1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.exu.ExuConfig 28import xiangshan.frontend.FtqPtr 29 30class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 31 p => p(XSCoreParamsKey).RobSize 32) with HasCircularQueuePtrHelper { 33 34 def needFlush(redirect: Valid[Redirect]): Bool = { 35 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 36 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 37 } 38 39 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 40} 41 42object RobPtr { 43 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 44 val ptr = Wire(new RobPtr) 45 ptr.flag := f 46 ptr.value := v 47 ptr 48 } 49} 50 51class RobCSRIO(implicit p: Parameters) extends XSBundle { 52 val intrBitSet = Input(Bool()) 53 val trapTarget = Input(UInt(VAddrBits.W)) 54 val isXRet = Input(Bool()) 55 val wfiEvent = Input(Bool()) 56 57 val fflags = Output(Valid(UInt(5.W))) 58 val dirty_fs = Output(Bool()) 59 val perfinfo = new Bundle { 60 val retiredInstr = Output(UInt(3.W)) 61 } 62} 63 64class RobLsqIO(implicit p: Parameters) extends XSBundle { 65 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 66 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 67 val pendingld = Output(Bool()) 68 val pendingst = Output(Bool()) 69 val commit = Output(Bool()) 70} 71 72class RobEnqIO(implicit p: Parameters) extends XSBundle { 73 val canAccept = Output(Bool()) 74 val isEmpty = Output(Bool()) 75 // valid vector, for robIdx gen and walk 76 val needAlloc = Vec(RenameWidth, Input(Bool())) 77 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 78 val resp = Vec(RenameWidth, Output(new RobPtr)) 79} 80 81class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 82 83class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 84 val io = IO(new Bundle { 85 // for commits/flush 86 val state = Input(UInt(2.W)) 87 val deq_v = Vec(CommitWidth, Input(Bool())) 88 val deq_w = Vec(CommitWidth, Input(Bool())) 89 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 90 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 91 val intrBitSetReg = Input(Bool()) 92 val hasNoSpecExec = Input(Bool()) 93 val interrupt_safe = Input(Bool()) 94 val blockCommit = Input(Bool()) 95 // output: the CommitWidth deqPtr 96 val out = Vec(CommitWidth, Output(new RobPtr)) 97 val next_out = Vec(CommitWidth, Output(new RobPtr)) 98 }) 99 100 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 101 102 // for exceptions (flushPipe included) and interrupts: 103 // only consider the first instruction 104 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 105 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 106 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 107 108 // for normal commits: only to consider when there're no exceptions 109 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 110 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 111 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 112 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 113 // when io.intrBitSetReg or there're possible exceptions in these instructions, 114 // only one instruction is allowed to commit 115 val allowOnlyOne = commit_exception || io.intrBitSetReg 116 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 117 118 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 119 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 120 121 deqPtrVec := deqPtrVec_next 122 123 io.next_out := deqPtrVec_next 124 io.out := deqPtrVec 125 126 when (io.state === 0.U) { 127 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 128 } 129 130} 131 132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 133 val io = IO(new Bundle { 134 // for input redirect 135 val redirect = Input(Valid(new Redirect)) 136 // for enqueue 137 val allowEnqueue = Input(Bool()) 138 val hasBlockBackward = Input(Bool()) 139 val enq = Vec(RenameWidth, Input(Bool())) 140 val out = Output(Vec(RenameWidth, new RobPtr)) 141 }) 142 143 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 144 145 // enqueue 146 val canAccept = io.allowEnqueue && !io.hasBlockBackward 147 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 148 149 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 150 when(io.redirect.valid) { 151 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 152 }.otherwise { 153 ptr := ptr + dispatchNum 154 } 155 } 156 157 io.out := enqPtrVec 158 159} 160 161class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 162 // val valid = Bool() 163 val robIdx = new RobPtr 164 val exceptionVec = ExceptionVec() 165 val flushPipe = Bool() 166 val replayInst = Bool() // redirect to that inst itself 167 val singleStep = Bool() // TODO add frontend hit beneath 168 val crossPageIPFFix = Bool() 169 val trigger = new TriggerCf 170 171// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 172// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 173 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 174 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 175 // only exceptions are allowed to writeback when enqueue 176 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 177} 178 179class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 180 val io = IO(new Bundle { 181 val redirect = Input(Valid(new Redirect)) 182 val flush = Input(Bool()) 183 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 184 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 185 val out = ValidIO(new RobExceptionInfo) 186 val state = ValidIO(new RobExceptionInfo) 187 }) 188 189 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 190 assert(valid.length == bits.length) 191 assert(isPow2(valid.length)) 192 if (valid.length == 1) { 193 (valid, bits) 194 } else if (valid.length == 2) { 195 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 196 for (i <- res.indices) { 197 res(i).valid := valid(i) 198 res(i).bits := bits(i) 199 } 200 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 201 (Seq(oldest.valid), Seq(oldest.bits)) 202 } else { 203 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 204 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 205 getOldest(left._1 ++ right._1, left._2 ++ right._2) 206 } 207 } 208 209 val current = Reg(Valid(new RobExceptionInfo)) 210 211 // orR the exceptionVec 212 val lastCycleFlush = RegNext(io.flush) 213 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 214 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 215 216 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 217 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 218 val csr_wb_bits = io.wb(0).bits 219 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 220 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 221 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 222 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 223 224 // s1: compare last four and current flush 225 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 226 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 227 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 228 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 229 val s1_out_bits = RegNext(compare_bits) 230 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 231 232 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 233 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 234 235 // s2: compare the input exception with the current one 236 // priorities: 237 // (1) system reset 238 // (2) current is valid: flush, remain, merge, update 239 // (3) current is not valid: s1 or enq 240 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 241 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 242 when (reset.asBool) { 243 current.valid := false.B 244 }.elsewhen (current.valid) { 245 when (current_flush) { 246 current.valid := Mux(s1_flush, false.B, s1_out_valid) 247 } 248 when (s1_out_valid && !s1_flush) { 249 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 250 current.bits := s1_out_bits 251 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 252 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 253 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 254 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 255 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 256 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 257 } 258 } 259 }.elsewhen (s1_out_valid && !s1_flush) { 260 current.valid := true.B 261 current.bits := s1_out_bits 262 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 263 current.valid := true.B 264 current.bits := enq_bits 265 } 266 267 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 268 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 269 io.state := current 270 271} 272 273class RobFlushInfo(implicit p: Parameters) extends XSBundle { 274 val ftqIdx = new FtqPtr 275 val robIdx = new RobPtr 276 val ftqOffset = UInt(log2Up(PredictWidth).W) 277 val replayInst = Bool() 278} 279 280class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 281 282 lazy val module = new RobImp(this) 283 284 override def generateWritebackIO( 285 thisMod: Option[HasWritebackSource] = None, 286 thisModImp: Option[HasWritebackSourceImp] = None 287 ): Unit = { 288 val sources = writebackSinksImp(thisMod, thisModImp) 289 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 290 } 291} 292 293class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 294 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 295 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 296 val numWbPorts = wbExuConfigs.map(_.length) 297 298 val io = IO(new Bundle() { 299 val hartId = Input(UInt(8.W)) 300 val redirect = Input(Valid(new Redirect)) 301 val enq = new RobEnqIO 302 val flushOut = ValidIO(new Redirect) 303 val exception = ValidIO(new ExceptionInfo) 304 // exu + brq 305 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 306 val commits = Output(new RobCommitIO) 307 val lsq = new RobLsqIO 308 val robDeqPtr = Output(new RobPtr) 309 val csr = new RobCSRIO 310 val robFull = Output(Bool()) 311 val cpu_halt = Output(Bool()) 312 val wfi_enable = Input(Bool()) 313 }) 314 315 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 316 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 317 } 318 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 319 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 320 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 321 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 322 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 323 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 324 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 325 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 326 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 327 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 328 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 329 330 331 val exuWriteback = exuWbPorts.map(_._2) 332 val stdWriteback = stdWbPorts.map(_._2) 333 334 // instvalid field 335 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 336 // writeback status 337 val writebacked = Mem(RobSize, Bool()) 338 val store_data_writebacked = Mem(RobSize, Bool()) 339 // data for redirect, exception, etc. 340 val flagBkup = Mem(RobSize, Bool()) 341 // some instructions are not allowed to trigger interrupts 342 // They have side effects on the states of the processor before they write back 343 val interrupt_safe = Mem(RobSize, Bool()) 344 345 // data for debug 346 // Warn: debug_* prefix should not exist in generated verilog. 347 val debug_microOp = Mem(RobSize, new MicroOp) 348 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 349 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 350 351 // pointers 352 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 353 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 354 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 355 356 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 357 val allowEnqueue = RegInit(true.B) 358 359 val enqPtr = enqPtrVec.head 360 val deqPtr = deqPtrVec(0) 361 val walkPtr = walkPtrVec(0) 362 363 val isEmpty = enqPtr === deqPtr 364 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 365 366 /** 367 * states of Rob 368 */ 369 val s_idle :: s_walk :: Nil = Enum(2) 370 val state = RegInit(s_idle) 371 372 /** 373 * Data Modules 374 * 375 * CommitDataModule: data from dispatch 376 * (1) read: commits/walk/exception 377 * (2) write: enqueue 378 * 379 * WritebackData: data from writeback 380 * (1) read: commits/walk/exception 381 * (2) write: write back from exe units 382 */ 383 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 384 val dispatchDataRead = dispatchData.io.rdata 385 386 val exceptionGen = Module(new ExceptionGen) 387 val exceptionDataRead = exceptionGen.io.state 388 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 389 390 io.robDeqPtr := deqPtr 391 392 /** 393 * Enqueue (from dispatch) 394 */ 395 // special cases 396 val hasBlockBackward = RegInit(false.B) 397 val hasNoSpecExec = RegInit(false.B) 398 val doingSvinval = RegInit(false.B) 399 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 400 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 401 when (isEmpty) { hasBlockBackward:= false.B } 402 // When any instruction commits, hasNoSpecExec should be set to false.B 403 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 404 405 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 406 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 407 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 408 val hasWFI = RegInit(false.B) 409 io.cpu_halt := hasWFI 410 // WFI Timeout: 2^20 = 1M cycles 411 val wfi_cycles = RegInit(0.U(20.W)) 412 when (hasWFI) { 413 wfi_cycles := wfi_cycles + 1.U 414 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 415 wfi_cycles := 0.U 416 } 417 val wfi_timeout = wfi_cycles.andR 418 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 419 hasWFI := false.B 420 } 421 422 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 423 io.enq.canAccept := allowEnqueue && !hasBlockBackward 424 io.enq.resp := allocatePtrVec 425 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 426 val timer = GTimer() 427 for (i <- 0 until RenameWidth) { 428 // we don't check whether io.redirect is valid here since redirect has higher priority 429 when (canEnqueue(i)) { 430 val enqUop = io.enq.req(i).bits 431 val enqIndex = allocatePtrVec(i).value 432 // store uop in data module and debug_microOp Vec 433 debug_microOp(enqIndex) := enqUop 434 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 435 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 436 debug_microOp(enqIndex).debugInfo.selectTime := timer 437 debug_microOp(enqIndex).debugInfo.issueTime := timer 438 debug_microOp(enqIndex).debugInfo.writebackTime := timer 439 when (enqUop.ctrl.blockBackward) { 440 hasBlockBackward := true.B 441 } 442 when (enqUop.ctrl.noSpecExec) { 443 hasNoSpecExec := true.B 444 } 445 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 446 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 447 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 448 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 449 { 450 doingSvinval := true.B 451 } 452 // the end instruction of Svinval enqs so clear doingSvinval 453 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 454 { 455 doingSvinval := false.B 456 } 457 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 458 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 459 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 460 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 461 hasWFI := true.B 462 } 463 } 464 } 465 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 466 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 467 468 when (!io.wfi_enable) { 469 hasWFI := false.B 470 } 471 472 /** 473 * Writeback (from execution units) 474 */ 475 for (wb <- exuWriteback) { 476 when (wb.valid) { 477 val wbIdx = wb.bits.uop.robIdx.value 478 debug_exuData(wbIdx) := wb.bits.data 479 debug_exuDebug(wbIdx) := wb.bits.debug 480 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 481 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 482 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 483 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 484 485 // debug for lqidx and sqidx 486 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 487 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 488 489 val debug_Uop = debug_microOp(wbIdx) 490 XSInfo(true.B, 491 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 492 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 493 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 494 ) 495 } 496 } 497 val writebackNum = PopCount(exuWriteback.map(_.valid)) 498 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 499 500 501 /** 502 * RedirectOut: Interrupt and Exceptions 503 */ 504 val deqDispatchData = dispatchDataRead(0) 505 val debug_deqUop = debug_microOp(deqPtr.value) 506 507 val intrBitSetReg = RegNext(io.csr.intrBitSet) 508 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 509 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 510 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 511 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 512 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 513 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 514 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 515 516 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 517 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 518 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 519 520 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 521 522 // io.flushOut will trigger redirect at the next cycle. 523 // Block any redirect or commit at the next cycle. 524 val lastCycleFlush = RegNext(io.flushOut.valid) 525 526 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 527 io.flushOut.bits := DontCare 528 io.flushOut.bits.robIdx := deqPtr 529 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 530 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 531 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 532 io.flushOut.bits.interrupt := true.B 533 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 534 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 535 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 536 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 537 538 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 539 io.exception.valid := RegNext(exceptionHappen) 540 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 541 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 542 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 543 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 544 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 545 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 546 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 547 548 XSDebug(io.flushOut.valid, 549 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 550 p"excp $exceptionEnable flushPipe $isFlushPipe " + 551 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 552 553 554 /** 555 * Commits (and walk) 556 * They share the same width. 557 */ 558 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 559 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 560 val walkFinished = walkCounter <= CommitWidth.U 561 562 require(RenameWidth <= CommitWidth) 563 564 // wiring to csr 565 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 566 val v = io.commits.commitValid(i) 567 val info = io.commits.info(i) 568 (v & info.wflags, v & info.fpWen) 569 }).unzip 570 val fflags = Wire(Valid(UInt(5.W))) 571 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 572 fflags.bits := wflags.zip(fflagsDataRead).map({ 573 case (w, f) => Mux(w, f, 0.U) 574 }).reduce(_|_) 575 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 576 577 // when mispredict branches writeback, stop commit in the next 2 cycles 578 // TODO: don't check all exu write back 579 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 580 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 581 ))).orR 582 val misPredBlockCounter = Reg(UInt(3.W)) 583 misPredBlockCounter := Mux(misPredWb, 584 "b111".U, 585 misPredBlockCounter >> 1.U 586 ) 587 val misPredBlock = misPredBlockCounter(0) 588 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 589 590 io.commits.isWalk := state === s_walk 591 io.commits.isCommit := state === s_idle && !blockCommit 592 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 593 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 594 // store will be commited iff both sta & std have been writebacked 595 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 596 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 597 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 598 val allowOnlyOneCommit = commit_exception || intrBitSetReg 599 // for instructions that may block others, we don't allow them to commit 600 for (i <- 0 until CommitWidth) { 601 // defaults: state === s_idle and instructions commit 602 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 603 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 604 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 605 io.commits.info(i) := dispatchDataRead(i) 606 607 when (state === s_walk) { 608 io.commits.walkValid(i) := shouldWalkVec(i) 609 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 610 XSError(!walk_v(i), s"why not $i???\n") 611 } 612 } 613 614 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 615 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 616 debug_microOp(deqPtrVec(i).value).cf.pc, 617 io.commits.info(i).rfWen, 618 io.commits.info(i).ldest, 619 io.commits.info(i).pdest, 620 io.commits.info(i).old_pdest, 621 debug_exuData(deqPtrVec(i).value), 622 fflagsDataRead(i) 623 ) 624 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 625 debug_microOp(walkPtrVec(i).value).cf.pc, 626 io.commits.info(i).rfWen, 627 io.commits.info(i).ldest, 628 debug_exuData(walkPtrVec(i).value) 629 ) 630 } 631 if (env.EnableDifftest) { 632 io.commits.info.map(info => dontTouch(info.pc)) 633 } 634 635 // sync fflags/dirty_fs to csr 636 io.csr.fflags := RegNext(fflags) 637 io.csr.dirty_fs := RegNext(dirty_fs) 638 639 // commit load/store to lsq 640 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 641 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 642 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 643 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 644 // indicate a pending load or store 645 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 646 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 647 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 648 649 /** 650 * state changes 651 * (1) redirect: switch to s_walk 652 * (2) walk: when walking comes to the end, switch to s_idle 653 */ 654 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 655 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 656 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 657 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 658 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 659 state := state_next 660 661 /** 662 * pointers and counters 663 */ 664 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 665 deqPtrGenModule.io.state := state 666 deqPtrGenModule.io.deq_v := commit_v 667 deqPtrGenModule.io.deq_w := commit_w 668 deqPtrGenModule.io.exception_state := exceptionDataRead 669 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 670 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 671 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 672 deqPtrGenModule.io.blockCommit := blockCommit 673 deqPtrVec := deqPtrGenModule.io.out 674 val deqPtrVec_next = deqPtrGenModule.io.next_out 675 676 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 677 enqPtrGenModule.io.redirect := io.redirect 678 enqPtrGenModule.io.allowEnqueue := allowEnqueue 679 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 680 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 681 enqPtrVec := enqPtrGenModule.io.out 682 683 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 684 // next walkPtrVec: 685 // (1) redirect occurs: update according to state 686 // (2) walk: move forwards 687 val walkPtrVec_next = Mux(io.redirect.valid, 688 deqPtrVec_next, 689 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 690 ) 691 walkPtrVec := walkPtrVec_next 692 693 val numValidEntries = distanceBetween(enqPtr, deqPtr) 694 val commitCnt = PopCount(io.commits.commitValid) 695 696 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 697 698 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 699 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 700 when (io.redirect.valid) { 701 // full condition: 702 // +& is used here because: 703 // When rob is full and the tail instruction causes a misprediction, 704 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 705 // is RobSize - 1. 706 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 707 // Previously we use `+` to count the walk distance and it causes overflows 708 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 709 // The width of walkCounter also needs to be changed. 710 // empty condition: 711 // When the last instruction in ROB commits and causes a flush, a redirect 712 // will be raised later. In such circumstances, the redirect robIdx is before 713 // the deqPtrVec_next(0) and will cause underflow. 714 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 715 redirectWalkDistance +& !io.redirect.bits.flushItself()) 716 }.elsewhen (state === s_walk) { 717 walkCounter := walkCounter - thisCycleWalkCount 718 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 719 } 720 721 722 /** 723 * States 724 * We put all the stage bits changes here. 725 726 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 727 * All states: (1) valid; (2) writebacked; (3) flagBkup 728 */ 729 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 730 731 // redirect logic writes 6 valid 732 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 733 val redirectTail = Reg(new RobPtr) 734 val redirectIdle :: redirectBusy :: Nil = Enum(2) 735 val redirectState = RegInit(redirectIdle) 736 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 737 when(redirectState === redirectBusy) { 738 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 739 redirectHeadVec zip invMask foreach { 740 case (redirectHead, inv) => when(inv) { 741 valid(redirectHead.value) := false.B 742 } 743 } 744 when(!invMask.last) { 745 redirectState := redirectIdle 746 } 747 } 748 when(io.redirect.valid) { 749 redirectState := redirectBusy 750 when(redirectState === redirectIdle) { 751 redirectTail := enqPtr 752 } 753 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 754 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 755 } 756 } 757 // enqueue logic writes 6 valid 758 for (i <- 0 until RenameWidth) { 759 when (canEnqueue(i) && !io.redirect.valid) { 760 valid(allocatePtrVec(i).value) := true.B 761 } 762 } 763 // dequeue logic writes 6 valid 764 for (i <- 0 until CommitWidth) { 765 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 766 when (commitValid) { 767 valid(commitReadAddr(i)) := false.B 768 } 769 } 770 // reset: when exception, reset all valid to false 771 when (reset.asBool) { 772 for (i <- 0 until RobSize) { 773 valid(i) := false.B 774 } 775 } 776 777 // status field: writebacked 778 // enqueue logic set 6 writebacked to false 779 for (i <- 0 until RenameWidth) { 780 when (canEnqueue(i)) { 781 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 782 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 783 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 784 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 785 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 786 store_data_writebacked(allocatePtrVec(i).value) := !isStu 787 } 788 } 789 when (exceptionGen.io.out.valid) { 790 val wbIdx = exceptionGen.io.out.bits.robIdx.value 791 writebacked(wbIdx) := true.B 792 store_data_writebacked(wbIdx) := true.B 793 } 794 // writeback logic set numWbPorts writebacked to true 795 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 796 when (wb.valid) { 797 val wbIdx = wb.bits.uop.robIdx.value 798 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 799 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 800 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 801 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 802 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 803 writebacked(wbIdx) := !block_wb 804 } 805 } 806 // store data writeback logic mark store as data_writebacked 807 for (wb <- stdWriteback) { 808 when(RegNext(wb.valid)) { 809 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 810 } 811 } 812 813 // flagBkup 814 // enqueue logic set 6 flagBkup at most 815 for (i <- 0 until RenameWidth) { 816 when (canEnqueue(i)) { 817 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 818 } 819 } 820 821 // interrupt_safe 822 for (i <- 0 until RenameWidth) { 823 // We RegNext the updates for better timing. 824 // Note that instructions won't change the system's states in this cycle. 825 when (RegNext(canEnqueue(i))) { 826 // For now, we allow non-load-store instructions to trigger interrupts 827 // For MMIO instructions, they should not trigger interrupts since they may 828 // be sent to lower level before it writes back. 829 // However, we cannot determine whether a load/store instruction is MMIO. 830 // Thus, we don't allow load/store instructions to trigger an interrupt. 831 // TODO: support non-MMIO load-store instructions to trigger interrupts 832 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 833 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 834 } 835 } 836 837 /** 838 * read and write of data modules 839 */ 840 val commitReadAddr_next = Mux(state_next === s_idle, 841 VecInit(deqPtrVec_next.map(_.value)), 842 VecInit(walkPtrVec_next.map(_.value)) 843 ) 844 dispatchData.io.wen := canEnqueue 845 dispatchData.io.waddr := allocatePtrVec.map(_.value) 846 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 847 wdata.ldest := req.ctrl.ldest 848 wdata.rfWen := req.ctrl.rfWen 849 wdata.fpWen := req.ctrl.fpWen 850 wdata.wflags := req.ctrl.fpu.wflags 851 wdata.commitType := req.ctrl.commitType 852 wdata.pdest := req.pdest 853 wdata.old_pdest := req.old_pdest 854 wdata.ftqIdx := req.cf.ftqPtr 855 wdata.ftqOffset := req.cf.ftqOffset 856 wdata.isMove := req.eliminatedMove 857 wdata.pc := req.cf.pc 858 } 859 dispatchData.io.raddr := commitReadAddr_next 860 861 exceptionGen.io.redirect <> io.redirect 862 exceptionGen.io.flush := io.flushOut.valid 863 for (i <- 0 until RenameWidth) { 864 exceptionGen.io.enq(i).valid := canEnqueue(i) 865 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 866 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 867 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 868 exceptionGen.io.enq(i).bits.replayInst := false.B 869 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 870 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 871 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 872 exceptionGen.io.enq(i).bits.trigger.clear() 873 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 874 } 875 876 println(s"ExceptionGen:") 877 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 878 require(exceptionCases.length == exceptionGen.io.wb.length) 879 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 880 exc_wb.valid := wb.valid 881 exc_wb.bits.robIdx := wb.bits.uop.robIdx 882 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 883 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 884 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 885 exc_wb.bits.singleStep := false.B 886 exc_wb.bits.crossPageIPFFix := false.B 887 // TODO: make trigger configurable 888 exc_wb.bits.trigger.clear() 889 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 890 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 891 s"flushPipe ${configs.exists(_.flushPipe)}, " + 892 s"replayInst ${configs.exists(_.replayInst)}") 893 } 894 895 val fflags_wb = fflagsPorts.map(_._2) 896 val fflagsDataModule = Module(new SyncDataModuleTemplate( 897 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 898 ) 899 for(i <- fflags_wb.indices){ 900 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 901 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 902 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 903 } 904 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 905 fflagsDataRead := fflagsDataModule.io.rdata 906 907 908 val instrCntReg = RegInit(0.U(64.W)) 909 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 910 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 911 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 912 val instrCnt = instrCntReg + retireCounter 913 instrCntReg := instrCnt 914 io.csr.perfinfo.retiredInstr := retireCounter 915 io.robFull := !allowEnqueue 916 917 /** 918 * debug info 919 */ 920 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 921 XSDebug("") 922 for(i <- 0 until RobSize){ 923 XSDebug(false, !valid(i), "-") 924 XSDebug(false, valid(i) && writebacked(i), "w") 925 XSDebug(false, valid(i) && !writebacked(i), "v") 926 } 927 XSDebug(false, true.B, "\n") 928 929 for(i <- 0 until RobSize) { 930 if(i % 4 == 0) XSDebug("") 931 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 932 XSDebug(false, !valid(i), "- ") 933 XSDebug(false, valid(i) && writebacked(i), "w ") 934 XSDebug(false, valid(i) && !writebacked(i), "v ") 935 if(i % 4 == 3) XSDebug(false, true.B, "\n") 936 } 937 938 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 939 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 940 941 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 942 XSPerfAccumulate("clock_cycle", 1.U) 943 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 944 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 945 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 946 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 947 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 948 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 949 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 950 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 951 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 952 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 953 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 954 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 955 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 956 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 957 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 958 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 959 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 960 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 961 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 962 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 963 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 964 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 965 XSPerfAccumulate("walkCycle", state === s_walk) 966 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 967 val deqUopCommitType = io.commits.info(0).commitType 968 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 969 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 970 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 971 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 972 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 973 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 974 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 975 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 976 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 977 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 978 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 979 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 980 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 981 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 982 } 983 for (fuType <- FuType.functionNameMap.keys) { 984 val fuName = FuType.functionNameMap(fuType) 985 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 986 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 987 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 988 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 989 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 990 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 991 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 992 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 993 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 994 if (fuType == FuType.fmac.litValue) { 995 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 996 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 997 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 998 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 999 } 1000 } 1001 1002 //difftest signals 1003 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1004 1005 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1006 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1007 1008 for(i <- 0 until CommitWidth) { 1009 val idx = deqPtrVec(i).value 1010 wdata(i) := debug_exuData(idx) 1011 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1012 } 1013 1014 if (env.EnableDifftest) { 1015 for (i <- 0 until CommitWidth) { 1016 val difftest = Module(new DifftestInstrCommit) 1017 // assgin default value 1018 difftest.io := DontCare 1019 1020 difftest.io.clock := clock 1021 difftest.io.coreid := io.hartId 1022 difftest.io.index := i.U 1023 1024 val ptr = deqPtrVec(i).value 1025 val uop = commitDebugUop(i) 1026 val exuOut = debug_exuDebug(ptr) 1027 val exuData = debug_exuData(ptr) 1028 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1029 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1030 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1031 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1032 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1033 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1034 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1035 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1036 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1037 // when committing an eliminated move instruction, 1038 // we must make sure that skip is properly set to false (output from EXU is random value) 1039 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1040 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1041 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1042 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1043 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1044 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1045 1046 // // runahead commit hint 1047 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1048 // runahead_commit.io.clock := clock 1049 // runahead_commit.io.coreid := io.hartId 1050 // runahead_commit.io.index := i.U 1051 // runahead_commit.io.valid := difftest.io.valid && 1052 // (commitBranchValid(i) || commitIsStore(i)) 1053 // // TODO: is branch or store 1054 // runahead_commit.io.pc := difftest.io.pc 1055 } 1056 } 1057 else if (env.AlwaysBasicDiff) { 1058 // These are the structures used by difftest only and should be optimized after synthesis. 1059 val dt_eliminatedMove = Mem(RobSize, Bool()) 1060 val dt_isRVC = Mem(RobSize, Bool()) 1061 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1062 for (i <- 0 until RenameWidth) { 1063 when (canEnqueue(i)) { 1064 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1065 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1066 } 1067 } 1068 for (wb <- exuWriteback) { 1069 when (wb.valid) { 1070 val wbIdx = wb.bits.uop.robIdx.value 1071 dt_exuDebug(wbIdx) := wb.bits.debug 1072 } 1073 } 1074 // Always instantiate basic difftest modules. 1075 for (i <- 0 until CommitWidth) { 1076 val commitInfo = io.commits.info(i) 1077 val ptr = deqPtrVec(i).value 1078 val exuOut = dt_exuDebug(ptr) 1079 val eliminatedMove = dt_eliminatedMove(ptr) 1080 val isRVC = dt_isRVC(ptr) 1081 1082 val difftest = Module(new DifftestBasicInstrCommit) 1083 difftest.io.clock := clock 1084 difftest.io.coreid := io.hartId 1085 difftest.io.index := i.U 1086 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1087 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1088 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1089 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1090 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1091 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1092 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1093 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1094 } 1095 } 1096 1097 if (env.EnableDifftest) { 1098 for (i <- 0 until CommitWidth) { 1099 val difftest = Module(new DifftestLoadEvent) 1100 difftest.io.clock := clock 1101 difftest.io.coreid := io.hartId 1102 difftest.io.index := i.U 1103 1104 val ptr = deqPtrVec(i).value 1105 val uop = commitDebugUop(i) 1106 val exuOut = debug_exuDebug(ptr) 1107 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1108 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1109 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1110 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1111 } 1112 } 1113 1114 // Always instantiate basic difftest modules. 1115 if (env.EnableDifftest) { 1116 val dt_isXSTrap = Mem(RobSize, Bool()) 1117 for (i <- 0 until RenameWidth) { 1118 when (canEnqueue(i)) { 1119 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1120 } 1121 } 1122 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1123 val hitTrap = trapVec.reduce(_||_) 1124 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1125 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1126 val difftest = Module(new DifftestTrapEvent) 1127 difftest.io.clock := clock 1128 difftest.io.coreid := io.hartId 1129 difftest.io.valid := hitTrap 1130 difftest.io.code := trapCode 1131 difftest.io.pc := trapPC 1132 difftest.io.cycleCnt := timer 1133 difftest.io.instrCnt := instrCnt 1134 difftest.io.hasWFI := hasWFI 1135 } 1136 else if (env.AlwaysBasicDiff) { 1137 val dt_isXSTrap = Mem(RobSize, Bool()) 1138 for (i <- 0 until RenameWidth) { 1139 when (canEnqueue(i)) { 1140 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1141 } 1142 } 1143 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1144 val hitTrap = trapVec.reduce(_||_) 1145 val difftest = Module(new DifftestBasicTrapEvent) 1146 difftest.io.clock := clock 1147 difftest.io.coreid := io.hartId 1148 difftest.io.valid := hitTrap 1149 difftest.io.cycleCnt := timer 1150 difftest.io.instrCnt := instrCnt 1151 } 1152 1153 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1154 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1155 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1156 val commitLoadVec = VecInit(commitLoadValid) 1157 val commitBranchVec = VecInit(commitBranchValid) 1158 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1159 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1160 val perfEvents = Seq( 1161 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1162 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1163 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1164 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1165 ("rob_commitUop ", ifCommit(commitCnt) ), 1166 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1167 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1168 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1169 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1170 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1171 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1172 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1173 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1174 ("rob_walkCycle ", (state === s_walk) ), 1175 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1176 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1177 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1178 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1179 ) 1180 generatePerfEvent() 1181} 1182