1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuConfig, FuType} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.fu.vector.Bundles.VType 35import xiangshan.backend.rename.SnapshotGenerator 36 37 38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 39 entries 40) with HasCircularQueuePtrHelper { 41 42 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 43 44 def needFlush(redirect: Valid[Redirect]): Bool = { 45 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 46 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 47 } 48 49 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 50} 51 52object RobPtr { 53 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 54 val ptr = Wire(new RobPtr) 55 ptr.flag := f 56 ptr.value := v 57 ptr 58 } 59} 60 61class RobCSRIO(implicit p: Parameters) extends XSBundle { 62 val intrBitSet = Input(Bool()) 63 val trapTarget = Input(UInt(VAddrBits.W)) 64 val isXRet = Input(Bool()) 65 val wfiEvent = Input(Bool()) 66 67 val fflags = Output(Valid(UInt(5.W))) 68 val vxsat = Output(Valid(Bool())) 69 val vstart = Output(Valid(UInt(XLEN.W))) 70 val dirty_fs = Output(Bool()) 71 val perfinfo = new Bundle { 72 val retiredInstr = Output(UInt(3.W)) 73 } 74 75 val vcsrFlag = Output(Bool()) 76} 77 78class RobLsqIO(implicit p: Parameters) extends XSBundle { 79 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 81 val pendingld = Output(Bool()) 82 val pendingst = Output(Bool()) 83 // set when vector store at the head of ROB 84 val pendingVst = Output(Bool()) 85 86 val commit = Output(Bool()) 87 val pendingPtr = Output(new RobPtr) 88 val pendingPtrNext = Output(new RobPtr) 89 90 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 91 // Todo: what's this? 92 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 93} 94 95class RobEnqIO(implicit p: Parameters) extends XSBundle { 96 val canAccept = Output(Bool()) 97 val isEmpty = Output(Bool()) 98 // valid vector, for robIdx gen and walk 99 val needAlloc = Vec(RenameWidth, Input(Bool())) 100 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 101 val resp = Vec(RenameWidth, Output(new RobPtr)) 102} 103 104class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 105 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 106 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 107} 108 109class RobDispatchTopDownIO extends Bundle { 110 val robTrueCommit = Output(UInt(64.W)) 111 val robHeadLsIssue = Output(Bool()) 112} 113 114class RobDebugRollingIO extends Bundle { 115 val robTrueCommit = Output(UInt(64.W)) 116} 117 118class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 119 120class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 121 val io = IO(new Bundle { 122 // for commits/flush 123 val state = Input(UInt(2.W)) 124 val deq_v = Vec(CommitWidth, Input(Bool())) 125 val deq_w = Vec(CommitWidth, Input(Bool())) 126 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 127 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 128 val intrBitSetReg = Input(Bool()) 129 val hasNoSpecExec = Input(Bool()) 130 val interrupt_safe = Input(Bool()) 131 val blockCommit = Input(Bool()) 132 // output: the CommitWidth deqPtr 133 val out = Vec(CommitWidth, Output(new RobPtr)) 134 val next_out = Vec(CommitWidth, Output(new RobPtr)) 135 val commitCnt = Output(UInt(log2Up(CommitWidth+1).W)) 136 val canCommitPriorityCond = Output(Vec(CommitWidth+1,Bool())) 137 val commitEn = Output(Bool()) 138 }) 139 140 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 141 142 // for exceptions (flushPipe included) and interrupts: 143 // only consider the first instruction 144 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 145 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 146 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 147 148 // for normal commits: only to consider when there're no exceptions 149 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 150 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 151 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 152 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 153 // when io.intrBitSetReg or there're possible exceptions in these instructions, 154 // only one instruction is allowed to commit 155 val allowOnlyOne = commit_exception || io.intrBitSetReg 156 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 157 val allowOnlyOneCond = Wire(chiselTypeOf(io.canCommitPriorityCond)) 158 allowOnlyOneCond.zipWithIndex.map{ case (value,i) => value := (if (i==0) !canCommit(0) else true.B)} 159 io.canCommitPriorityCond := Mux(allowOnlyOne, allowOnlyOneCond, VecInit(canCommit.map(c => !c) :+ true.B)) 160 161 val commitDeqPtrAll = VecInit((0 until 2*CommitWidth).map{case i => deqPtrVec(0) + i.U}) 162 val commitDeqPtrVec = Wire(chiselTypeOf(deqPtrVec)) 163 for (i <- 0 until CommitWidth){ 164 commitDeqPtrVec(i) := PriorityMuxDefault(io.canCommitPriorityCond.zip(commitDeqPtrAll.drop(i).take(CommitWidth+1)), deqPtrVec(i)) 165 } 166 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 167 168 deqPtrVec := deqPtrVec_next 169 170 io.next_out := deqPtrVec_next 171 io.out := deqPtrVec 172 io.commitCnt := commitCnt 173 io.commitEn := io.state === 0.U && !redirectOutValid && !io.blockCommit 174 175 when (io.state === 0.U) { 176 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 177 } 178 179} 180 181class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 182 val io = IO(new Bundle { 183 // for input redirect 184 val redirect = Input(Valid(new Redirect)) 185 // for enqueue 186 val allowEnqueue = Input(Bool()) 187 val hasBlockBackward = Input(Bool()) 188 val enq = Vec(RenameWidth, Input(Bool())) 189 val out = Output(Vec(RenameWidth, new RobPtr)) 190 }) 191 192 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 193 194 // enqueue 195 val canAccept = io.allowEnqueue && !io.hasBlockBackward 196 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 197 198 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 199 when(io.redirect.valid) { 200 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 201 }.otherwise { 202 ptr := ptr + dispatchNum 203 } 204 } 205 206 io.out := enqPtrVec 207 208} 209 210class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 211 // val valid = Bool() 212 val robIdx = new RobPtr 213 val exceptionVec = ExceptionVec() 214 val flushPipe = Bool() 215 val isVset = Bool() 216 val replayInst = Bool() // redirect to that inst itself 217 val singleStep = Bool() // TODO add frontend hit beneath 218 val crossPageIPFFix = Bool() 219 val trigger = new TriggerCf 220 val vstartEn = Bool() 221 val vstart = UInt(XLEN.W) 222 223 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 224 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 225 // only exceptions are allowed to writeback when enqueue 226 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 227} 228 229class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 230 val io = IO(new Bundle { 231 val redirect = Input(Valid(new Redirect)) 232 val flush = Input(Bool()) 233 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 234 // csr + load + store + varith + vload + vstore 235 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 236 val out = ValidIO(new RobExceptionInfo) 237 val state = ValidIO(new RobExceptionInfo) 238 }) 239 240 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 241 242 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 243 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 244 assert(valid.length == bits.length) 245 if (valid.length == 1) { 246 (valid, bits) 247 } else if (valid.length == 2) { 248 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 249 for (i <- res.indices) { 250 res(i).valid := valid(i) 251 res(i).bits := bits(i) 252 } 253 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 254 (Seq(oldest.valid), Seq(oldest.bits)) 255 } else { 256 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 257 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 258 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 259 } 260 } 261 getOldest_recursion(valid, bits)._2.head 262 } 263 264 265 val currentValid = RegInit(false.B) 266 val current = Reg(new RobExceptionInfo) 267 268 // orR the exceptionVec 269 val lastCycleFlush = RegNext(io.flush) 270 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 271 272 // s0: compare wb in 6 groups 273 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 274 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 275 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 276 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 277 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 278 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 279 280 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 281 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 282 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 283 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 284 } 285 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 286 287 val s0_out_valid = wb_valid.map(x => RegNext(x)) 288 val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} 289 290 // s1: compare last six and current flush 291 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 292 val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) 293 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 294 295 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 296 val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 297 298 // s2: compare the input exception with the current one 299 // priorities: 300 // (1) system reset 301 // (2) current is valid: flush, remain, merge, update 302 // (3) current is not valid: s1 or enq 303 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 304 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 305 when (currentValid) { 306 when (current_flush) { 307 currentValid := Mux(s1_flush, false.B, s1_out_valid) 308 } 309 when (s1_out_valid && !s1_flush) { 310 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 311 current := s1_out_bits 312 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 313 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 314 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 315 current.replayInst := s1_out_bits.replayInst || current.replayInst 316 current.singleStep := s1_out_bits.singleStep || current.singleStep 317 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 318 } 319 } 320 }.elsewhen (s1_out_valid && !s1_flush) { 321 currentValid := true.B 322 current := s1_out_bits 323 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 324 currentValid := true.B 325 current := enq_bits 326 } 327 328 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 329 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 330 io.state.valid := currentValid 331 io.state.bits := current 332 333} 334 335class RobFlushInfo(implicit p: Parameters) extends XSBundle { 336 val ftqIdx = new FtqPtr 337 val robIdx = new RobPtr 338 val ftqOffset = UInt(log2Up(PredictWidth).W) 339 val replayInst = Bool() 340} 341 342class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 343 override def shouldBeInlined: Boolean = false 344 345 lazy val module = new RobImp(this)(p, params) 346} 347 348class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 349 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 350 351 private val LduCnt = params.LduCnt 352 private val StaCnt = params.StaCnt 353 private val HyuCnt = params.HyuCnt 354 355 val io = IO(new Bundle() { 356 val hartId = Input(UInt(8.W)) 357 val redirect = Input(Valid(new Redirect)) 358 val enq = new RobEnqIO 359 val flushOut = ValidIO(new Redirect) 360 val exception = ValidIO(new ExceptionInfo) 361 // exu + brq 362 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 363 val writebackNums = Flipped(Vec(writeback.size-params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 364 val commits = Output(new RobCommitIO) 365 val rabCommits = Output(new RabCommitIO) 366 val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None 367 val isVsetFlushPipe = Output(Bool()) 368 val lsq = new RobLsqIO 369 val robDeqPtr = Output(new RobPtr) 370 val csr = new RobCSRIO 371 val snpt = Input(new SnapshotPort) 372 val robFull = Output(Bool()) 373 val headNotReady = Output(Bool()) 374 val cpu_halt = Output(Bool()) 375 val wfi_enable = Input(Bool()) 376 val toDecode = new Bundle { 377 val isResumeVType = Output(Bool()) 378 val commitVType = ValidIO(VType()) 379 val walkVType = ValidIO(VType()) 380 } 381 382 val debug_ls = Flipped(new DebugLSIO) 383 val debugRobHead = Output(new DynInst) 384 val debugEnqLsq = Input(new LsqEnqIO) 385 val debugHeadLsIssue = Input(Bool()) 386 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 387 val debugTopDown = new Bundle { 388 val toCore = new RobCoreTopDownIO 389 val toDispatch = new RobDispatchTopDownIO 390 val robHeadLqIdx = Valid(new LqPtr) 391 } 392 val debugRolling = new RobDebugRollingIO 393 }) 394 395 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 396 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 397 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 398 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 399 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 400 val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 401 402 val numExuWbPorts = exuWBs.length 403 val numStdWbPorts = stdWBs.length 404 405 406 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 407// println(s"exuPorts: ${exuWbs.map(_._1.map(_.name))}") 408// println(s"stdPorts: ${stdWbs.map(_._1.map(_.name))}") 409// println(s"fflagsPorts: ${fflagsWBs.map(_._1.map(_.name))}") 410 411 412 // instvalid field 413 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 414 // writeback status 415 416 val stdWritebacked = Reg(Vec(RobSize, Bool())) 417 val commitTrigger = Mem(RobSize, Bool()) 418 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 419 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 420 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 421 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 422 val vls = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 423 424 val stdWritebackedDeqGroup = Reg(Vec(CommitWidth, Bool())) 425 val uopNumVecDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 426 val realDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 427 val fflagsDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(5.W)))) 428 val vxsatDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 429 def isWritebacked(ptr: UInt): Bool = { 430 !uopNumVec(ptr).orR && stdWritebacked(ptr) 431 } 432 433 def isUopWritebacked(ptr: UInt): Bool = { 434 !uopNumVec(ptr).orR 435 } 436 437 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 438 439 // data for redirect, exception, etc. 440 val flagBkup = Mem(RobSize, Bool()) 441 // some instructions are not allowed to trigger interrupts 442 // They have side effects on the states of the processor before they write back 443 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 444 val interrupt_safeDeqGroup = Reg(Vec(CommitWidth, Bool())) 445 446 // data for debug 447 // Warn: debug_* prefix should not exist in generated verilog. 448 val debug_microOp = DebugMem(RobSize, new DynInst) 449 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 450 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 451 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 452 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 453 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 454 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 455 456 // pointers 457 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 458 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 459 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 460 461 if(backendParams.debugEn) { 462 dontTouch(enqPtrVec) 463 dontTouch(deqPtrVec) 464 } 465 466 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 467 val lastWalkPtr = Reg(new RobPtr) 468 val allowEnqueue = RegInit(true.B) 469 470 val enqPtr = enqPtrVec.head 471 val deqPtr = deqPtrVec(0) 472 val walkPtr = walkPtrVec(0) 473 474 val isEmpty = enqPtr === deqPtr 475 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 476 477 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 478 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 479 val debug_lsIssue = WireDefault(debug_lsIssued) 480 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 481 482 /** 483 * states of Rob 484 */ 485 val s_idle :: s_walk :: Nil = Enum(2) 486 val state = RegInit(s_idle) 487 488 /** 489 * Data Modules 490 * 491 * CommitDataModule: data from dispatch 492 * (1) read: commits/walk/exception 493 * (2) write: enqueue 494 * 495 * WritebackData: data from writeback 496 * (1) read: commits/walk/exception 497 * (2) write: write back from exe units 498 */ 499 private def hasRen: Boolean = true 500 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth, hasRen = hasRen)) 501 val dispatchDataRead = dispatchData.io.rdata 502 503 val exceptionGen = Module(new ExceptionGen(params)) 504 val exceptionDataRead = exceptionGen.io.state 505 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 506 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 507 508 io.robDeqPtr := deqPtr 509 io.debugRobHead := debug_microOp(deqPtr.value) 510 511 val rab = Module(new RenameBuffer(RabSize)) 512 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 513 514 /** 515 * connection of [[rab]] 516 */ 517 rab.io.redirect.valid := io.redirect.valid 518 519 rab.io.req.zip(io.enq.req).map { case (dest, src) => 520 dest.bits := src.bits 521 dest.valid := src.valid && io.enq.canAccept 522 } 523 524 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 525 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 526 527 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 528 val commitSizeSumSeq = (0 until CommitWidth).map(i => realDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 529 val walkSizeSumSeq = (0 until CommitWidth).map(i => walkDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 530 val commitSizeSumCond = io.commits.commitValid.map(_ && io.commits.isCommit) 531 val walkSizeSumCond = io.commits.walkValid.map(_ && io.commits.isWalk) 532 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 533 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 534 535 rab.io.fromRob.commitSize := commitSizeSum 536 rab.io.fromRob.walkSize := walkSizeSum 537 rab.io.snpt := io.snpt 538 rab.io.snpt.snptEnq := snptEnq 539 540 io.rabCommits := rab.io.commits 541 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 542 543 /** 544 * connection of [[vtypeBuffer]] 545 */ 546 547 vtypeBuffer.io.redirect.valid := io.redirect.valid 548 549 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 550 sink.valid := source.valid && io.enq.canAccept 551 sink.bits := source.bits 552 } 553 554 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 555 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 556 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 557 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 558 vtypeBuffer.io.snpt := io.snpt 559 vtypeBuffer.io.snpt.snptEnq := snptEnq 560 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 561 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 562 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 563 564 /** 565 * Enqueue (from dispatch) 566 */ 567 // special cases 568 val hasBlockBackward = RegInit(false.B) 569 val hasWaitForward = RegInit(false.B) 570 val doingSvinval = RegInit(false.B) 571 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 572 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 573 when (isEmpty) { hasBlockBackward:= false.B } 574 // When any instruction commits, hasNoSpecExec should be set to false.B 575 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 576 577 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 578 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 579 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 580 val hasWFI = RegInit(false.B) 581 io.cpu_halt := hasWFI 582 // WFI Timeout: 2^20 = 1M cycles 583 val wfi_cycles = RegInit(0.U(20.W)) 584 when (hasWFI) { 585 wfi_cycles := wfi_cycles + 1.U 586 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 587 wfi_cycles := 0.U 588 } 589 val wfi_timeout = wfi_cycles.andR 590 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 591 hasWFI := false.B 592 } 593 594 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 595 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 596 io.enq.resp := allocatePtrVec 597 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 598 val timer = GTimer() 599 for (i <- 0 until RenameWidth) { 600 // we don't check whether io.redirect is valid here since redirect has higher priority 601 when (canEnqueue(i)) { 602 val enqUop = io.enq.req(i).bits 603 val enqIndex = allocatePtrVec(i).value 604 // store uop in data module and debug_microOp Vec 605 debug_microOp(enqIndex) := enqUop 606 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 607 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 608 debug_microOp(enqIndex).debugInfo.selectTime := timer 609 debug_microOp(enqIndex).debugInfo.issueTime := timer 610 debug_microOp(enqIndex).debugInfo.writebackTime := timer 611 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 612 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 613 debug_lsInfo(enqIndex) := DebugLsInfo.init 614 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 615 debug_lqIdxValid(enqIndex) := false.B 616 debug_lsIssued(enqIndex) := false.B 617 618 when (enqUop.blockBackward) { 619 hasBlockBackward := true.B 620 } 621 when (enqUop.waitForward) { 622 hasWaitForward := true.B 623 } 624 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 625 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 626 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 627 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 628 { 629 doingSvinval := true.B 630 } 631 // the end instruction of Svinval enqs so clear doingSvinval 632 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 633 { 634 doingSvinval := false.B 635 } 636 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 637 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 638 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 639 hasWFI := true.B 640 } 641 642 mmio(enqIndex) := false.B 643 644 vls(enqIndex) := enqUop.vlsInstr 645 } 646 } 647 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 648 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 649 650 when (!io.wfi_enable) { 651 hasWFI := false.B 652 } 653 // sel vsetvl's flush position 654 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 655 val vsetvlState = RegInit(vs_idle) 656 657 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 658 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 659 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 660 661 val enq0 = io.enq.req(0) 662 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 663 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 664 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 665 // for vs_idle 666 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 667 // for vs_waitVinstr 668 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 669 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 670 when(vsetvlState === vs_idle){ 671 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 672 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 673 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 674 }.elsewhen(vsetvlState === vs_waitVinstr){ 675 when(Cat(enqIsVInstrOrVset).orR){ 676 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 677 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 678 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 679 } 680 } 681 682 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 683 when(vsetvlState === vs_idle && !io.redirect.valid){ 684 when(enq0IsVsetFlush){ 685 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 686 } 687 }.elsewhen(vsetvlState === vs_waitVinstr){ 688 when(io.redirect.valid){ 689 vsetvlState := vs_idle 690 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 691 vsetvlState := vs_waitFlush 692 } 693 }.elsewhen(vsetvlState === vs_waitFlush){ 694 when(io.redirect.valid){ 695 vsetvlState := vs_idle 696 } 697 } 698 699 // lqEnq 700 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 701 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 702 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 703 debug_lqIdxValid(req.bits.robIdx.value) := true.B 704 } 705 } 706 707 // lsIssue 708 when(io.debugHeadLsIssue) { 709 debug_lsIssued(deqPtr.value) := true.B 710 } 711 712 /** 713 * Writeback (from execution units) 714 */ 715 for (wb <- exuWBs) { 716 when (wb.valid) { 717 val wbIdx = wb.bits.robIdx.value 718 debug_exuData(wbIdx) := wb.bits.data 719 debug_exuDebug(wbIdx) := wb.bits.debug 720 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 721 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 722 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 723 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 724 725 // debug for lqidx and sqidx 726 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 727 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 728 729 val debug_Uop = debug_microOp(wbIdx) 730 XSInfo(true.B, 731 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 732 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 733 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 734 ) 735 } 736 } 737 738 val writebackNum = PopCount(exuWBs.map(_.valid)) 739 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 740 741 for (i <- 0 until LoadPipelineWidth) { 742 when (RegNext(io.lsq.mmio(i))) { 743 mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B 744 } 745 } 746 747 /** 748 * RedirectOut: Interrupt and Exceptions 749 */ 750 val deqDispatchData = dispatchDataRead(0) 751 val debug_deqUop = debug_microOp(deqPtr.value) 752 753 val intrBitSetReg = RegNext(io.csr.intrBitSet) 754 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safeDeqGroup(0) 755 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 756 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 757 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 758 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 759 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 760 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 761 762 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 763 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 764 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 765 766 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 767 768 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 769// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 770 val needModifyFtqIdxOffset = false.B 771 io.isVsetFlushPipe := isVsetFlushPipe 772 773 // io.flushOut will trigger redirect at the next cycle. 774 // Block any redirect or commit at the next cycle. 775 val lastCycleFlush = RegNext(io.flushOut.valid) 776 777 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 778 io.flushOut.bits := DontCare 779 io.flushOut.bits.isRVC := deqDispatchData.isRVC 780 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 781 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 782 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 783 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 784 io.flushOut.bits.interrupt := true.B 785 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 786 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 787 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 788 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 789 790 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 791 io.exception.valid := RegNext(exceptionHappen) 792 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 793 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 794 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 795 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 796 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 797 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 798 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 799 io.exception.bits.vls := RegEnable(vls(deqPtr.value), exceptionHappen) 800 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 801 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 802 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 803 804 XSDebug(io.flushOut.valid, 805 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 806 p"excp $exceptionEnable flushPipe $isFlushPipe " + 807 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 808 809 810 /** 811 * Commits (and walk) 812 * They share the same width. 813 */ 814 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 815 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 816 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 817 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 818 819 require(RenameWidth <= CommitWidth) 820 821 // wiring to csr 822 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 823 val v = io.commits.commitValid(i) 824 val info = io.commits.info(i) 825 (v & info.wflags, v & (info.dirtyFs | fflagsDataRead(i).orR)) 826 }).unzip 827 val fflags = Wire(Valid(UInt(5.W))) 828 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 829 fflags.bits := wflags.zip(fflagsDataRead).map({ 830 case (w, f) => Mux(w, f, 0.U) 831 }).reduce(_|_) 832 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 833 834 val vxsat = Wire(Valid(Bool())) 835 vxsat.valid := io.commits.isCommit && vxsat.bits 836 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 837 case (valid, vxsat) => valid & vxsat 838 }.reduce(_ | _) 839 840 // when mispredict branches writeback, stop commit in the next 2 cycles 841 // TODO: don't check all exu write back 842 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 843 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 844 ).toSeq)).orR 845 val misPredBlockCounter = Reg(UInt(3.W)) 846 misPredBlockCounter := Mux(misPredWb, 847 "b111".U, 848 misPredBlockCounter >> 1.U 849 ) 850 val misPredBlock = misPredBlockCounter(0) 851 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 852 853 io.commits.isWalk := state === s_walk 854 io.commits.isCommit := state === s_idle && !blockCommit 855 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 856 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 857 if(backendParams.debugEn) { 858 dontTouch(commit_v) 859 } 860 val commit_vDeqGroup = Reg(chiselTypeOf(walk_v)) 861 // store will be commited iff both sta & std have been writebacked 862 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 863 val commit_wDeqGroup = Reg(chiselTypeOf(walk_v)) 864 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 865 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i))) 866 val allowOnlyOneCommit = commit_exception || intrBitSetReg 867 // for instructions that may block others, we don't allow them to commit 868 for (i <- 0 until CommitWidth) { 869 // defaults: state === s_idle and instructions commit 870 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 871 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 872 io.commits.commitValid(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked 873 io.commits.info(i) := dispatchDataRead(i) 874 io.commits.robIdx(i) := deqPtrVec(i) 875 876 io.commits.walkValid(i) := shouldWalkVec(i) 877 when (state === s_walk) { 878 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 879 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 880 } 881 } 882 883 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 884 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 885 debug_microOp(deqPtrVec(i).value).pc, 886 io.commits.info(i).rfWen, 887 io.commits.info(i).ldest, 888 io.commits.info(i).pdest, 889 debug_exuData(deqPtrVec(i).value), 890 fflagsDataRead(i), 891 vxsatDataRead(i) 892 ) 893 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 894 debug_microOp(walkPtrVec(i).value).pc, 895 io.commits.info(i).rfWen, 896 io.commits.info(i).ldest, 897 debug_exuData(walkPtrVec(i).value) 898 ) 899 } 900 if (env.EnableDifftest) { 901 io.commits.info.map(info => dontTouch(info.pc)) 902 } 903 904 // sync fflags/dirty_fs/vxsat to csr 905 io.csr.fflags := RegEnable(fflags, io.commits.isCommit) 906 io.csr.dirty_fs := RegEnable(dirty_fs, io.commits.isCommit) 907 io.csr.vxsat := RegEnable(vxsat, io.commits.isCommit) 908 909 // sync v csr to csr 910 // for difftest 911 if(env.AlwaysBasicDiff || env.EnableDifftest) { 912 val isDiffWriteVconfigVec = io.diffCommits.get.commitValid.zip(io.diffCommits.get.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 913 io.csr.vcsrFlag := RegNext(io.diffCommits.get.isCommit && Cat(isDiffWriteVconfigVec).orR) 914 } 915 else{ 916 io.csr.vcsrFlag := false.B 917 } 918 919 // commit load/store to lsq 920 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 921 // TODO: Check if meet the require that only set scommit when commit scala store uop 922 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !vls(deqPtrVec(i).value) )) 923 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 924 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 925 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 926 // indicate a pending load or store 927 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 928 // TODO: Check if need deassert pendingst when it is vst 929 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 930 // TODO: Check if set correctly when vector store is at the head of ROB 931 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) && vls(deqPtr.value)) 932 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 933 io.lsq.pendingPtr := RegNext(deqPtr) 934 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 935 936 /** 937 * state changes 938 * (1) redirect: switch to s_walk 939 * (2) walk: when walking comes to the end, switch to s_idle 940 */ 941 val state_next = Mux( 942 io.redirect.valid, s_walk, 943 Mux( 944 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 945 state 946 ) 947 ) 948 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 949 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 950 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 951 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 952 state := state_next 953 954 /** 955 * pointers and counters 956 */ 957 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 958 deqPtrGenModule.io.state := state 959 deqPtrGenModule.io.deq_v := commit_vDeqGroup 960 deqPtrGenModule.io.deq_w := commit_wDeqGroup 961 deqPtrGenModule.io.exception_state := exceptionDataRead 962 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 963 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 964 deqPtrGenModule.io.interrupt_safe := interrupt_safeDeqGroup(0) 965 deqPtrGenModule.io.blockCommit := blockCommit 966 deqPtrVec := deqPtrGenModule.io.out 967 deqPtrVec_next := deqPtrGenModule.io.next_out 968 969 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 970 enqPtrGenModule.io.redirect := io.redirect 971 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 972 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 973 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 974 enqPtrVec := enqPtrGenModule.io.out 975 976 // next walkPtrVec: 977 // (1) redirect occurs: update according to state 978 // (2) walk: move forwards 979 val walkPtrVec_next = Mux(io.redirect.valid, 980 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 981 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 982 ) 983 walkPtrVec := walkPtrVec_next 984 walkDestSizeDeqGroup.zip(walkPtrVec_next).map{ 985 case (reg, ptrNext) => reg := realDestSize(ptrNext.value) 986 } 987 val numValidEntries = distanceBetween(enqPtr, deqPtr) 988 val commitCnt = PopCount(io.commits.commitValid) 989 990 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 991 992 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 993 when (io.redirect.valid) { 994 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 995 } 996 997 998 /** 999 * States 1000 * We put all the stage bits changes here. 1001 1002 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 1003 * All states: (1) valid; (2) writebacked; (3) flagBkup 1004 */ 1005 1006 // update commit_vDeqGroup 1007 val deqPtrValue = Wire(Vec(2 * CommitWidth, new RobPtr)) 1008 deqPtrValue.zipWithIndex.map{case (deq, i) => deq := deqPtrVec(0) + i.U} 1009 val commit_vReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1010 val commit_vNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1011 if(backendParams.debugEn) { 1012 dontTouch(commit_vDeqGroup) 1013 dontTouch(commit_vReadVec) 1014 dontTouch(commit_vNextVec) 1015 dontTouch(deqPtrValue) 1016 } 1017 for (i <- 0 until 2 * CommitWidth) { 1018 commit_vReadVec(i) := valid(deqPtrValue(i).value) 1019 commit_vNextVec(i) := commit_vReadVec(i) 1020 } 1021 (0 until CommitWidth).map { case i => 1022 val nextVec = commit_vNextVec 1023 val commitEn = deqPtrGenModule.io.commitEn 1024 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1025 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1026 val originValue = nextVec(i) 1027 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1028 commit_vDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1029 } 1030 // update commit_wDeqGroup 1031 val commit_wReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1032 val commit_wNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1033 if(backendParams.debugEn) { 1034 dontTouch(commit_wDeqGroup) 1035 dontTouch(commit_wReadVec) 1036 dontTouch(commit_wNextVec) 1037 dontTouch(commit_w) 1038 } 1039 for (i <- 0 until 2 * CommitWidth) { 1040 commit_wReadVec(i) := isWritebacked(deqPtrValue(i).value) 1041 commit_wNextVec(i) := commit_wReadVec(i) 1042 } 1043 (0 until CommitWidth).map { case i => 1044 val nextVec = commit_wNextVec 1045 val commitEn = deqPtrGenModule.io.commitEn 1046 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1047 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1048 val originValue = nextVec(i) 1049 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis),originValue) 1050 commit_wDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1051 } 1052 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 1053 1054 // redirect logic writes 6 valid 1055 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 1056 val redirectTail = Reg(new RobPtr) 1057 val redirectIdle :: redirectBusy :: Nil = Enum(2) 1058 val redirectState = RegInit(redirectIdle) 1059 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 1060 when(redirectState === redirectBusy) { 1061 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 1062 redirectHeadVec zip invMask foreach { 1063 case (redirectHead, inv) => when(inv) { 1064 valid(redirectHead.value) := false.B 1065 for (j <- 0 until 2 * CommitWidth) { 1066 when(redirectHead.value === deqPtrValue(j).value) { 1067 commit_vNextVec(j) := false.B 1068 } 1069 } 1070 } 1071 } 1072 when(!invMask.last) { 1073 redirectState := redirectIdle 1074 } 1075 } 1076 when(io.redirect.valid) { 1077 redirectState := redirectBusy 1078 when(redirectState === redirectIdle) { 1079 redirectTail := enqPtr 1080 } 1081 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 1082 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 1083 } 1084 } 1085 // enqueue logic writes 6 valid 1086 for (i <- 0 until RenameWidth) { 1087 when (canEnqueue(i) && !io.redirect.valid) { 1088 valid(allocatePtrVec(i).value) := true.B 1089 } 1090 } 1091 // dequeue logic writes 6 valid 1092 for (i <- 0 until CommitWidth) { 1093 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 1094 when (commitValid) { 1095 valid(commitReadAddr(i)) := false.B 1096 for (j <- 0 until 2 * CommitWidth) { 1097 when(commitReadAddr(i) === deqPtrValue(j).value) { 1098 commit_vNextVec(j) := false.B 1099 } 1100 } 1101 } 1102 } 1103 1104 // debug_inst update 1105 for(i <- 0 until (LduCnt + StaCnt)) { 1106 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 1107 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 1108 } 1109 for (i <- 0 until LduCnt) { 1110 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 1111 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 1112 } 1113 1114 // status field: writebacked 1115 // enqueue logic set 6 writebacked to false 1116 for (i <- 0 until RenameWidth) { 1117 when(canEnqueue(i)) { 1118 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 1119 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 1120 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 1121 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 1122 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 1123 } 1124 } 1125 when(exceptionGen.io.out.valid) { 1126 val wbIdx = exceptionGen.io.out.bits.robIdx.value 1127 commitTrigger(wbIdx) := true.B 1128 } 1129 1130 // writeback logic set numWbPorts writebacked to true 1131 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1132 blockWbSeq.map(_ := false.B) 1133 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1134 when(wb.valid) { 1135 val wbIdx = wb.bits.robIdx.value 1136 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1137 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1138 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1139 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1140 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1141 commitTrigger(wbIdx) := !blockWb 1142 } 1143 } 1144 1145 // if the first uop of an instruction is valid , write writebackedCounter 1146 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1147 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1148 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1149 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1150 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1151 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1152 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1153 1154 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1155 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1156 }) 1157 val fflags_wb = fflagsWBs 1158 val vxsat_wb = vxsatWBs 1159 for(i <- 0 until RobSize){ 1160 1161 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1162 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1163 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1164 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1165 1166 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1167 1168 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1169 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1170 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1171 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1172 1173 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1174 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1175 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1176 val wbCnt = Mux1H(canWbNoBlockSeq, io.writebackNums.map(_.bits)) 1177 1178 val exceptionHas = RegInit(false.B) 1179 val exceptionHasWire = Wire(Bool()) 1180 exceptionHasWire := MuxCase(exceptionHas, Seq( 1181 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1182 !valid(i) -> false.B 1183 )) 1184 exceptionHas := exceptionHasWire 1185 1186 when (exceptionHas || exceptionHasWire) { 1187 // exception flush 1188 uopNumVec(i) := 0.U 1189 stdWritebacked(i) := true.B 1190 for (j <- 0 until 2 * CommitWidth) { 1191 when(i.U === deqPtrValue(j).value) { 1192 commit_wNextVec(j) := true.B 1193 } 1194 } 1195 }.elsewhen(!valid(i) && instCanEnqFlag) { 1196 // enq set num of uops 1197 uopNumVec(i) := enqWBNum 1198 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1199 }.elsewhen(valid(i)) { 1200 // update by writing back 1201 uopNumVec(i) := uopNumVec(i) - wbCnt 1202 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), s"Overflow! robIdx=$i") 1203 for (j <- 0 until 2 * CommitWidth) { 1204 when(i.U === deqPtrValue(j).value) { 1205 commit_wNextVec(j) := (uopNumVec(i) === wbCnt) && stdWritebacked(i) 1206 } 1207 } 1208 when (canStdWbSeq.asUInt.orR) { 1209 stdWritebacked(i) := true.B 1210 for (j <- 0 until 2 * CommitWidth) { 1211 when(i.U === deqPtrValue(j).value) { 1212 commit_wNextVec(j) := uopNumVec(i) === wbCnt 1213 } 1214 } 1215 } 1216 }.otherwise { 1217 uopNumVec(i) := 0.U 1218 for (j <- 0 until 2 * CommitWidth) { 1219 when(i.U === deqPtrValue(j).value) { 1220 commit_wNextVec(j) := stdWritebacked(i) 1221 } 1222 } 1223 } 1224 1225 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1226 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1227 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1228 1229 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1230 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1231 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1232 } 1233 // update uopNumVecDeqGroup 1234 val realDestSizeReadVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1235 val realDestSizeNextVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1236 for(i <- 0 until 2*CommitWidth) { 1237 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === deqPtrValue(i).value) 1238 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1239 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1240 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1241 realDestSizeReadVec(i) := realDestSize(deqPtrValue(i).value) 1242 realDestSizeNextVec(i) := Mux(valid(deqPtrValue(i).value) || instCanEnqFlag, realDestSizeReadVec(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }), 0.U) 1243 } 1244 (0 until CommitWidth).map{ case i => 1245 val nextVec = realDestSizeNextVec 1246 val commitEn = deqPtrGenModule.io.commitEn 1247 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1248 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1249 val originValue = nextVec(i) 1250 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1251 realDestSizeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1252 } 1253 // flagBkup 1254 // enqueue logic set 6 flagBkup at most 1255 for (i <- 0 until RenameWidth) { 1256 when (canEnqueue(i)) { 1257 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1258 } 1259 } 1260 1261 // interrupt_safe 1262 1263 val interrupt_safeReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1264 val interrupt_safeNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1265 if(backendParams.debugEn){ 1266 dontTouch(interrupt_safeDeqGroup) 1267 dontTouch(interrupt_safeReadVec) 1268 dontTouch(interrupt_safeNextVec) 1269 } 1270 for (i <- 0 until 2 * CommitWidth) { 1271 interrupt_safeReadVec(i) := interrupt_safe(deqPtrValue(i).value) 1272 interrupt_safeNextVec(i) := interrupt_safeReadVec(i) 1273 } 1274 (0 until CommitWidth).map { case i => 1275 val nextVec = interrupt_safeNextVec 1276 val commitEn = deqPtrGenModule.io.commitEn 1277 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1278 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1279 val originValue = nextVec(i) 1280 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1281 interrupt_safeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1282 } 1283 for (i <- 0 until RenameWidth) { 1284 // We RegNext the updates for better timing. 1285 // Note that instructions won't change the system's states in this cycle. 1286 when (RegNext(canEnqueue(i))) { 1287 // For now, we allow non-load-store instructions to trigger interrupts 1288 // For MMIO instructions, they should not trigger interrupts since they may 1289 // be sent to lower level before it writes back. 1290 // However, we cannot determine whether a load/store instruction is MMIO. 1291 // Thus, we don't allow load/store instructions to trigger an interrupt. 1292 // TODO: support non-MMIO load-store instructions to trigger interrupts 1293 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1294 interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i)) 1295 for (j <- 0 until 2 * CommitWidth) { 1296 when(RegNext(allocatePtrVec(i).value) === deqPtrValue(j).value) { 1297 interrupt_safeNextVec(j) := RegEnable(allow_interrupts, canEnqueue(i)) 1298 } 1299 } 1300 } 1301 } 1302 1303 /** 1304 * read and write of data modules 1305 */ 1306 val commitReadAddr_next = Mux(state_next === s_idle, 1307 VecInit(deqPtrVec_next.map(_.value)), 1308 VecInit(walkPtrVec_next.map(_.value)) 1309 ) 1310 dispatchData.io.wen := canEnqueue 1311 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1312 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1313 wdata.ldest := req.ldest 1314 wdata.rfWen := req.rfWen 1315 wdata.dirtyFs := req.dirtyFs 1316 wdata.vecWen := req.vecWen 1317 wdata.wflags := req.wfflags 1318 wdata.commitType := req.commitType 1319 wdata.pdest := req.pdest 1320 wdata.ftqIdx := req.ftqPtr 1321 wdata.ftqOffset := req.ftqOffset 1322 wdata.isMove := req.eliminatedMove 1323 wdata.isRVC := req.preDecodeInfo.isRVC 1324 wdata.pc := req.pc 1325 wdata.vtype := req.vpu.vtype 1326 wdata.isVset := req.isVset 1327 wdata.instrSize := req.instrSize 1328 } 1329 for (i <- 0 until CommitWidth) { 1330 dispatchData.io.ren.get(i) := deqPtrGenModule.io.commitEn || io.redirect.valid || state === s_walk 1331 } 1332 dispatchData.io.raddr := commitReadAddr_next 1333 1334 exceptionGen.io.redirect <> io.redirect 1335 exceptionGen.io.flush := io.flushOut.valid 1336 1337 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1338 for (i <- 0 until RenameWidth) { 1339 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1340 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1341 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1342 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1343 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1344 exceptionGen.io.enq(i).bits.replayInst := false.B 1345 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1346 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1347 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1348 exceptionGen.io.enq(i).bits.trigger.clear() 1349 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1350 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1351 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1352 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1353 } 1354 1355 println(s"ExceptionGen:") 1356 println(s"num of exceptions: ${params.numException}") 1357 require(exceptionWBs.length == exceptionGen.io.wb.length, 1358 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1359 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1360 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1361 exc_wb.valid := wb.valid 1362 exc_wb.bits.robIdx := wb.bits.robIdx 1363 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1364 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1365 exc_wb.bits.isVset := false.B 1366 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1367 exc_wb.bits.singleStep := false.B 1368 exc_wb.bits.crossPageIPFFix := false.B 1369 // TODO: make trigger configurable 1370 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1371 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1372 exc_wb.bits.trigger.backendHit := trigger.backendHit 1373 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1374 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1375 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1376// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1377// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1378// s"replayInst ${configs.exists(_.replayInst)}") 1379 } 1380 1381 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1382 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1383 1384 val instrCntReg = RegInit(0.U(64.W)) 1385 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1386 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1387 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1388 val instrCnt = instrCntReg + retireCounter 1389 instrCntReg := instrCnt 1390 io.csr.perfinfo.retiredInstr := retireCounter 1391 io.robFull := !allowEnqueue 1392 io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head 1393 1394 /** 1395 * debug info 1396 */ 1397 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1398 XSDebug("") 1399 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1400 for(i <- 0 until RobSize) { 1401 XSDebug(false, !valid(i), "-") 1402 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1403 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1404 } 1405 XSDebug(false, true.B, "\n") 1406 1407 for(i <- 0 until RobSize) { 1408 if (i % 4 == 0) XSDebug("") 1409 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1410 XSDebug(false, !valid(i), "- ") 1411 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1412 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1413 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1414 } 1415 1416 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1417 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1418 1419 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1420 XSPerfAccumulate("clock_cycle", 1.U) 1421 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1422 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1423 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1424 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1425 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1426 val commitIsMove = commitDebugUop.map(_.isMove) 1427 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1428 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1429 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1430 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1431 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1432 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1433 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1434 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1435 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1436 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1437 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1438 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1439 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1440 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1441 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1442 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1443 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1444 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1445 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1446 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1447 private val walkCycle = RegInit(0.U(8.W)) 1448 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1449 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1450 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1451 1452 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1453 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1454 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1455 1456 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1457 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1458 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1459 private val deqHeadInfo = debug_microOp(deqPtr.value) 1460 val deqUopCommitType = io.commits.info(0).commitType 1461 1462 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1463 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1464 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1465 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1466 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1467 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1468 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1469 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1470 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1471 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1472 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1473 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1474 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1475 1476 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1477 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1478 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1479 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1480 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1481 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1482 (2 to RenameWidth).foreach(i => 1483 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1484 ) 1485 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1486 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1487 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1488 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1489 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1490 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1491 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1492 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1493 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1494 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1495 } 1496 for (fuType <- FuType.functionNameMap.keys) { 1497 val fuName = FuType.functionNameMap(fuType) 1498 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1499 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1500 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1501 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1502 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1503 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1504 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1505 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1506 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1507 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1508 } 1509 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1510 1511 // top-down info 1512 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1513 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1514 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1515 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1516 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1517 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1518 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1519 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1520 1521 // rolling 1522 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1523 1524 /** 1525 * DataBase info: 1526 * log trigger is at writeback valid 1527 * */ 1528 1529 /** 1530 * @todo add InstInfoEntry back 1531 * @author Maxpicca-Li 1532 */ 1533 1534 //difftest signals 1535 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1536 1537 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1538 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1539 1540 for(i <- 0 until CommitWidth) { 1541 val idx = deqPtrVec(i).value 1542 wdata(i) := debug_exuData(idx) 1543 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1544 } 1545 1546 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1547 // These are the structures used by difftest only and should be optimized after synthesis. 1548 val dt_eliminatedMove = Mem(RobSize, Bool()) 1549 val dt_isRVC = Mem(RobSize, Bool()) 1550 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1551 for (i <- 0 until RenameWidth) { 1552 when (canEnqueue(i)) { 1553 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1554 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1555 } 1556 } 1557 for (wb <- exuWBs) { 1558 when (wb.valid) { 1559 val wbIdx = wb.bits.robIdx.value 1560 dt_exuDebug(wbIdx) := wb.bits.debug 1561 } 1562 } 1563 // Always instantiate basic difftest modules. 1564 for (i <- 0 until CommitWidth) { 1565 val uop = commitDebugUop(i) 1566 val commitInfo = io.commits.info(i) 1567 val ptr = deqPtrVec(i).value 1568 val exuOut = dt_exuDebug(ptr) 1569 val eliminatedMove = dt_eliminatedMove(ptr) 1570 val isRVC = dt_isRVC(ptr) 1571 1572 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1573 difftest.coreid := io.hartId 1574 difftest.index := i.U 1575 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1576 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1577 difftest.isRVC := isRVC 1578 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1579 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1580 difftest.wpdest := commitInfo.pdest 1581 difftest.wdest := commitInfo.ldest 1582 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1583 when(difftest.valid) { 1584 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1585 } 1586 if (env.EnableDifftest) { 1587 val uop = commitDebugUop(i) 1588 difftest.pc := SignExt(uop.pc, XLEN) 1589 difftest.instr := uop.instr 1590 difftest.robIdx := ZeroExt(ptr, 10) 1591 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1592 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1593 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1594 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1595 } 1596 } 1597 } 1598 1599 if (env.EnableDifftest) { 1600 for (i <- 0 until CommitWidth) { 1601 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1602 difftest.coreid := io.hartId 1603 difftest.index := i.U 1604 1605 val ptr = deqPtrVec(i).value 1606 val uop = commitDebugUop(i) 1607 val exuOut = debug_exuDebug(ptr) 1608 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1609 difftest.paddr := exuOut.paddr 1610 difftest.opType := uop.fuOpType 1611 difftest.fuType := uop.fuType 1612 } 1613 } 1614 1615 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1616 val dt_isXSTrap = Mem(RobSize, Bool()) 1617 for (i <- 0 until RenameWidth) { 1618 when (canEnqueue(i)) { 1619 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1620 } 1621 } 1622 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1623 io.commits.isCommit && v && dt_isXSTrap(d.value) 1624 } 1625 val hitTrap = trapVec.reduce(_||_) 1626 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1627 difftest.coreid := io.hartId 1628 difftest.hasTrap := hitTrap 1629 difftest.cycleCnt := timer 1630 difftest.instrCnt := instrCnt 1631 difftest.hasWFI := hasWFI 1632 1633 if (env.EnableDifftest) { 1634 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1635 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1636 difftest.code := trapCode 1637 difftest.pc := trapPC 1638 } 1639 } 1640 1641 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1642 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1643 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1644 val commitLoadVec = VecInit(commitLoadValid) 1645 val commitBranchVec = VecInit(commitBranchValid) 1646 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1647 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1648 val perfEvents = Seq( 1649 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1650 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1651 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1652 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1653 ("rob_commitUop ", ifCommit(commitCnt) ), 1654 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1655 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1656 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1657 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1658 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1659 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1660 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1661 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1662 ("rob_walkCycle ", (state === s_walk) ), 1663 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1664 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1665 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1666 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1667 ) 1668 generatePerfEvent() 1669} 1670