1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 override def cloneType = (new RobPtr).asInstanceOf[this.type] 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 55 val fflags = Output(Valid(UInt(5.W))) 56 val dirty_fs = Output(Bool()) 57 val perfinfo = new Bundle { 58 val retiredInstr = Output(UInt(3.W)) 59 } 60} 61 62class RobLsqIO(implicit p: Parameters) extends XSBundle { 63 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val pendingld = Output(Bool()) 66 val pendingst = Output(Bool()) 67 val commit = Output(Bool()) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168 // make sure chains are fired at same timing 169 def trigger_vec_fix = VecInit(trigger.triggerHitVec.zipWithIndex.map{ case (hit, i) => 170 def chain = trigger.triggerChainVec(i / 2) 171 if (i % 2 == 0) 172 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i + 1)), trigger.triggerHitVec(i)) 173 else 174 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i - 1)), trigger.triggerHitVec(i)) 175 }) 176 177 def trigger_before = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && !timing}.reduce(_ | _) 178 def trigger_after = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && timing}.reduce(_ | _) 179 180 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger_vec_fix.asUInt.orR 181 // only exceptions are allowed to writeback when enqueue 182 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger_before 183} 184 185class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 186 val io = IO(new Bundle { 187 val redirect = Input(Valid(new Redirect)) 188 val flush = Input(Bool()) 189 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 190 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 191 val out = ValidIO(new RobExceptionInfo) 192 val state = ValidIO(new RobExceptionInfo) 193 }) 194 195 val current = Reg(Valid(new RobExceptionInfo)) 196 197 // orR the exceptionVec 198 val lastCycleFlush = RegNext(io.flush) 199 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 200 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 201 202 // s0: compare wb(1),wb(2) and wb(3),wb(4) 203 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 204 val csr_wb_bits = io.wb(0).bits 205 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 206 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 207 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 208 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 209 210 // s1: compare last four and current flush 211 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 212 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 213 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 214 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 215 val s1_out_bits = RegNext(compare_bits) 216 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 217 218 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 219 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 220 221 // s2: compare the input exception with the current one 222 // priorities: 223 // (1) system reset 224 // (2) current is valid: flush, remain, merge, update 225 // (3) current is not valid: s1 or enq 226 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 227 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 228 when (reset.asBool) { 229 current.valid := false.B 230 }.elsewhen (current.valid) { 231 when (current_flush) { 232 current.valid := Mux(s1_flush, false.B, s1_out_valid) 233 } 234 when (s1_out_valid && !s1_flush) { 235 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 236 current.bits := s1_out_bits 237 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 238 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 239 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 240 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 241 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 242// current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 243 } 244 } 245 }.elsewhen (s1_out_valid && !s1_flush) { 246 current.valid := true.B 247 current.bits := s1_out_bits 248 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 249 current.valid := true.B 250 current.bits := enq_bits 251 } 252 253 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 254 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 255 io.state := current 256 257} 258 259class RobFlushInfo(implicit p: Parameters) extends XSBundle { 260 val ftqIdx = new FtqPtr 261 val robIdx = new RobPtr 262 val ftqOffset = UInt(log2Up(PredictWidth).W) 263 val replayInst = Bool() 264} 265 266class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 267 268 lazy val module = new RobImp(this) 269 270 override def generateWritebackIO( 271 thisMod: Option[HasWritebackSource] = None, 272 thisModImp: Option[HasWritebackSourceImp] = None 273 ): Unit = { 274 val sources = writebackSinksImp(thisMod, thisModImp) 275 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 276 } 277} 278 279class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 280 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 281 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 282 val numWbPorts = wbExuConfigs.map(_.length) 283 284 val io = IO(new Bundle() { 285 val hartId = Input(UInt(8.W)) 286 val redirect = Input(Valid(new Redirect)) 287 val enq = new RobEnqIO 288 val flushOut = ValidIO(new Redirect) 289 val exception = ValidIO(new ExceptionInfo) 290 // exu + brq 291 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 292 val commits = new RobCommitIO 293 val lsq = new RobLsqIO 294 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 295 val robDeqPtr = Output(new RobPtr) 296 val csr = new RobCSRIO 297 val robFull = Output(Bool()) 298 }) 299 300 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 301 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 302 } 303 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 304 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 305 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 306 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 307 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 308 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 309 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 310 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 311 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 312 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 313 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 314 315 316 val exuWriteback = exuWbPorts.map(_._2) 317 val stdWriteback = stdWbPorts.map(_._2) 318 319 // instvalid field 320 val valid = Mem(RobSize, Bool()) 321 // writeback status 322 val writebacked = Mem(RobSize, Bool()) 323 val store_data_writebacked = Mem(RobSize, Bool()) 324 // data for redirect, exception, etc. 325 val flagBkup = Mem(RobSize, Bool()) 326 // some instructions are not allowed to trigger interrupts 327 // They have side effects on the states of the processor before they write back 328 val interrupt_safe = Mem(RobSize, Bool()) 329 330 // data for debug 331 // Warn: debug_* prefix should not exist in generated verilog. 332 val debug_microOp = Mem(RobSize, new MicroOp) 333 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 334 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 335 336 // pointers 337 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 338 val enqPtr = Wire(new RobPtr) 339 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 340 341 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 342 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 343 val allowEnqueue = RegInit(true.B) 344 345 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 346 val deqPtr = deqPtrVec(0) 347 val walkPtr = walkPtrVec(0) 348 349 val isEmpty = enqPtr === deqPtr 350 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 351 352 /** 353 * states of Rob 354 */ 355 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 356 val state = RegInit(s_idle) 357 358 /** 359 * Data Modules 360 * 361 * CommitDataModule: data from dispatch 362 * (1) read: commits/walk/exception 363 * (2) write: enqueue 364 * 365 * WritebackData: data from writeback 366 * (1) read: commits/walk/exception 367 * (2) write: write back from exe units 368 */ 369 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 370 val dispatchDataRead = dispatchData.io.rdata 371 372 val exceptionGen = Module(new ExceptionGen) 373 val exceptionDataRead = exceptionGen.io.state 374 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 375 376 io.robDeqPtr := deqPtr 377 378 /** 379 * Enqueue (from dispatch) 380 */ 381 // special cases 382 val hasBlockBackward = RegInit(false.B) 383 val hasNoSpecExec = RegInit(false.B) 384 val doingSvinval = RegInit(false.B) 385 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 386 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 387 when (isEmpty) { hasBlockBackward:= false.B } 388 // When any instruction commits, hasNoSpecExec should be set to false.B 389 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 390 391 io.enq.canAccept := allowEnqueue && !hasBlockBackward 392 io.enq.resp := enqPtrVec 393 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 394 val timer = GTimer() 395 for (i <- 0 until RenameWidth) { 396 // we don't check whether io.redirect is valid here since redirect has higher priority 397 when (canEnqueue(i)) { 398 val enqUop = io.enq.req(i).bits 399 // store uop in data module and debug_microOp Vec 400 debug_microOp(enqPtrVec(i).value) := enqUop 401 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 402 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 403 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 404 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 405 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 406 when (enqUop.ctrl.blockBackward) { 407 hasBlockBackward := true.B 408 } 409 when (enqUop.ctrl.noSpecExec) { 410 hasNoSpecExec := true.B 411 } 412 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 413 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 414 when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 415 { 416 doingSvinval := true.B 417 } 418 // the end instruction of Svinval enqs so clear doingSvinval 419 when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 420 { 421 doingSvinval := false.B 422 } 423 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 424 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 425 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 426 } 427 } 428 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 429 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 430 431 // debug info for enqueue (dispatch) 432 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 433 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 434 435 436 /** 437 * Writeback (from execution units) 438 */ 439 for (wb <- exuWriteback) { 440 when (wb.valid) { 441 val wbIdx = wb.bits.uop.robIdx.value 442 debug_microOp(wbIdx).diffTestDebugLrScValid := wb.bits.uop.diffTestDebugLrScValid 443 debug_exuData(wbIdx) := wb.bits.data 444 debug_exuDebug(wbIdx) := wb.bits.debug 445 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 446 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 447 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 448 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 449 450 val debug_Uop = debug_microOp(wbIdx) 451 XSInfo(true.B, 452 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 453 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 454 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 455 ) 456 } 457 } 458 val writebackNum = PopCount(exuWriteback.map(_.valid)) 459 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 460 461 462 /** 463 * RedirectOut: Interrupt and Exceptions 464 */ 465 val deqDispatchData = dispatchDataRead(0) 466 val debug_deqUop = debug_microOp(deqPtr.value) 467 468 val intrBitSetReg = RegNext(io.csr.intrBitSet) 469 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 470 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 471 val triggerBefore = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_before 472 val triggerAfter = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_after && !exceptionDataRead.bits.trigger_before 473 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 474 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 475 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 476 val exceptionEnable = writebacked(deqPtr.value) && deqHasException// && triggerBefore 477 478 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst || triggerAfter) 479 480 // io.flushOut will trigger redirect at the next cycle. 481 // Block any redirect or commit at the next cycle. 482 val lastCycleFlush = RegNext(io.flushOut.valid) 483 484 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 485 io.flushOut.bits := DontCare 486 io.flushOut.bits.robIdx := deqPtr 487 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 488 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 489 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 490 io.flushOut.bits.interrupt := true.B 491 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 492 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 493 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 494 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 495 496 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 497 io.exception.valid := RegNext(exceptionHappen) 498 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 499 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 500 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 501 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 502 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 503 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 504 io.exception.bits.uop.cf.trigger.triggerHitVec := RegEnable(exceptionDataRead.bits.trigger_vec_fix, exceptionHappen) 505 506 XSDebug(io.flushOut.valid, 507 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 508 p"excp $exceptionEnable flushPipe $isFlushPipe " + 509 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 510 511 512 /** 513 * Commits (and walk) 514 * They share the same width. 515 */ 516 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 517 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 518 val walkFinished = walkCounter <= CommitWidth.U 519 520 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 521 require(RenameWidth <= CommitWidth) 522 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 523 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 524 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 525 usedSpaceForMPR := io.enq.needAlloc 526 extraSpaceForMPR := dispatchData.io.wdata 527 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 528 } 529 530 // wiring to csr 531 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 532 val v = io.commits.valid(i) 533 val info = io.commits.info(i) 534 (v & info.wflags, v & info.fpWen) 535 }).unzip 536 val fflags = Wire(Valid(UInt(5.W))) 537 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 538 fflags.bits := wflags.zip(fflagsDataRead).map({ 539 case (w, f) => Mux(w, f, 0.U) 540 }).reduce(_|_) 541 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 542 543 // when mispredict branches writeback, stop commit in the next 2 cycles 544 // TODO: don't check all exu write back 545 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 546 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 547 ))).orR() 548 val misPredBlockCounter = Reg(UInt(3.W)) 549 misPredBlockCounter := Mux(misPredWb, 550 "b111".U, 551 misPredBlockCounter >> 1.U 552 ) 553 val misPredBlock = misPredBlockCounter(0) 554 555 io.commits.isWalk := state =/= s_idle 556 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 557 // store will be commited iff both sta & std have been writebacked 558 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 559 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 560 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 561 val allowOnlyOneCommit = commit_exception || intrBitSetReg 562 // for instructions that may block others, we don't allow them to commit 563 for (i <- 0 until CommitWidth) { 564 // defaults: state === s_idle and instructions commit 565 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 566 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 567 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 568 io.commits.info(i) := dispatchDataRead(i) 569 570 when (state === s_walk) { 571 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 572 }.elsewhen(state === s_extrawalk) { 573 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 574 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 575 } 576 577 XSInfo(state === s_idle && io.commits.valid(i), 578 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 579 debug_microOp(deqPtrVec(i).value).cf.pc, 580 io.commits.info(i).rfWen, 581 io.commits.info(i).ldest, 582 io.commits.info(i).pdest, 583 io.commits.info(i).old_pdest, 584 debug_exuData(deqPtrVec(i).value), 585 fflagsDataRead(i) 586 ) 587 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 588 debug_microOp(walkPtrVec(i).value).cf.pc, 589 io.commits.info(i).rfWen, 590 io.commits.info(i).ldest, 591 debug_exuData(walkPtrVec(i).value) 592 ) 593 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 594 io.commits.info(i).rfWen, 595 io.commits.info(i).ldest 596 ) 597 } 598 if (env.EnableDifftest) { 599 io.commits.info.map(info => dontTouch(info.pc)) 600 } 601 602 // sync fflags/dirty_fs to csr 603 io.csr.fflags := fflags 604 io.csr.dirty_fs := dirty_fs 605 606 // commit branch to brq 607 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 608 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 609 610 // commit load/store to lsq 611 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 612 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 613 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 614 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 615 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 616 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 617 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 618 619 /** 620 * state changes 621 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 622 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 623 * (3) walk: when walking comes to the end, switch to s_walk 624 * (4) s_extrawalk to s_walk 625 */ 626 val state_next = Mux(io.redirect.valid, 627 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 628 Mux(state === s_walk && walkFinished, 629 s_idle, 630 Mux(state === s_extrawalk, s_walk, state) 631 ) 632 ) 633 state := state_next 634 635 /** 636 * pointers and counters 637 */ 638 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 639 deqPtrGenModule.io.state := state 640 deqPtrGenModule.io.deq_v := commit_v 641 deqPtrGenModule.io.deq_w := commit_w 642 deqPtrGenModule.io.exception_state := exceptionDataRead 643 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 644 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 645 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 646 647 deqPtrGenModule.io.misPredBlock := misPredBlock 648 deqPtrGenModule.io.isReplaying := isReplaying 649 deqPtrVec := deqPtrGenModule.io.out 650 val deqPtrVec_next = deqPtrGenModule.io.next_out 651 652 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 653 enqPtrGenModule.io.redirect := io.redirect 654 enqPtrGenModule.io.allowEnqueue := allowEnqueue 655 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 656 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 657 enqPtr := enqPtrGenModule.io.out 658 659 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 660 // next walkPtrVec: 661 // (1) redirect occurs: update according to state 662 // (2) walk: move backwards 663 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 664 Mux(state === s_walk, 665 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 666 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 667 ), 668 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 669 ) 670 walkPtrVec := walkPtrVec_next 671 672 val lastCycleRedirect = RegNext(io.redirect.valid) 673 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 674 val commitCnt = PopCount(io.commits.valid) 675 validCounter := Mux(state === s_idle, 676 (validCounter - commitCnt) + dispatchNum, 677 trueValidCounter 678 ) 679 680 allowEnqueue := Mux(state === s_idle, 681 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 682 trueValidCounter <= (RobSize - RenameWidth).U 683 ) 684 685 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 686 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 687 when (io.redirect.valid) { 688 walkCounter := Mux(state === s_walk, 689 // NOTE: +& is used here because: 690 // When rob is full and the head instruction causes an exception, 691 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 692 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 693 // Since exceptions flush the instruction itself, flushItSelf is true.B. 694 // Previously we use `+` to count the walk distance and it causes overflows 695 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 696 // The width of walkCounter also needs to be changed. 697 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 698 redirectWalkDistance +& io.redirect.bits.flushItself() 699 ) 700 }.elsewhen (state === s_walk) { 701 walkCounter := walkCounter - commitCnt 702 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 703 } 704 705 706 /** 707 * States 708 * We put all the stage bits changes here. 709 710 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 711 * All states: (1) valid; (2) writebacked; (3) flagBkup 712 */ 713 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 714 715 // enqueue logic writes 6 valid 716 for (i <- 0 until RenameWidth) { 717 when (canEnqueue(i) && !io.redirect.valid) { 718 valid(enqPtrVec(i).value) := true.B 719 } 720 } 721 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 722 for (i <- 0 until CommitWidth) { 723 when (io.commits.valid(i) && state =/= s_extrawalk) { 724 valid(commitReadAddr(i)) := false.B 725 } 726 } 727 // reset: when exception, reset all valid to false 728 when (reset.asBool) { 729 for (i <- 0 until RobSize) { 730 valid(i) := false.B 731 } 732 } 733 734 // status field: writebacked 735 // enqueue logic set 6 writebacked to false 736 for (i <- 0 until RenameWidth) { 737 when (canEnqueue(i)) { 738 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 739 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !enqHasException.asUInt.orR 740 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 741 store_data_writebacked(enqPtrVec(i).value) := !isStu 742 } 743 } 744 when (exceptionGen.io.out.valid) { 745 val wbIdx = exceptionGen.io.out.bits.robIdx.value 746 writebacked(wbIdx) := true.B 747 store_data_writebacked(wbIdx) := true.B 748 } 749 // writeback logic set numWbPorts writebacked to true 750 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 751 when (wb.valid) { 752 val wbIdx = wb.bits.uop.robIdx.value 753 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 754 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 755 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 756 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst 757 writebacked(wbIdx) := !block_wb 758 } 759 } 760 // store data writeback logic mark store as data_writebacked 761 for (wb <- stdWriteback) { 762 when(RegNext(wb.valid)) { 763 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 764 } 765 } 766 767 // flagBkup 768 // enqueue logic set 6 flagBkup at most 769 for (i <- 0 until RenameWidth) { 770 when (canEnqueue(i)) { 771 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 772 } 773 } 774 775 // interrupt_safe 776 for (i <- 0 until RenameWidth) { 777 // We RegNext the updates for better timing. 778 // Note that instructions won't change the system's states in this cycle. 779 when (RegNext(canEnqueue(i))) { 780 // For now, we allow non-load-store instructions to trigger interrupts 781 // For MMIO instructions, they should not trigger interrupts since they may 782 // be sent to lower level before it writes back. 783 // However, we cannot determine whether a load/store instruction is MMIO. 784 // Thus, we don't allow load/store instructions to trigger an interrupt. 785 // TODO: support non-MMIO load-store instructions to trigger interrupts 786 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 787 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 788 } 789 } 790 791 /** 792 * read and write of data modules 793 */ 794 val commitReadAddr_next = Mux(state_next === s_idle, 795 VecInit(deqPtrVec_next.map(_.value)), 796 VecInit(walkPtrVec_next.map(_.value)) 797 ) 798 dispatchData.io.wen := canEnqueue 799 dispatchData.io.waddr := enqPtrVec.map(_.value) 800 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 801 wdata.ldest := req.ctrl.ldest 802 wdata.rfWen := req.ctrl.rfWen 803 wdata.fpWen := req.ctrl.fpWen 804 wdata.wflags := req.ctrl.fpu.wflags 805 wdata.commitType := req.ctrl.commitType 806 wdata.pdest := req.pdest 807 wdata.old_pdest := req.old_pdest 808 wdata.ftqIdx := req.cf.ftqPtr 809 wdata.ftqOffset := req.cf.ftqOffset 810 wdata.pc := req.cf.pc 811 } 812 dispatchData.io.raddr := commitReadAddr_next 813 814 exceptionGen.io.redirect <> io.redirect 815 exceptionGen.io.flush := io.flushOut.valid 816 for (i <- 0 until RenameWidth) { 817 exceptionGen.io.enq(i).valid := canEnqueue(i) 818 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 819 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 820 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 821 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 822 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 823 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 824 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 825 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger 826 } 827 828 println(s"ExceptionGen:") 829 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 830 require(exceptionCases.length == exceptionGen.io.wb.length) 831 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 832 exc_wb.valid := wb.valid 833 exc_wb.bits.robIdx := wb.bits.uop.robIdx 834 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 835 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 836 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 837 exc_wb.bits.singleStep := false.B 838 exc_wb.bits.crossPageIPFFix := false.B 839 // TODO: make trigger configurable 840 exc_wb.bits.trigger := wb.bits.uop.cf.trigger 841 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 842 s"flushPipe ${configs.exists(_.flushPipe)}, " + 843 s"replayInst ${configs.exists(_.replayInst)}") 844 } 845 846 val fflags_wb = fflagsPorts.map(_._2) 847 val fflagsDataModule = Module(new SyncDataModuleTemplate( 848 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 849 ) 850 for(i <- fflags_wb.indices){ 851 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 852 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 853 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 854 } 855 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 856 fflagsDataRead := fflagsDataModule.io.rdata 857 858 859 val instrCnt = RegInit(0.U(64.W)) 860 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 861 val trueCommitCnt = commitCnt +& fuseCommitCnt 862 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 863 instrCnt := instrCnt + retireCounter 864 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 865 io.robFull := !allowEnqueue 866 867 /** 868 * debug info 869 */ 870 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 871 XSDebug("") 872 for(i <- 0 until RobSize){ 873 XSDebug(false, !valid(i), "-") 874 XSDebug(false, valid(i) && writebacked(i), "w") 875 XSDebug(false, valid(i) && !writebacked(i), "v") 876 } 877 XSDebug(false, true.B, "\n") 878 879 for(i <- 0 until RobSize) { 880 if(i % 4 == 0) XSDebug("") 881 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 882 XSDebug(false, !valid(i), "- ") 883 XSDebug(false, valid(i) && writebacked(i), "w ") 884 XSDebug(false, valid(i) && !writebacked(i), "v ") 885 if(i % 4 == 3) XSDebug(false, true.B, "\n") 886 } 887 888 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 889 890 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 891 XSPerfAccumulate("clock_cycle", 1.U) 892 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 893 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 894 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 895 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 896 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 897 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 898 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 899 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 900 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 901 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 902 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 903 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 904 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 905 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 906 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 907 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 908 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 909 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 910 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 911 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 912 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 913 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 914 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 915 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 916 val deqUopCommitType = io.commits.info(0).commitType 917 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 918 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 919 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 920 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 921 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 922 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 923 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 924 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 925 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 926 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 927 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 928 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 929 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 930 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 931 } 932 for (fuType <- FuType.functionNameMap.keys) { 933 val fuName = FuType.functionNameMap(fuType) 934 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 935 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 936 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 937 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 938 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 939 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 940 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 941 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 942 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 943 if (fuType == FuType.fmac.litValue()) { 944 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 945 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 946 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 947 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 948 } 949 } 950 951 //difftest signals 952 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 953 954 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 955 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 956 957 for(i <- 0 until CommitWidth) { 958 val idx = deqPtrVec(i).value 959 wdata(i) := debug_exuData(idx) 960 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 961 } 962 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 963 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 964 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 965 966 if (env.EnableDifftest) { 967 for (i <- 0 until CommitWidth) { 968 val difftest = Module(new DifftestInstrCommit) 969 difftest.io.clock := clock 970 difftest.io.coreid := io.hartId 971 difftest.io.index := i.U 972 973 val ptr = deqPtrVec(i).value 974 val uop = commitDebugUop(i) 975 val exuOut = debug_exuDebug(ptr) 976 val exuData = debug_exuData(ptr) 977 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 978 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 979 difftest.io.instr := RegNext(uop.cf.instr) 980 difftest.io.special := RegNext(CommitType.isFused(io.commits.info(i).commitType)) 981 // when committing an eliminated move instruction, 982 // we must make sure that skip is properly set to false (output from EXU is random value) 983 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 984 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 985 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 986 uop.ctrl.fuType === FuType.mou && 987 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 988 difftest.io.wen := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U) 989 difftest.io.wpdest := RegNext(io.commits.info(i).pdest) 990 difftest.io.wdest := RegNext(io.commits.info(i).ldest) 991 992 // runahead commit hint 993 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 994 runahead_commit.io.clock := clock 995 runahead_commit.io.coreid := io.hartId 996 runahead_commit.io.index := i.U 997 runahead_commit.io.valid := difftest.io.valid && 998 (commitBranchValid(i) || commitIsStore(i)) 999 // TODO: is branch or store 1000 runahead_commit.io.pc := difftest.io.pc 1001 } 1002 } 1003 else if (env.AlwaysBasicDiff) { 1004 // These are the structures used by difftest only and should be optimized after synthesis. 1005 val dt_eliminatedMove = Mem(RobSize, Bool()) 1006 val dt_isRVC = Mem(RobSize, Bool()) 1007 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1008 for (i <- 0 until RenameWidth) { 1009 when (canEnqueue(i)) { 1010 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1011 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1012 } 1013 } 1014 for (wb <- exuWriteback) { 1015 when (wb.valid) { 1016 val wbIdx = wb.bits.uop.robIdx.value 1017 dt_exuDebug(wbIdx) := wb.bits.debug 1018 } 1019 } 1020 // Always instantiate basic difftest modules. 1021 for (i <- 0 until CommitWidth) { 1022 val commitInfo = io.commits.info(i) 1023 val ptr = deqPtrVec(i).value 1024 val exuOut = dt_exuDebug(ptr) 1025 val eliminatedMove = dt_eliminatedMove(ptr) 1026 val isRVC = dt_isRVC(ptr) 1027 1028 val difftest = Module(new DifftestBasicInstrCommit) 1029 difftest.io.clock := clock 1030 difftest.io.coreid := io.hartId 1031 difftest.io.index := i.U 1032 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1033 difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType)) 1034 difftest.io.skip := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 1035 difftest.io.isRVC := RegNext(isRVC) 1036 difftest.io.wen := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U) 1037 difftest.io.wpdest := RegNext(commitInfo.pdest) 1038 difftest.io.wdest := RegNext(commitInfo.ldest) 1039 } 1040 } 1041 1042 if (env.EnableDifftest) { 1043 for (i <- 0 until CommitWidth) { 1044 val difftest = Module(new DifftestLoadEvent) 1045 difftest.io.clock := clock 1046 difftest.io.coreid := io.hartId 1047 difftest.io.index := i.U 1048 1049 val ptr = deqPtrVec(i).value 1050 val uop = commitDebugUop(i) 1051 val exuOut = debug_exuDebug(ptr) 1052 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1053 difftest.io.paddr := RegNext(exuOut.paddr) 1054 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1055 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1056 } 1057 } 1058 1059 // Always instantiate basic difftest modules. 1060 if (env.EnableDifftest) { 1061 val dt_isXSTrap = Mem(RobSize, Bool()) 1062 for (i <- 0 until RenameWidth) { 1063 when (canEnqueue(i)) { 1064 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1065 } 1066 } 1067 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1068 val hitTrap = trapVec.reduce(_||_) 1069 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1070 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1071 val difftest = Module(new DifftestTrapEvent) 1072 difftest.io.clock := clock 1073 difftest.io.coreid := io.hartId 1074 difftest.io.valid := hitTrap 1075 difftest.io.code := trapCode 1076 difftest.io.pc := trapPC 1077 difftest.io.cycleCnt := timer 1078 difftest.io.instrCnt := instrCnt 1079 } 1080 else if (env.AlwaysBasicDiff) { 1081 val dt_isXSTrap = Mem(RobSize, Bool()) 1082 for (i <- 0 until RenameWidth) { 1083 when (canEnqueue(i)) { 1084 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1085 } 1086 } 1087 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1088 val hitTrap = trapVec.reduce(_||_) 1089 val difftest = Module(new DifftestBasicTrapEvent) 1090 difftest.io.clock := clock 1091 difftest.io.coreid := io.hartId 1092 difftest.io.valid := hitTrap 1093 difftest.io.cycleCnt := timer 1094 difftest.io.instrCnt := instrCnt 1095 } 1096 1097 val perfEvents = Seq( 1098 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1099 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1100 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1101 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1102 ("rob_commitUop ", ifCommit(commitCnt) ), 1103 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1104 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1105 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1106 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1107 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1108 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1109 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1110 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1111 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1112 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1113 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1114 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1115 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1116 ) 1117 generatePerfEvent() 1118} 1119