
230  when (io.state === 0.U) {
231    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
232  }
233
234}
235
236class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
237  val io = IO(new Bundle {
238    // for input redirect
239    val redirect = Input(Valid(new Redirect))
240    // for enqueue
241    val allowEnqueue = Input(Bool())
242    val hasBlockBackward = Input(Bool())
243    val enq = Vec(RenameWidth, Input(Bool()))
244    val out = Output(Vec(RenameWidth, new RobPtr))
245  })
246
247  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
248
249  // enqueue
250  val canAccept = io.allowEnqueue && !io.hasBlockBackward
251  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
252
253  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
254    when(io.redirect.valid) {
255      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
256    }.otherwise {
257      ptr := ptr + dispatchNum
258    }
259  }
260
261  io.out := enqPtrVec
262
263}
264
265class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
266  // val valid = Bool()
267  val robIdx = new RobPtr
268  val exceptionVec = ExceptionVec()
269  val flushPipe = Bool()
270  val replayInst = Bool() // redirect to that inst itself
271  val singleStep = Bool() // TODO add frontend hit beneath
272  val crossPageIPFFix = Bool()
273  val trigger = new TriggerCf
274
275//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
276//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
277  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
278  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
279  // only exceptions are allowed to writeback when enqueue
280  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
281}
282
283class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
284  val io = IO(new Bundle {
285    val redirect = Input(Valid(new Redirect))
286    val flush = Input(Bool())
287    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
288    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
289    val out = ValidIO(new RobExceptionInfo)
290    val state = ValidIO(new RobExceptionInfo)
291  })
292
293  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
294    assert(valid.length == bits.length)
295    assert(isPow2(valid.length))
296    if (valid.length == 1) {
297      (valid, bits)
298    } else if (valid.length == 2) {
299      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
300      for (i <- res.indices) {
301        res(i).valid := valid(i)
302        res(i).bits := bits(i)
303      }
304      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
305      (Seq(oldest.valid), Seq(oldest.bits))
306    } else {
307      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
308      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
309      getOldest(left._1 ++ right._1, left._2 ++ right._2)
310    }
311  }
312
313  val currentValid = RegInit(false.B)
314  val current = Reg(new RobExceptionInfo)
315
316  // orR the exceptionVec
317  val lastCycleFlush = RegNext(io.flush)
318  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
319  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
320
321  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
322  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
323  val csr_wb_bits = io.wb(0).bits
324  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
325  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
326  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
327  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
328
329  // s1: compare last four and current flush
330  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
331  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
332  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
333  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
334  val s1_out_bits = RegNext(compare_bits)
335  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
336
337  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
338  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
339
340  // s2: compare the input exception with the current one
341  // priorities:
342  // (1) system reset
343  // (2) current is valid: flush, remain, merge, update
344  // (3) current is not valid: s1 or enq
345  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
346  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
347  when (currentValid) {
348    when (current_flush) {
349      currentValid := Mux(s1_flush, false.B, s1_out_valid)
350    }
351    when (s1_out_valid && !s1_flush) {
352      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
353        current := s1_out_bits
354      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
355        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
356        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
357        current.replayInst := s1_out_bits.replayInst || current.replayInst
358        current.singleStep := s1_out_bits.singleStep || current.singleStep
359        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
360      }
361    }
362  }.elsewhen (s1_out_valid && !s1_flush) {
363    currentValid := true.B
364    current := s1_out_bits
365  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
366    currentValid := true.B
367    current := enq_bits
368  }
369
370  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
371  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
372  io.state.valid := currentValid
373  io.state.bits  := current
374
375}
376
377class RobFlushInfo(implicit p: Parameters) extends XSBundle {
378  val ftqIdx = new FtqPtr
379  val robIdx = new RobPtr
380  val ftqOffset = UInt(log2Up(PredictWidth).W)
381  val replayInst = Bool()
382}
383
384class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
385
386  lazy val module = new RobImp(this)
387
388  override def generateWritebackIO(
389    thisMod: Option[HasWritebackSource] = None,
390    thisModImp: Option[HasWritebackSourceImp] = None
391  ): Unit = {
392    val sources = writebackSinksImp(thisMod, thisModImp)
393    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
394  }
395}
396
397class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
398  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
399  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
400  val numWbPorts = wbExuConfigs.map(_.length)
401
402  val io = IO(new Bundle() {
403    val hartId = Input(UInt(8.W))
404    val redirect = Input(Valid(new Redirect))
405    val enq = new RobEnqIO
406    val flushOut = ValidIO(new Redirect)
407    val exception = ValidIO(new ExceptionInfo)
408    // exu + brq
409    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
410    val commits = Output(new RobCommitIO)
411    val lsq = new RobLsqIO
412    val robDeqPtr = Output(new RobPtr)
413    val csr = new RobCSRIO
414    val snpt = Input(new SnapshotPort)
415    val robFull = Output(Bool())
416    val headNotReady = Output(Bool())
417    val cpu_halt = Output(Bool())
418    val wfi_enable = Input(Bool())
419    val debug_ls = Flipped(new DebugLSIO)
420    val debugRobHead = Output(new MicroOp)
421    val debugEnqLsq = Input(new LsqEnqIO)
422    val debugHeadLsIssue = Input(Bool())
423    val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo))
424  })
425
426  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
427    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
428  }
429  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
430  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
431  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
432  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
433  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
434  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
435  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
436  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
437  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
438  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
439  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
440
441
442  val exuWriteback = exuWbPorts.map(_._2)
443  val stdWriteback = stdWbPorts.map(_._2)
444
445  // instvalid field
446  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
447  // writeback status
448  val writebacked = Mem(RobSize, Bool())
449  val store_data_writebacked = Mem(RobSize, Bool())
450  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
451  // data for redirect, exception, etc.
452  val flagBkup = Mem(RobSize, Bool())
453  // some instructions are not allowed to trigger interrupts
454  // They have side effects on the states of the processor before they write back
455  val interrupt_safe = Mem(RobSize, Bool())
456
457  // data for debug
458  // Warn: debug_* prefix should not exist in generated verilog.
459  val debug_microOp = Mem(RobSize, new MicroOp)
460  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
461  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
462  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
463  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
464  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
465  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
466
467  // pointers
468  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
469  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
470  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
471
472  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
473  val lastWalkPtr = Reg(new RobPtr)
474  val allowEnqueue = RegInit(true.B)
475
476  val enqPtr = enqPtrVec.head
477  val deqPtr = deqPtrVec(0)
478  val walkPtr = walkPtrVec(0)
479
480  val isEmpty = enqPtr === deqPtr
481  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
482
483  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
484  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid)
485
486  val debug_lsIssue = WireDefault(debug_lsIssued)
487  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
488
489  /**
490    * states of Rob
491    */
492  val s_idle :: s_walk :: Nil = Enum(2)
493  val state = RegInit(s_idle)
494
495  /**
496    * Data Modules
497    *
498    * CommitDataModule: data from dispatch
499    * (1) read: commits/walk/exception
500    * (2) write: enqueue
501    *
502    * WritebackData: data from writeback
503    * (1) read: commits/walk/exception
504    * (2) write: write back from exe units
505    */
506  val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth))
507  val dispatchDataRead = dispatchData.io.rdata
508
509  val exceptionGen = Module(new ExceptionGen)
510  val exceptionDataRead = exceptionGen.io.state
511  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
512
513  io.robDeqPtr := deqPtr
514  io.debugRobHead := debug_microOp(deqPtr.value)
515
516  /**
517    * Enqueue (from dispatch)
518    */
519  // special cases
520  val hasBlockBackward = RegInit(false.B)
521  val hasNoSpecExec = RegInit(false.B)
522  val doingSvinval = RegInit(false.B)
523  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
524  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
525  when (isEmpty) { hasBlockBackward:= false.B }
526  // When any instruction commits, hasNoSpecExec should be set to false.B
527  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
528
529  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
530  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
531  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
532  val hasWFI = RegInit(false.B)
533  io.cpu_halt := hasWFI
534  // WFI Timeout: 2^20 = 1M cycles
535  val wfi_cycles = RegInit(0.U(20.W))
536  when (hasWFI) {
537    wfi_cycles := wfi_cycles + 1.U
538  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
539    wfi_cycles := 0.U
540  }
541  val wfi_timeout = wfi_cycles.andR
542  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
543    hasWFI := false.B
544  }
545
546  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
547  io.enq.canAccept := allowEnqueue && !hasBlockBackward
548  io.enq.resp      := allocatePtrVec
549  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
550  val timer = GTimer()
551  for (i <- 0 until RenameWidth) {
552    // we don't check whether io.redirect is valid here since redirect has higher priority
553    when (canEnqueue(i)) {
554      val enqUop = io.enq.req(i).bits
555      val enqIndex = allocatePtrVec(i).value
556      // store uop in data module and debug_microOp Vec
557      debug_microOp(enqIndex) := enqUop
558      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
559      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
560      debug_microOp(enqIndex).debugInfo.selectTime := timer
561      debug_microOp(enqIndex).debugInfo.issueTime := timer
562      debug_microOp(enqIndex).debugInfo.writebackTime := timer
563      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
564      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
565      debug_lsInfo(enqIndex) := DebugLsInfo.init
566      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
567      debug_lqIdxValid(enqIndex) := false.B
568      debug_lsIssued(enqIndex) := false.B
569      when (enqUop.ctrl.blockBackward) {
570        hasBlockBackward := true.B
571      }
572      when (enqUop.ctrl.noSpecExec) {
573        hasNoSpecExec := true.B
574      }
575      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
576      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
577      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
578      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
579      {
580        doingSvinval := true.B
581      }
582      // the end instruction of Svinval enqs so clear doingSvinval
583      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
584      {
585        doingSvinval := false.B
586      }
587      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
588      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
589        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
590      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
591        hasWFI := true.B
592      }
593
594      mmio(enqIndex) := false.B
595    }
596  }
597  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
598  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
599
600  when (!io.wfi_enable) {
601    hasWFI := false.B
602  }
603
604  // lqEnq
605  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
606    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
607      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
608      debug_lqIdxValid(req.bits.robIdx.value) := true.B
609    }
610  }
611
612  // lsIssue
613  when(io.debugHeadLsIssue) {
614    debug_lsIssued(deqPtr.value) := true.B
615  }
616
617  /**
618    * Writeback (from execution units)
619    */
620  for (wb <- exuWriteback) {
621    when (wb.valid) {
622      val wbIdx = wb.bits.uop.robIdx.value
623      debug_exuData(wbIdx) := wb.bits.data
624      debug_exuDebug(wbIdx) := wb.bits.debug
625      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
626      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
627      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
628      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
629      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime
630      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime
631
632      // debug for lqidx and sqidx
633      debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx
634      debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx
635
636      val debug_Uop = debug_microOp(wbIdx)
637      XSInfo(true.B,
638        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
639        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
640        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
641      )
642    }
643  }
644  val writebackNum = PopCount(exuWriteback.map(_.valid))
645  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
646
647  for (i <- 0 until LoadPipelineWidth) {
648    when (RegNext(io.lsq.mmio(i))) {
649      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
650    }
651  }
652
653  /**
654    * RedirectOut: Interrupt and Exceptions
655    */
656  val deqDispatchData = dispatchDataRead(0)
657  val debug_deqUop = debug_microOp(deqPtr.value)
658
659  val intrBitSetReg = RegNext(io.csr.intrBitSet)
660  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
661  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
662  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
663    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
664  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
665  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
666  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
667
668  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
669  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
670  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
671
672  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
673
674  // io.flushOut will trigger redirect at the next cycle.
675  // Block any redirect or commit at the next cycle.
676  val lastCycleFlush = RegNext(io.flushOut.valid)
677
678  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
679  io.flushOut.bits := DontCare
680  io.flushOut.bits.isRVC := deqDispatchData.isRVC
681  io.flushOut.bits.robIdx := deqPtr
682  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
683  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
684  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
685  io.flushOut.bits.interrupt := true.B
686  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
687  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
688  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
689  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
690
691  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
692  io.exception.valid := RegNext(exceptionHappen)
693  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
694  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
695  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
696  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
697  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
698  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
699  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
700
701  XSDebug(io.flushOut.valid,
702    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
703    p"excp $exceptionEnable flushPipe $isFlushPipe " +
704    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
705
706
707  /**
708    * Commits (and walk)
709    * They share the same width.
710    */
711  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
712  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
713
714  require(RenameWidth <= CommitWidth)
715
716  // wiring to csr
717  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
718    val v = io.commits.commitValid(i)
719    val info = io.commits.info(i)
720    (v & info.wflags, v & info.fpWen)
721  }).unzip
722  val fflags = Wire(Valid(UInt(5.W)))
723  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
724  fflags.bits := wflags.zip(fflagsDataRead).map({
725    case (w, f) => Mux(w, f, 0.U)
726  }).reduce(_|_)
727  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
728
729  // when mispredict branches writeback, stop commit in the next 2 cycles
730  // TODO: don't check all exu write back
731  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
732    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
733  ))).orR
734  val misPredBlockCounter = Reg(UInt(3.W))
735  misPredBlockCounter := Mux(misPredWb,
736    "b111".U,
737    misPredBlockCounter >> 1.U
738  )
739  val misPredBlock = misPredBlockCounter(0)
740  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
741
742  io.commits.isWalk := state === s_walk
743  io.commits.isCommit := state === s_idle && !blockCommit
744  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
745  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
746  // store will be commited iff both sta & std have been writebacked
747  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
748  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
749  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
750  val allowOnlyOneCommit = commit_exception || intrBitSetReg
751  // for instructions that may block others, we don't allow them to commit
752  for (i <- 0 until CommitWidth) {
753    // defaults: state === s_idle and instructions commit
754    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
755    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
756    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
757    io.commits.info(i) := dispatchDataRead(i)
758    io.commits.robIdx(i) := deqPtrVec(i)
759
760    when (state === s_walk) {
761      io.commits.walkValid(i) := shouldWalkVec(i)
762      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
763        XSError(!walk_v(i), s"why not $i???\n")
764      }
765    }
766
767    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
768      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b\n",
769      debug_microOp(deqPtrVec(i).value).cf.pc,
770      io.commits.info(i).rfWen,
771      io.commits.info(i).ldest,
772      io.commits.info(i).pdest,
773      debug_exuData(deqPtrVec(i).value),
774      fflagsDataRead(i)
775    )
776    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
777      debug_microOp(walkPtrVec(i).value).cf.pc,
778      io.commits.info(i).rfWen,
779      io.commits.info(i).ldest,
780      debug_exuData(walkPtrVec(i).value)
781    )
782  }
783  if (env.EnableDifftest) {
784    io.commits.info.map(info => dontTouch(info.pc))
785  }
786
787  // sync fflags/dirty_fs to csr
788  io.csr.fflags := RegNext(fflags)
789  io.csr.dirty_fs := RegNext(dirty_fs)
790
791  // commit load/store to lsq
792  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
793  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
794  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
795  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
796  // indicate a pending load or store
797  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
798  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
799  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
800  io.lsq.pendingPtr := RegNext(deqPtr)
801
802  /**
803    * state changes
804    * (1) redirect: switch to s_walk
805    * (2) walk: when walking comes to the end, switch to s_idle
806    */
807  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
808  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
809  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
810  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
811  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
812  state := state_next
813
814  /**
815    * pointers and counters
816    */
817  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
818  deqPtrGenModule.io.state := state
819  deqPtrGenModule.io.deq_v := commit_v
820  deqPtrGenModule.io.deq_w := commit_w
821  deqPtrGenModule.io.exception_state := exceptionDataRead
822  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
823  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
824  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
825  deqPtrGenModule.io.blockCommit := blockCommit
826  deqPtrVec := deqPtrGenModule.io.out
827  val deqPtrVec_next = deqPtrGenModule.io.next_out
828
829  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
830  enqPtrGenModule.io.redirect := io.redirect
831  enqPtrGenModule.io.allowEnqueue := allowEnqueue
832  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
833  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
834  enqPtrVec := enqPtrGenModule.io.out
835
836  // next walkPtrVec:
837  // (1) redirect occurs: update according to state
838  // (2) walk: move forwards
839  val walkPtrVec_next = Mux(io.redirect.valid,
840    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
841    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
842  )
843  walkPtrVec := walkPtrVec_next
844
845  val numValidEntries = distanceBetween(enqPtr, deqPtr)
846  val commitCnt = PopCount(io.commits.commitValid)
847
848  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
849
850  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
851  when (io.redirect.valid) {
852    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
853  }
854
855
856  /**
857    * States
858    * We put all the stage bits changes here.
859
860    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
861    * All states: (1) valid; (2) writebacked; (3) flagBkup
862    */
863  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
864
865  // redirect logic writes 6 valid
866  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
867  val redirectTail = Reg(new RobPtr)
868  val redirectIdle :: redirectBusy :: Nil = Enum(2)
869  val redirectState = RegInit(redirectIdle)
870  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
871  when(redirectState === redirectBusy) {
872    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
873    redirectHeadVec zip invMask foreach {
874      case (redirectHead, inv) => when(inv) {
875        valid(redirectHead.value) := false.B
876      }
877    }
878    when(!invMask.last) {
879      redirectState := redirectIdle
880    }
881  }
882  when(io.redirect.valid) {
883    redirectState := redirectBusy
884    when(redirectState === redirectIdle) {
885      redirectTail := enqPtr
886    }
887    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
888      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
889    }
890  }
891  // enqueue logic writes 6 valid
892  for (i <- 0 until RenameWidth) {
893    when (canEnqueue(i) && !io.redirect.valid) {
894      valid(allocatePtrVec(i).value) := true.B
895    }
896  }
897  // dequeue logic writes 6 valid
898  for (i <- 0 until CommitWidth) {
899    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
900    when (commitValid) {
901      valid(commitReadAddr(i)) := false.B
902    }
903  }
904
905  // debug_inst update
906  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
907    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
908    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
909  }
910  for (i <- 0 until exuParameters.LduCnt) {
911    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
912    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
913  }
914
915  // status field: writebacked
916  // enqueue logic set 6 writebacked to false
917  for (i <- 0 until RenameWidth) {
918    when (canEnqueue(i)) {
919      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
920      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
921      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
922      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
923      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
924      store_data_writebacked(allocatePtrVec(i).value) := !isStu
925    }
926  }
927  when (exceptionGen.io.out.valid) {
928    val wbIdx = exceptionGen.io.out.bits.robIdx.value
929    writebacked(wbIdx) := true.B
930    store_data_writebacked(wbIdx) := true.B
931  }
932  // writeback logic set numWbPorts writebacked to true
933  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
934    when (wb.valid) {
935      val wbIdx = wb.bits.uop.robIdx.value
936      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
937      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
938      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
939      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
940      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
941      writebacked(wbIdx) := !block_wb
942    }
943  }
944  // store data writeback logic mark store as data_writebacked
945  for (wb <- stdWriteback) {
946    when(RegNext(wb.valid)) {
947      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
948    }
949  }
950
951  // flagBkup
952  // enqueue logic set 6 flagBkup at most
953  for (i <- 0 until RenameWidth) {
954    when (canEnqueue(i)) {
955      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
956    }
957  }
958
959  // interrupt_safe
960  for (i <- 0 until RenameWidth) {
961    // We RegNext the updates for better timing.
962    // Note that instructions won't change the system's states in this cycle.
963    when (RegNext(canEnqueue(i))) {
964      // For now, we allow non-load-store instructions to trigger interrupts
965      // For MMIO instructions, they should not trigger interrupts since they may
966      // be sent to lower level before it writes back.
967      // However, we cannot determine whether a load/store instruction is MMIO.
968      // Thus, we don't allow load/store instructions to trigger an interrupt.
969      // TODO: support non-MMIO load-store instructions to trigger interrupts
970      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
971      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
972    }
973  }
974
975  /**
976    * read and write of data modules
977    */
978  val commitReadAddr_next = Mux(state_next === s_idle,
979    VecInit(deqPtrVec_next.map(_.value)),
980    VecInit(walkPtrVec_next.map(_.value))
981  )
982  // NOTE: dispatch info will record the uop of inst
983  dispatchData.io.wen := canEnqueue
984  dispatchData.io.waddr := allocatePtrVec.map(_.value)
985  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
986    wdata.ldest := req.ctrl.ldest
987    wdata.rfWen := req.ctrl.rfWen
988    wdata.fpWen := req.ctrl.fpWen
989    wdata.wflags := req.ctrl.fpu.wflags
990    wdata.commitType := req.ctrl.commitType
991    wdata.pdest := req.pdest
992    wdata.ftqIdx := req.cf.ftqPtr
993    wdata.ftqOffset := req.cf.ftqOffset
994    wdata.isMove := req.eliminatedMove
995    wdata.isRVC := req.cf.pd.isRVC
996    wdata.pc := req.cf.pc
997  }
998  dispatchData.io.raddr := commitReadAddr_next
999
1000  exceptionGen.io.redirect <> io.redirect
1001  exceptionGen.io.flush := io.flushOut.valid
1002  for (i <- 0 until RenameWidth) {
1003    exceptionGen.io.enq(i).valid := canEnqueue(i)
1004    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1005    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
1006    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
1007    exceptionGen.io.enq(i).bits.replayInst := false.B
1008    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
1009    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
1010    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
1011    exceptionGen.io.enq(i).bits.trigger.clear()
1012    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
1013  }
1014
1015  println(s"ExceptionGen:")
1016  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
1017  require(exceptionCases.length == exceptionGen.io.wb.length)
1018  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
1019    exc_wb.valid                := wb.valid
1020    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
1021    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
1022    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
1023    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
1024    exc_wb.bits.singleStep      := false.B
1025    exc_wb.bits.crossPageIPFFix := false.B
1026    // TODO: make trigger configurable
1027    exc_wb.bits.trigger.clear()
1028    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
1029    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1030      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1031      s"replayInst ${configs.exists(_.replayInst)}")
1032  }
1033
1034  val fflags_wb = fflagsPorts.map(_._2)
1035  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1036    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
1037  )
1038  for(i <- fflags_wb.indices){
1039    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
1040    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
1041    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
1042  }
1043  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1044  fflagsDataRead := fflagsDataModule.io.rdata
1045
1046  val instrCntReg = RegInit(0.U(64.W))
1047  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1048  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1049  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1050  val instrCnt = instrCntReg + retireCounter
1051  instrCntReg := instrCnt
1052  io.csr.perfinfo.retiredInstr := retireCounter
1053  io.robFull := !allowEnqueue
1054  io.headNotReady := commit_v.head && !commit_w.head
1055
1056  /**
1057    * debug info
1058    */
1059  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1060  XSDebug("")
1061  for(i <- 0 until RobSize){
1062    XSDebug(false, !valid(i), "-")
1063    XSDebug(false, valid(i) && writebacked(i), "w")
1064    XSDebug(false, valid(i) && !writebacked(i), "v")
1065  }
1066  XSDebug(false, true.B, "\n")
1067
1068  for(i <- 0 until RobSize) {
1069    if(i % 4 == 0) XSDebug("")
1070    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
1071    XSDebug(false, !valid(i), "- ")
1072    XSDebug(false, valid(i) && writebacked(i), "w ")
1073    XSDebug(false, valid(i) && !writebacked(i), "v ")
1074    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1075  }
1076
1077  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1078  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1079
1080  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1081  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1082  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1083  XSPerfAccumulate("clock_cycle", 1.U)
1084  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1085  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1086  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1087  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1088  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
1089  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1090  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1091  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1092  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1093  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1094  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1095  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1096  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1097  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1098  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1099  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
1100  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1101  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1102  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1103  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1104  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1105  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1106  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1107  XSPerfAccumulate("walkCycle", state === s_walk)
1108  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1109  val deqUopCommitType = io.commits.info(0).commitType
1110  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1111  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1112  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1113  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1114  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1115  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1116  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1117  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1118  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1119  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1120  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1121  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1122  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1123  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1124  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1125    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1126  }
1127  for (fuType <- FuType.functionNameMap.keys) {
1128    val fuName = FuType.functionNameMap(fuType)
1129    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
1130    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1131    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1132    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1133    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1134    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1135    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1136    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1137    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1138    if (fuType == FuType.fmac.litValue) {
1139      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
1140      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1141      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1142      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1143    }
1144  }
1145
1146  val sourceVaddr = Wire(Valid(UInt(VAddrBits.W)))
1147  sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1148  sourceVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1149  val sourcePaddr = Wire(Valid(UInt(PAddrBits.W)))
1150  sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1151  sourcePaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1152  val sourceLqIdx = Wire(Valid(new LqPtr))
1153  sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1154  sourceLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1155  val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value))
1156  ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1157  ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1158  ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true)
1159  ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true)
1160  // dummy sink
1161  ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf)
1162
1163  /**
1164    * DataBase info:
1165    * log trigger is at writeback valid
1166    * */
1167  if(!env.FPGAPlatform){
1168    val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString))
1169    val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString
1170    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1171    val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry)
1172    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1173    for (wb <- exuWriteback) {
1174      when(wb.valid) {
1175        val debug_instData = Wire(new InstInfoEntry)
1176        val idx = wb.bits.uop.robIdx.value
1177        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1178        debug_instData.robIdx := idx
1179        debug_instData.instType := wb.bits.uop.ctrl.fuType
1180        debug_instData.ivaddr := wb.bits.uop.cf.pc
1181        debug_instData.dvaddr := wb.bits.debug.vaddr
1182        debug_instData.dpaddr := wb.bits.debug.paddr
1183        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1184        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1185        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1186        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1187        debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec)
1188        debug_instData.lsInfo := debug_lsInfo(idx)
1189        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1190        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1191        debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime
1192        debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime
1193        debug_instTable.log(
1194          data = debug_instData,
1195          en = wb.valid,
1196          site = instSiteName,
1197          clock = clock,
1198          reset = reset
1199        )
1200      }
1201    }
1202  }
1203
1204
1205  //difftest signals
1206  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1207
1208  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1209  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1210
1211  for(i <- 0 until CommitWidth) {
1212    val idx = deqPtrVec(i).value
1213    wdata(i) := debug_exuData(idx)
1214    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
1215  }
1216
1217  if (env.EnableDifftest) {
1218    for (i <- 0 until CommitWidth) {
1219      val difftest = Module(new DifftestInstrCommit)
1220      // assgin default value
1221      difftest.io := DontCare
1222
1223      difftest.io.clock    := clock
1224      difftest.io.coreid   := io.hartId
1225      difftest.io.index    := i.U
1226
1227      val ptr = deqPtrVec(i).value
1228      val uop = commitDebugUop(i)
1229      val exuOut = debug_exuDebug(ptr)
1230      val exuData = debug_exuData(ptr)
1231      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1232      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1233      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1234      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1235      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1236      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1237      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1238      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1239      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1240      // when committing an eliminated move instruction,
1241      // we must make sure that skip is properly set to false (output from EXU is random value)
1242      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1243      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1244      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1245      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1246      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1247      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1248
1249      // // runahead commit hint
1250      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1251      // runahead_commit.io.clock := clock
1252      // runahead_commit.io.coreid := io.hartId
1253      // runahead_commit.io.index := i.U
1254      // runahead_commit.io.valid := difftest.io.valid &&
1255      //   (commitBranchValid(i) || commitIsStore(i))
1256      // // TODO: is branch or store
1257      // runahead_commit.io.pc    := difftest.io.pc
1258    }
1259  }
1260  else if (env.AlwaysBasicDiff) {
1261    // These are the structures used by difftest only and should be optimized after synthesis.
1262    val dt_eliminatedMove = Mem(RobSize, Bool())
1263    val dt_isRVC = Mem(RobSize, Bool())
1264    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1265    for (i <- 0 until RenameWidth) {
1266      when (canEnqueue(i)) {
1267        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1268        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1269      }
1270    }
1271    for (wb <- exuWriteback) {
1272      when (wb.valid) {
1273        val wbIdx = wb.bits.uop.robIdx.value
1274        dt_exuDebug(wbIdx) := wb.bits.debug
1275      }
1276    }
1277    // Always instantiate basic difftest modules.
1278    for (i <- 0 until CommitWidth) {
1279      val commitInfo = io.commits.info(i)
1280      val ptr = deqPtrVec(i).value
1281      val exuOut = dt_exuDebug(ptr)
1282      val eliminatedMove = dt_eliminatedMove(ptr)
1283      val isRVC = dt_isRVC(ptr)
1284
1285      val difftest = Module(new DifftestBasicInstrCommit)
1286      difftest.io.clock   := clock
1287      difftest.io.coreid  := io.hartId
1288      difftest.io.index   := i.U
1289      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1290      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1291      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1292      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1293      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1294      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1295      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1296      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1297    }
1298  }
1299
1300  if (env.EnableDifftest) {
1301    for (i <- 0 until CommitWidth) {
1302      val difftest = Module(new DifftestLoadEvent)
1303      difftest.io.clock  := clock
1304      difftest.io.coreid := io.hartId
1305      difftest.io.index  := i.U
1306
1307      val ptr = deqPtrVec(i).value
1308      val uop = commitDebugUop(i)
1309      val exuOut = debug_exuDebug(ptr)
1310      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1311      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1312      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1313      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1314    }
1315  }
1316
1317  // Always instantiate basic difftest modules.
1318  if (env.EnableDifftest) {
1319    val dt_isXSTrap = Mem(RobSize, Bool())
1320    for (i <- 0 until RenameWidth) {
1321      when (canEnqueue(i)) {
1322        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1323      }
1324    }
1325    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1326    val hitTrap = trapVec.reduce(_||_)
1327    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1328    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1329    val difftest = Module(new DifftestTrapEvent)
1330    difftest.io.clock    := clock
1331    difftest.io.coreid   := io.hartId
1332    difftest.io.valid    := hitTrap
1333    difftest.io.code     := trapCode
1334    difftest.io.pc       := trapPC
1335    difftest.io.cycleCnt := timer
1336    difftest.io.instrCnt := instrCnt
1337    difftest.io.hasWFI   := hasWFI
1338  }
1339  else if (env.AlwaysBasicDiff) {
1340    val dt_isXSTrap = Mem(RobSize, Bool())
1341    for (i <- 0 until RenameWidth) {
1342      when (canEnqueue(i)) {
1343        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1344      }
1345    }
1346    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1347    val hitTrap = trapVec.reduce(_||_)
1348    val difftest = Module(new DifftestBasicTrapEvent)
1349    difftest.io.clock    := clock
1350    difftest.io.coreid   := io.hartId
1351    difftest.io.valid    := hitTrap
1352    difftest.io.cycleCnt := timer
1353    difftest.io.instrCnt := instrCnt
1354  }
1355
1356  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1357  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1358  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1359  val commitLoadVec = VecInit(commitLoadValid)
1360  val commitBranchVec = VecInit(commitBranchValid)
1361  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1362  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1363  val perfEvents = Seq(
1364    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1365    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1366    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1367    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1368    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1369    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1370    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1371    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1372    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1373    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1374    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1375    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1376    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1377    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1378    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1379    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1380    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1381    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1382  )
1383  generatePerfEvent()
1384}
1385