xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 4aa0028654716f3ef660f985eb6662c6c75b70d0)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuConfig, FuType}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.fu.vector.Bundles.VType
35import xiangshan.backend.rename.SnapshotGenerator
36
37
38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
39  entries
40) with HasCircularQueuePtrHelper {
41
42  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
43
44  def needFlush(redirect: Valid[Redirect]): Bool = {
45    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
46    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
47  }
48
49  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
50}
51
52object RobPtr {
53  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
54    val ptr = Wire(new RobPtr)
55    ptr.flag := f
56    ptr.value := v
57    ptr
58  }
59}
60
61class RobCSRIO(implicit p: Parameters) extends XSBundle {
62  val intrBitSet = Input(Bool())
63  val trapTarget = Input(UInt(VAddrBits.W))
64  val isXRet     = Input(Bool())
65  val wfiEvent   = Input(Bool())
66
67  val fflags     = Output(Valid(UInt(5.W)))
68  val vxsat      = Output(Valid(Bool()))
69  val vstart     = Output(Valid(UInt(XLEN.W)))
70  val dirty_fs   = Output(Bool())
71  val perfinfo   = new Bundle {
72    val retiredInstr = Output(UInt(3.W))
73  }
74
75  val vcsrFlag   = Output(Bool())
76}
77
78class RobLsqIO(implicit p: Parameters) extends XSBundle {
79  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
81  val pendingld = Output(Bool())
82  val pendingst = Output(Bool())
83  // set when vector store at the head of ROB
84  val pendingVst = Output(Bool())
85
86  val commit = Output(Bool())
87  val pendingPtr = Output(new RobPtr)
88  val pendingPtrNext = Output(new RobPtr)
89
90  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
91  // Todo: what's this?
92  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
93}
94
95class RobEnqIO(implicit p: Parameters) extends XSBundle {
96  val canAccept = Output(Bool())
97  val isEmpty = Output(Bool())
98  // valid vector, for robIdx gen and walk
99  val needAlloc = Vec(RenameWidth, Input(Bool()))
100  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
101  val resp = Vec(RenameWidth, Output(new RobPtr))
102}
103
104class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
105  val robHeadVaddr = Valid(UInt(VAddrBits.W))
106  val robHeadPaddr = Valid(UInt(PAddrBits.W))
107}
108
109class RobDispatchTopDownIO extends Bundle {
110  val robTrueCommit = Output(UInt(64.W))
111  val robHeadLsIssue = Output(Bool())
112}
113
114class RobDebugRollingIO extends Bundle {
115  val robTrueCommit = Output(UInt(64.W))
116}
117
118class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
119
120class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
121  val io = IO(new Bundle {
122    // for commits/flush
123    val state = Input(UInt(2.W))
124    val deq_v = Vec(CommitWidth, Input(Bool()))
125    val deq_w = Vec(CommitWidth, Input(Bool()))
126    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
127    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
128    val intrBitSetReg = Input(Bool())
129    val hasNoSpecExec = Input(Bool())
130    val interrupt_safe = Input(Bool())
131    val blockCommit = Input(Bool())
132    // output: the CommitWidth deqPtr
133    val out = Vec(CommitWidth, Output(new RobPtr))
134    val next_out = Vec(CommitWidth, Output(new RobPtr))
135    val commitCnt = Output(UInt(log2Up(CommitWidth+1).W))
136    val canCommitPriorityCond = Output(Vec(CommitWidth+1,Bool()))
137    val commitEn = Output(Bool())
138  })
139
140  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
141
142  // for exceptions (flushPipe included) and interrupts:
143  // only consider the first instruction
144  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
145  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
146  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
147
148  // for normal commits: only to consider when there're no exceptions
149  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
150  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
151  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
152  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
153  // when io.intrBitSetReg or there're possible exceptions in these instructions,
154  // only one instruction is allowed to commit
155  val allowOnlyOne = commit_exception || io.intrBitSetReg
156  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
157  val allowOnlyOneCond = Wire(chiselTypeOf(io.canCommitPriorityCond))
158  allowOnlyOneCond.zipWithIndex.map{ case (value,i) => value := (if (i==0) !canCommit(0) else true.B)}
159  io.canCommitPriorityCond := Mux(allowOnlyOne, allowOnlyOneCond, VecInit(canCommit.map(c => !c) :+ true.B))
160
161  val commitDeqPtrAll = VecInit((0 until 2*CommitWidth).map{case i => deqPtrVec(0) + i.U})
162  val commitDeqPtrVec = Wire(chiselTypeOf(deqPtrVec))
163  for (i <- 0 until CommitWidth){
164    commitDeqPtrVec(i) := PriorityMuxDefault(io.canCommitPriorityCond.zip(commitDeqPtrAll.drop(i).take(CommitWidth+1)), deqPtrVec(i))
165  }
166  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
167
168  deqPtrVec := deqPtrVec_next
169
170  io.next_out := deqPtrVec_next
171  io.out      := deqPtrVec
172  io.commitCnt := commitCnt
173  io.commitEn := io.state === 0.U && !redirectOutValid && !io.blockCommit
174
175  when (io.state === 0.U) {
176    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
177  }
178
179}
180
181class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
182  val io = IO(new Bundle {
183    // for input redirect
184    val redirect = Input(Valid(new Redirect))
185    // for enqueue
186    val allowEnqueue = Input(Bool())
187    val hasBlockBackward = Input(Bool())
188    val enq = Vec(RenameWidth, Input(Bool()))
189    val out = Output(Vec(RenameWidth, new RobPtr))
190  })
191
192  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
193
194  // enqueue
195  val canAccept = io.allowEnqueue && !io.hasBlockBackward
196  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
197
198  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
199    when(io.redirect.valid) {
200      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
201    }.otherwise {
202      ptr := ptr + dispatchNum
203    }
204  }
205
206  io.out := enqPtrVec
207
208}
209
210class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
211  // val valid = Bool()
212  val robIdx = new RobPtr
213  val exceptionVec = ExceptionVec()
214  val flushPipe = Bool()
215  val isVset = Bool()
216  val replayInst = Bool() // redirect to that inst itself
217  val singleStep = Bool() // TODO add frontend hit beneath
218  val crossPageIPFFix = Bool()
219  val trigger = new TriggerCf
220  val vstartEn = Bool()
221  val vstart = UInt(XLEN.W)
222
223  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire
224  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire
225  // only exceptions are allowed to writeback when enqueue
226  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire
227}
228
229class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
230  val io = IO(new Bundle {
231    val redirect = Input(Valid(new Redirect))
232    val flush = Input(Bool())
233    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
234    // csr + load + store + varith + vload + vstore
235    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
236    val out = ValidIO(new RobExceptionInfo)
237    val state = ValidIO(new RobExceptionInfo)
238  })
239
240  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
241
242  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
243    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
244      assert(valid.length == bits.length)
245      if (valid.length == 1) {
246        (valid, bits)
247      } else if (valid.length == 2) {
248        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
249        for (i <- res.indices) {
250          res(i).valid := valid(i)
251          res(i).bits := bits(i)
252        }
253        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
254        (Seq(oldest.valid), Seq(oldest.bits))
255      } else {
256        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
257        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
258        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
259      }
260    }
261    getOldest_recursion(valid, bits)._2.head
262  }
263
264
265  val currentValid = RegInit(false.B)
266  val current = Reg(new RobExceptionInfo)
267
268  // orR the exceptionVec
269  val lastCycleFlush = RegNext(io.flush)
270  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
271
272  // s0: compare wb in 6 groups
273  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
274  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
275  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
276  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
277  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
278  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
279
280  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
281  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
282  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
283    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
284  }
285  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
286
287  val s0_out_valid = wb_valid.map(x => RegNext(x))
288  val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)}
289
290  // s1: compare last six and current flush
291  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
292  val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR)
293  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
294
295  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
296  val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
297
298  // s2: compare the input exception with the current one
299  // priorities:
300  // (1) system reset
301  // (2) current is valid: flush, remain, merge, update
302  // (3) current is not valid: s1 or enq
303  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
304  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
305  when (currentValid) {
306    when (current_flush) {
307      currentValid := Mux(s1_flush, false.B, s1_out_valid)
308    }
309    when (s1_out_valid && !s1_flush) {
310      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
311        current := s1_out_bits
312      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
313        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
314        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
315        current.replayInst := s1_out_bits.replayInst || current.replayInst
316        current.singleStep := s1_out_bits.singleStep || current.singleStep
317        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
318      }
319    }
320  }.elsewhen (s1_out_valid && !s1_flush) {
321    currentValid := true.B
322    current := s1_out_bits
323  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
324    currentValid := true.B
325    current := enq_bits
326  }
327
328  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
329  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
330  io.state.valid := currentValid
331  io.state.bits  := current
332
333}
334
335class RobFlushInfo(implicit p: Parameters) extends XSBundle {
336  val ftqIdx = new FtqPtr
337  val robIdx = new RobPtr
338  val ftqOffset = UInt(log2Up(PredictWidth).W)
339  val replayInst = Bool()
340}
341
342class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
343  override def shouldBeInlined: Boolean = false
344
345  lazy val module = new RobImp(this)(p, params)
346}
347
348class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
349  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
350
351  private val LduCnt = params.LduCnt
352  private val StaCnt = params.StaCnt
353  private val HyuCnt = params.HyuCnt
354
355  val io = IO(new Bundle() {
356    val hartId = Input(UInt(8.W))
357    val redirect = Input(Valid(new Redirect))
358    val enq = new RobEnqIO
359    val flushOut = ValidIO(new Redirect)
360    val exception = ValidIO(new ExceptionInfo)
361    // exu + brq
362    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
363    val writebackNums = Flipped(Vec(writeback.size-params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W))))
364    val commits = Output(new RobCommitIO)
365    val rabCommits = Output(new RabCommitIO)
366    val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None
367    val isVsetFlushPipe = Output(Bool())
368    val lsq = new RobLsqIO
369    val robDeqPtr = Output(new RobPtr)
370    val csr = new RobCSRIO
371    val snpt = Input(new SnapshotPort)
372    val robFull = Output(Bool())
373    val headNotReady = Output(Bool())
374    val cpu_halt = Output(Bool())
375    val wfi_enable = Input(Bool())
376    val toDecode = new Bundle {
377      val isResumeVType = Output(Bool())
378      val commitVType = ValidIO(VType())
379      val walkVType = ValidIO(VType())
380    }
381
382    val debug_ls = Flipped(new DebugLSIO)
383    val debugRobHead = Output(new DynInst)
384    val debugEnqLsq = Input(new LsqEnqIO)
385    val debugHeadLsIssue = Input(Bool())
386    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
387    val debugTopDown = new Bundle {
388      val toCore = new RobCoreTopDownIO
389      val toDispatch = new RobDispatchTopDownIO
390      val robHeadLqIdx = Valid(new LqPtr)
391    }
392    val debugRolling = new RobDebugRollingIO
393  })
394
395  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
396  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
397  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
398  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
399  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
400  val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
401
402  val numExuWbPorts = exuWBs.length
403  val numStdWbPorts = stdWBs.length
404
405
406  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
407//  println(s"exuPorts: ${exuWbs.map(_._1.map(_.name))}")
408//  println(s"stdPorts: ${stdWbs.map(_._1.map(_.name))}")
409//  println(s"fflagsPorts: ${fflagsWBs.map(_._1.map(_.name))}")
410
411
412  // instvalid field
413  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
414  // writeback status
415
416  val stdWritebacked = Reg(Vec(RobSize, Bool()))
417  val commitTrigger = Mem(RobSize, Bool())
418  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
419  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
420  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
421  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
422  val vls                = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
423
424  val stdWritebackedDeqGroup   = Reg(Vec(CommitWidth, Bool()))
425  val uopNumVecDeqGroup        = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
426  val realDestSizeDeqGroup     = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
427  val fflagsDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(5.W))))
428  val vxsatDataModuleDeqGroup  = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
429  def isWritebacked(ptr: UInt): Bool = {
430    !uopNumVec(ptr).orR && stdWritebacked(ptr)
431  }
432
433  def isUopWritebacked(ptr: UInt): Bool = {
434    !uopNumVec(ptr).orR
435  }
436
437  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
438
439  // data for redirect, exception, etc.
440  val flagBkup = Mem(RobSize, Bool())
441  // some instructions are not allowed to trigger interrupts
442  // They have side effects on the states of the processor before they write back
443  val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B)))
444  val interrupt_safeDeqGroup = Reg(Vec(CommitWidth, Bool()))
445
446  // data for debug
447  // Warn: debug_* prefix should not exist in generated verilog.
448  val debug_microOp = DebugMem(RobSize, new DynInst)
449  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
450  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
451  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
452  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
453  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
454  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
455
456  // pointers
457  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
458  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
459  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
460
461  if(backendParams.debugEn) {
462    dontTouch(enqPtrVec)
463    dontTouch(deqPtrVec)
464  }
465
466  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
467  val lastWalkPtr = Reg(new RobPtr)
468  val allowEnqueue = RegInit(true.B)
469
470  val enqPtr = enqPtrVec.head
471  val deqPtr = deqPtrVec(0)
472  val walkPtr = walkPtrVec(0)
473
474  val isEmpty = enqPtr === deqPtr
475  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
476
477  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
478  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
479  val debug_lsIssue = WireDefault(debug_lsIssued)
480  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
481
482  /**
483    * states of Rob
484    */
485  val s_idle :: s_walk :: Nil = Enum(2)
486  val state = RegInit(s_idle)
487
488  /**
489    * Data Modules
490    *
491    * CommitDataModule: data from dispatch
492    * (1) read: commits/walk/exception
493    * (2) write: enqueue
494    *
495    * WritebackData: data from writeback
496    * (1) read: commits/walk/exception
497    * (2) write: write back from exe units
498    */
499  private def hasRen: Boolean = true
500  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth, hasRen = hasRen))
501  val dispatchDataRead = dispatchData.io.rdata
502
503  val exceptionGen = Module(new ExceptionGen(params))
504  val exceptionDataRead = exceptionGen.io.state
505  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
506  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
507
508  io.robDeqPtr := deqPtr
509  io.debugRobHead := debug_microOp(deqPtr.value)
510
511  val rab = Module(new RenameBuffer(RabSize))
512  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
513
514  /**
515   * connection of [[rab]]
516   */
517  rab.io.redirect.valid := io.redirect.valid
518
519  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
520    dest.bits := src.bits
521    dest.valid := src.valid && io.enq.canAccept
522  }
523
524  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
525  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
526
527  val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
528  val commitSizeSumSeq = (0 until CommitWidth).map(i => realDestSizeDeqGroup.take(i+1).reduce(_ +& _))
529  val walkSizeSumSeq = (0 until CommitWidth).map(i => walkDestSizeDeqGroup.take(i+1).reduce(_ +& _))
530  val commitSizeSumCond = io.commits.commitValid.map(_ && io.commits.isCommit)
531  val walkSizeSumCond = io.commits.walkValid.map(_ && io.commits.isWalk)
532  val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U)
533  val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U)
534
535  rab.io.fromRob.commitSize := commitSizeSum
536  rab.io.fromRob.walkSize := walkSizeSum
537  rab.io.snpt := io.snpt
538  rab.io.snpt.snptEnq := snptEnq
539
540  io.rabCommits := rab.io.commits
541  io.diffCommits.foreach(_ := rab.io.diffCommits.get)
542
543  /**
544   * connection of [[vtypeBuffer]]
545   */
546
547  vtypeBuffer.io.redirect.valid := io.redirect.valid
548
549  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
550    sink.valid := source.valid && io.enq.canAccept
551    sink.bits := source.bits
552  }
553
554  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset })
555  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset })
556  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
557  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
558  vtypeBuffer.io.snpt := io.snpt
559  vtypeBuffer.io.snpt.snptEnq := snptEnq
560  io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType
561  io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType
562  io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType
563
564  /**
565    * Enqueue (from dispatch)
566    */
567  // special cases
568  val hasBlockBackward = RegInit(false.B)
569  val hasWaitForward = RegInit(false.B)
570  val doingSvinval = RegInit(false.B)
571  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
572  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
573  when (isEmpty) { hasBlockBackward:= false.B }
574  // When any instruction commits, hasNoSpecExec should be set to false.B
575  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
576
577  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
578  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
579  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
580  val hasWFI = RegInit(false.B)
581  io.cpu_halt := hasWFI
582  // WFI Timeout: 2^20 = 1M cycles
583  val wfi_cycles = RegInit(0.U(20.W))
584  when (hasWFI) {
585    wfi_cycles := wfi_cycles + 1.U
586  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
587    wfi_cycles := 0.U
588  }
589  val wfi_timeout = wfi_cycles.andR
590  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
591    hasWFI := false.B
592  }
593
594  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
595  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq
596  io.enq.resp      := allocatePtrVec
597  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
598  val timer = GTimer()
599  for (i <- 0 until RenameWidth) {
600    // we don't check whether io.redirect is valid here since redirect has higher priority
601    when (canEnqueue(i)) {
602      val enqUop = io.enq.req(i).bits
603      val enqIndex = allocatePtrVec(i).value
604      // store uop in data module and debug_microOp Vec
605      debug_microOp(enqIndex) := enqUop
606      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
607      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
608      debug_microOp(enqIndex).debugInfo.selectTime := timer
609      debug_microOp(enqIndex).debugInfo.issueTime := timer
610      debug_microOp(enqIndex).debugInfo.writebackTime := timer
611      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
612      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
613      debug_lsInfo(enqIndex) := DebugLsInfo.init
614      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
615      debug_lqIdxValid(enqIndex) := false.B
616      debug_lsIssued(enqIndex) := false.B
617
618      when (enqUop.blockBackward) {
619        hasBlockBackward := true.B
620      }
621      when (enqUop.waitForward) {
622        hasWaitForward := true.B
623      }
624      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
625      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
626      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
627      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
628      {
629        doingSvinval := true.B
630      }
631      // the end instruction of Svinval enqs so clear doingSvinval
632      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
633      {
634        doingSvinval := false.B
635      }
636      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
637      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
638      when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
639        hasWFI := true.B
640      }
641
642      mmio(enqIndex) := false.B
643
644      vls(enqIndex) := enqUop.vlsInstr
645    }
646  }
647  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
648  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
649
650  when (!io.wfi_enable) {
651    hasWFI := false.B
652  }
653  // sel vsetvl's flush position
654  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
655  val vsetvlState = RegInit(vs_idle)
656
657  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
658  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
659  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
660
661  val enq0            = io.enq.req(0)
662  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
663  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
664  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
665  // for vs_idle
666  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
667  // for vs_waitVinstr
668  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
669  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
670  when(vsetvlState === vs_idle){
671    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
672    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
673    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
674  }.elsewhen(vsetvlState === vs_waitVinstr){
675    when(Cat(enqIsVInstrOrVset).orR){
676      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
677      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
678      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
679    }
680  }
681
682  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
683  when(vsetvlState === vs_idle && !io.redirect.valid){
684    when(enq0IsVsetFlush){
685      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
686    }
687  }.elsewhen(vsetvlState === vs_waitVinstr){
688    when(io.redirect.valid){
689      vsetvlState := vs_idle
690    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
691      vsetvlState := vs_waitFlush
692    }
693  }.elsewhen(vsetvlState === vs_waitFlush){
694    when(io.redirect.valid){
695      vsetvlState := vs_idle
696    }
697  }
698
699  // lqEnq
700  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
701    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
702      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
703      debug_lqIdxValid(req.bits.robIdx.value) := true.B
704    }
705  }
706
707  // lsIssue
708  when(io.debugHeadLsIssue) {
709    debug_lsIssued(deqPtr.value) := true.B
710  }
711
712  /**
713    * Writeback (from execution units)
714    */
715  for (wb <- exuWBs) {
716    when (wb.valid) {
717      val wbIdx = wb.bits.robIdx.value
718      debug_exuData(wbIdx) := wb.bits.data
719      debug_exuDebug(wbIdx) := wb.bits.debug
720      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
721      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
722      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
723      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
724
725      // debug for lqidx and sqidx
726      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
727      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
728
729      val debug_Uop = debug_microOp(wbIdx)
730      XSInfo(true.B,
731        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
732        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
733        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
734      )
735    }
736  }
737
738  val writebackNum = PopCount(exuWBs.map(_.valid))
739  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
740
741  for (i <- 0 until LoadPipelineWidth) {
742    when (RegNext(io.lsq.mmio(i))) {
743      mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B
744    }
745  }
746
747  /**
748    * RedirectOut: Interrupt and Exceptions
749    */
750  val deqDispatchData = dispatchDataRead(0)
751  val debug_deqUop = debug_microOp(deqPtr.value)
752
753  val intrBitSetReg = RegNext(io.csr.intrBitSet)
754  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safeDeqGroup(0)
755  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
756  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
757    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire)
758  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
759  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
760  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
761
762  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
763  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
764  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
765
766  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
767
768  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
769//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
770  val needModifyFtqIdxOffset = false.B
771  io.isVsetFlushPipe := isVsetFlushPipe
772
773  // io.flushOut will trigger redirect at the next cycle.
774  // Block any redirect or commit at the next cycle.
775  val lastCycleFlush = RegNext(io.flushOut.valid)
776
777  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
778  io.flushOut.bits := DontCare
779  io.flushOut.bits.isRVC := deqDispatchData.isRVC
780  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
781  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
782  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
783  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
784  io.flushOut.bits.interrupt := true.B
785  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
786  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
787  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
788  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
789
790  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
791  io.exception.valid                := RegNext(exceptionHappen)
792  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
793  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
794  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
795  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
796  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
797  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
798  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
799  io.exception.bits.vls             := RegEnable(vls(deqPtr.value), exceptionHappen)
800  io.exception.bits.trigger         := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
801  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
802  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
803
804  XSDebug(io.flushOut.valid,
805    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
806    p"excp $exceptionEnable flushPipe $isFlushPipe " +
807    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
808
809
810  /**
811    * Commits (and walk)
812    * They share the same width.
813    */
814  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
815  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
816  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
817  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
818
819  require(RenameWidth <= CommitWidth)
820
821  // wiring to csr
822  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
823    val v = io.commits.commitValid(i)
824    val info = io.commits.info(i)
825    (v & info.wflags, v & (info.dirtyFs | fflagsDataRead(i).orR))
826  }).unzip
827  val fflags = Wire(Valid(UInt(5.W)))
828  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
829  fflags.bits := wflags.zip(fflagsDataRead).map({
830    case (w, f) => Mux(w, f, 0.U)
831  }).reduce(_|_)
832  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
833
834  val vxsat = Wire(Valid(Bool()))
835  vxsat.valid := io.commits.isCommit && vxsat.bits
836  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
837    case (valid, vxsat) => valid & vxsat
838  }.reduce(_ | _)
839
840  // when mispredict branches writeback, stop commit in the next 2 cycles
841  // TODO: don't check all exu write back
842  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
843    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
844  ).toSeq)).orR
845  val misPredBlockCounter = Reg(UInt(3.W))
846  misPredBlockCounter := Mux(misPredWb,
847    "b111".U,
848    misPredBlockCounter >> 1.U
849  )
850  val misPredBlock = misPredBlockCounter(0)
851  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
852
853  io.commits.isWalk := state === s_walk
854  io.commits.isCommit := state === s_idle && !blockCommit
855  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
856  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
857  if(backendParams.debugEn) {
858    dontTouch(commit_v)
859  }
860  val commit_vDeqGroup = Reg(chiselTypeOf(walk_v))
861  // store will be commited iff both sta & std have been writebacked
862  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value)))
863  val commit_wDeqGroup = Reg(chiselTypeOf(walk_v))
864  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
865  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i)))
866  val allowOnlyOneCommit = commit_exception || intrBitSetReg
867  // for instructions that may block others, we don't allow them to commit
868  for (i <- 0 until CommitWidth) {
869    // defaults: state === s_idle and instructions commit
870    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
871    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
872    io.commits.commitValid(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked
873    io.commits.info(i) := dispatchDataRead(i)
874    io.commits.robIdx(i) := deqPtrVec(i)
875
876    io.commits.walkValid(i) := shouldWalkVec(i)
877    when (state === s_walk) {
878      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
879        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
880      }
881    }
882
883    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
884      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
885      debug_microOp(deqPtrVec(i).value).pc,
886      io.commits.info(i).rfWen,
887      io.commits.info(i).ldest,
888      io.commits.info(i).pdest,
889      debug_exuData(deqPtrVec(i).value),
890      fflagsDataRead(i),
891      vxsatDataRead(i)
892    )
893    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
894      debug_microOp(walkPtrVec(i).value).pc,
895      io.commits.info(i).rfWen,
896      io.commits.info(i).ldest,
897      debug_exuData(walkPtrVec(i).value)
898    )
899  }
900  if (env.EnableDifftest) {
901    io.commits.info.map(info => dontTouch(info.pc))
902  }
903
904  // sync fflags/dirty_fs/vxsat to csr
905  io.csr.fflags := RegEnable(fflags, io.commits.isCommit)
906  io.csr.dirty_fs := RegEnable(dirty_fs, io.commits.isCommit)
907  io.csr.vxsat := RegEnable(vxsat, io.commits.isCommit)
908
909  // sync v csr to csr
910  // for difftest
911  if(env.AlwaysBasicDiff || env.EnableDifftest) {
912    val isDiffWriteVconfigVec = io.diffCommits.get.commitValid.zip(io.diffCommits.get.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
913    io.csr.vcsrFlag := RegNext(io.diffCommits.get.isCommit && Cat(isDiffWriteVconfigVec).orR)
914  }
915  else{
916    io.csr.vcsrFlag := false.B
917  }
918
919  // commit load/store to lsq
920  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
921  // TODO: Check if meet the require that only set scommit when commit scala store uop
922  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !vls(deqPtrVec(i).value) ))
923  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
924  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
925  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
926  // indicate a pending load or store
927  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
928  // TODO: Check if need deassert pendingst when it is vst
929  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
930  // TODO: Check if set correctly when vector store is at the head of ROB
931  io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) && vls(deqPtr.value))
932  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
933  io.lsq.pendingPtr := RegNext(deqPtr)
934  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
935
936  /**
937    * state changes
938    * (1) redirect: switch to s_walk
939    * (2) walk: when walking comes to the end, switch to s_idle
940    */
941  val state_next = Mux(
942    io.redirect.valid, s_walk,
943    Mux(
944      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
945      state
946    )
947  )
948  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
949  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
950  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
951  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
952  state := state_next
953
954  /**
955    * pointers and counters
956    */
957  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
958  deqPtrGenModule.io.state := state
959  deqPtrGenModule.io.deq_v := commit_vDeqGroup
960  deqPtrGenModule.io.deq_w := commit_wDeqGroup
961  deqPtrGenModule.io.exception_state := exceptionDataRead
962  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
963  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
964  deqPtrGenModule.io.interrupt_safe := interrupt_safeDeqGroup(0)
965  deqPtrGenModule.io.blockCommit := blockCommit
966  deqPtrVec := deqPtrGenModule.io.out
967  deqPtrVec_next := deqPtrGenModule.io.next_out
968
969  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
970  enqPtrGenModule.io.redirect := io.redirect
971  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
972  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
973  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
974  enqPtrVec := enqPtrGenModule.io.out
975
976  // next walkPtrVec:
977  // (1) redirect occurs: update according to state
978  // (2) walk: move forwards
979  val walkPtrVec_next = Mux(io.redirect.valid,
980    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
981    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
982  )
983  walkPtrVec := walkPtrVec_next
984  walkDestSizeDeqGroup.zip(walkPtrVec_next).map{
985    case (reg, ptrNext) => reg := realDestSize(ptrNext.value)
986  }
987  val numValidEntries = distanceBetween(enqPtr, deqPtr)
988  val commitCnt = PopCount(io.commits.commitValid)
989
990  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
991
992  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
993  when (io.redirect.valid) {
994    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
995  }
996
997
998  /**
999    * States
1000    * We put all the stage bits changes here.
1001
1002    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
1003    * All states: (1) valid; (2) writebacked; (3) flagBkup
1004    */
1005
1006  // update commit_vDeqGroup
1007  val deqPtrValue = Wire(Vec(2 * CommitWidth, new RobPtr))
1008  deqPtrValue.zipWithIndex.map{case (deq, i) => deq := deqPtrVec(0) + i.U}
1009  val commit_vReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0))))
1010  val commit_vNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0))))
1011  if(backendParams.debugEn) {
1012    dontTouch(commit_vDeqGroup)
1013    dontTouch(commit_vReadVec)
1014    dontTouch(commit_vNextVec)
1015    dontTouch(deqPtrValue)
1016  }
1017  for (i <- 0 until 2 * CommitWidth) {
1018    commit_vReadVec(i) := valid(deqPtrValue(i).value)
1019    commit_vNextVec(i) := commit_vReadVec(i)
1020  }
1021  (0 until CommitWidth).map { case i =>
1022    val nextVec = commit_vNextVec
1023    val commitEn = deqPtrGenModule.io.commitEn
1024    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1025    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1026    val originValue = nextVec(i)
1027    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1028    commit_vDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1029  }
1030  // update commit_wDeqGroup
1031  val commit_wReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0))))
1032  val commit_wNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0))))
1033  if(backendParams.debugEn) {
1034    dontTouch(commit_wDeqGroup)
1035    dontTouch(commit_wReadVec)
1036    dontTouch(commit_wNextVec)
1037    dontTouch(commit_w)
1038  }
1039  for (i <- 0 until 2 * CommitWidth) {
1040    commit_wReadVec(i) := isWritebacked(deqPtrValue(i).value)
1041    commit_wNextVec(i) := commit_wReadVec(i)
1042  }
1043  (0 until CommitWidth).map { case i =>
1044    val nextVec = commit_wNextVec
1045    val commitEn = deqPtrGenModule.io.commitEn
1046    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1047    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1048    val originValue = nextVec(i)
1049    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis),originValue)
1050    commit_wDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1051  }
1052  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
1053
1054  // redirect logic writes 6 valid
1055  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
1056  val redirectTail = Reg(new RobPtr)
1057  val redirectIdle :: redirectBusy :: Nil = Enum(2)
1058  val redirectState = RegInit(redirectIdle)
1059  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
1060  when(redirectState === redirectBusy) {
1061    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
1062    redirectHeadVec zip invMask foreach {
1063      case (redirectHead, inv) => when(inv) {
1064        valid(redirectHead.value) := false.B
1065        for (j <- 0 until 2 * CommitWidth) {
1066          when(redirectHead.value === deqPtrValue(j).value) {
1067            commit_vNextVec(j) := false.B
1068          }
1069        }
1070      }
1071    }
1072    when(!invMask.last) {
1073      redirectState := redirectIdle
1074    }
1075  }
1076  when(io.redirect.valid) {
1077    redirectState := redirectBusy
1078    when(redirectState === redirectIdle) {
1079      redirectTail := enqPtr
1080    }
1081    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
1082      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
1083    }
1084  }
1085  // enqueue logic writes 6 valid
1086  for (i <- 0 until RenameWidth) {
1087    when (canEnqueue(i) && !io.redirect.valid) {
1088      valid(allocatePtrVec(i).value) := true.B
1089    }
1090  }
1091  // dequeue logic writes 6 valid
1092  for (i <- 0 until CommitWidth) {
1093    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
1094    when (commitValid) {
1095      valid(commitReadAddr(i)) := false.B
1096      for (j <- 0 until 2 * CommitWidth) {
1097        when(commitReadAddr(i) === deqPtrValue(j).value) {
1098          commit_vNextVec(j) := false.B
1099        }
1100      }
1101    }
1102  }
1103
1104  // debug_inst update
1105  for(i <- 0 until (LduCnt + StaCnt)) {
1106    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
1107    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
1108  }
1109  for (i <- 0 until LduCnt) {
1110    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
1111    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
1112  }
1113
1114  // status field: writebacked
1115  // enqueue logic set 6 writebacked to false
1116  for (i <- 0 until RenameWidth) {
1117    when(canEnqueue(i)) {
1118      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
1119      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
1120      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
1121      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
1122      commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
1123    }
1124  }
1125  when(exceptionGen.io.out.valid) {
1126    val wbIdx = exceptionGen.io.out.bits.robIdx.value
1127    commitTrigger(wbIdx) := true.B
1128  }
1129
1130  // writeback logic set numWbPorts writebacked to true
1131  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
1132  blockWbSeq.map(_ := false.B)
1133  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
1134    when(wb.valid) {
1135      val wbIdx = wb.bits.robIdx.value
1136      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
1137      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
1138      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
1139      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
1140      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
1141      commitTrigger(wbIdx) := !blockWb
1142    }
1143  }
1144
1145  // if the first uop of an instruction is valid , write writebackedCounter
1146  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
1147  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1148  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1149  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1150  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1151  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
1152  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1153
1154  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1155    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1156  })
1157  val fflags_wb = fflagsWBs
1158  val vxsat_wb = vxsatWBs
1159  for(i <- 0 until RobSize){
1160
1161    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1162    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1163    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1164    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1165
1166    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1167
1168    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1169    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1170    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1171    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1172
1173    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1174    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1175    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1176    val wbCnt = Mux1H(canWbNoBlockSeq, io.writebackNums.map(_.bits))
1177
1178    val exceptionHas = RegInit(false.B)
1179    val exceptionHasWire = Wire(Bool())
1180    exceptionHasWire := MuxCase(exceptionHas, Seq(
1181      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1182      !valid(i) -> false.B
1183    ))
1184    exceptionHas := exceptionHasWire
1185
1186    when (exceptionHas || exceptionHasWire) {
1187      // exception flush
1188      uopNumVec(i) := 0.U
1189      stdWritebacked(i) := true.B
1190      for (j <- 0 until 2 * CommitWidth) {
1191        when(i.U === deqPtrValue(j).value) {
1192          commit_wNextVec(j) := true.B
1193        }
1194      }
1195    }.elsewhen(!valid(i) && instCanEnqFlag) {
1196      // enq set num of uops
1197      uopNumVec(i) := enqWBNum
1198      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1199    }.elsewhen(valid(i)) {
1200      // update by writing back
1201      uopNumVec(i) := uopNumVec(i) - wbCnt
1202      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), s"Overflow! robIdx=$i")
1203      for (j <- 0 until 2 * CommitWidth) {
1204        when(i.U === deqPtrValue(j).value) {
1205          commit_wNextVec(j) := (uopNumVec(i) === wbCnt) && stdWritebacked(i)
1206        }
1207      }
1208      when (canStdWbSeq.asUInt.orR) {
1209        stdWritebacked(i) := true.B
1210        for (j <- 0 until 2 * CommitWidth) {
1211          when(i.U === deqPtrValue(j).value) {
1212            commit_wNextVec(j) := uopNumVec(i) === wbCnt
1213          }
1214        }
1215      }
1216    }.otherwise {
1217      uopNumVec(i) := 0.U
1218      for (j <- 0 until 2 * CommitWidth) {
1219        when(i.U === deqPtrValue(j).value) {
1220          commit_wNextVec(j) := stdWritebacked(i)
1221        }
1222      }
1223    }
1224
1225    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1226    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1227    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1228
1229    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1230    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1231    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1232  }
1233  // update uopNumVecDeqGroup
1234  val realDestSizeReadVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0))))
1235  val realDestSizeNextVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0))))
1236  for(i <- 0 until 2*CommitWidth) {
1237    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === deqPtrValue(i).value)
1238    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1239    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1240    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1241    realDestSizeReadVec(i) := realDestSize(deqPtrValue(i).value)
1242    realDestSizeNextVec(i) := Mux(valid(deqPtrValue(i).value) || instCanEnqFlag, realDestSizeReadVec(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }), 0.U)
1243  }
1244  (0 until CommitWidth).map{ case i =>
1245    val nextVec = realDestSizeNextVec
1246    val commitEn = deqPtrGenModule.io.commitEn
1247    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1248    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1249    val originValue = nextVec(i)
1250    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1251    realDestSizeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1252  }
1253  // flagBkup
1254  // enqueue logic set 6 flagBkup at most
1255  for (i <- 0 until RenameWidth) {
1256    when (canEnqueue(i)) {
1257      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1258    }
1259  }
1260
1261  // interrupt_safe
1262
1263  val interrupt_safeReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0))))
1264  val interrupt_safeNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0))))
1265  if(backendParams.debugEn){
1266    dontTouch(interrupt_safeDeqGroup)
1267    dontTouch(interrupt_safeReadVec)
1268    dontTouch(interrupt_safeNextVec)
1269  }
1270  for (i <- 0 until 2 * CommitWidth) {
1271    interrupt_safeReadVec(i) := interrupt_safe(deqPtrValue(i).value)
1272    interrupt_safeNextVec(i) := interrupt_safeReadVec(i)
1273  }
1274  (0 until CommitWidth).map { case i =>
1275    val nextVec = interrupt_safeNextVec
1276    val commitEn = deqPtrGenModule.io.commitEn
1277    val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond
1278    val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1)
1279    val originValue = nextVec(i)
1280    val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue)
1281    interrupt_safeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue)
1282  }
1283  for (i <- 0 until RenameWidth) {
1284    // We RegNext the updates for better timing.
1285    // Note that instructions won't change the system's states in this cycle.
1286    when (RegNext(canEnqueue(i))) {
1287      // For now, we allow non-load-store instructions to trigger interrupts
1288      // For MMIO instructions, they should not trigger interrupts since they may
1289      // be sent to lower level before it writes back.
1290      // However, we cannot determine whether a load/store instruction is MMIO.
1291      // Thus, we don't allow load/store instructions to trigger an interrupt.
1292      // TODO: support non-MMIO load-store instructions to trigger interrupts
1293      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1294      interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i))
1295      for (j <- 0 until 2 * CommitWidth) {
1296        when(RegNext(allocatePtrVec(i).value) === deqPtrValue(j).value) {
1297          interrupt_safeNextVec(j) := RegEnable(allow_interrupts, canEnqueue(i))
1298        }
1299      }
1300    }
1301  }
1302
1303  /**
1304    * read and write of data modules
1305    */
1306  val commitReadAddr_next = Mux(state_next === s_idle,
1307    VecInit(deqPtrVec_next.map(_.value)),
1308    VecInit(walkPtrVec_next.map(_.value))
1309  )
1310  dispatchData.io.wen := canEnqueue
1311  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1312  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1313    wdata.ldest := req.ldest
1314    wdata.rfWen := req.rfWen
1315    wdata.dirtyFs := req.dirtyFs
1316    wdata.vecWen := req.vecWen
1317    wdata.wflags := req.wfflags
1318    wdata.commitType := req.commitType
1319    wdata.pdest := req.pdest
1320    wdata.ftqIdx := req.ftqPtr
1321    wdata.ftqOffset := req.ftqOffset
1322    wdata.isMove := req.eliminatedMove
1323    wdata.isRVC := req.preDecodeInfo.isRVC
1324    wdata.pc := req.pc
1325    wdata.vtype := req.vpu.vtype
1326    wdata.isVset := req.isVset
1327    wdata.instrSize := req.instrSize
1328  }
1329  for (i <- 0 until CommitWidth) {
1330    dispatchData.io.ren.get(i) := deqPtrGenModule.io.commitEn || io.redirect.valid || state === s_walk
1331  }
1332  dispatchData.io.raddr := commitReadAddr_next
1333
1334  exceptionGen.io.redirect <> io.redirect
1335  exceptionGen.io.flush := io.flushOut.valid
1336
1337  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1338  for (i <- 0 until RenameWidth) {
1339    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1340    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1341    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1342    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1343    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1344    exceptionGen.io.enq(i).bits.replayInst := false.B
1345    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1346    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1347    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1348    exceptionGen.io.enq(i).bits.trigger.clear()
1349    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1350    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1351    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1352    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1353  }
1354
1355  println(s"ExceptionGen:")
1356  println(s"num of exceptions: ${params.numException}")
1357  require(exceptionWBs.length == exceptionGen.io.wb.length,
1358    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1359      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1360  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1361    exc_wb.valid                := wb.valid
1362    exc_wb.bits.robIdx          := wb.bits.robIdx
1363    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1364    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1365    exc_wb.bits.isVset          := false.B
1366    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1367    exc_wb.bits.singleStep      := false.B
1368    exc_wb.bits.crossPageIPFFix := false.B
1369    // TODO: make trigger configurable
1370    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1371    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1372    exc_wb.bits.trigger.backendHit := trigger.backendHit
1373    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1374    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1375    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1376//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1377//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1378//      s"replayInst ${configs.exists(_.replayInst)}")
1379  }
1380
1381  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1382  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1383
1384  val instrCntReg = RegInit(0.U(64.W))
1385  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1386  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1387  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1388  val instrCnt = instrCntReg + retireCounter
1389  instrCntReg := instrCnt
1390  io.csr.perfinfo.retiredInstr := retireCounter
1391  io.robFull := !allowEnqueue
1392  io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head
1393
1394  /**
1395    * debug info
1396    */
1397  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1398  XSDebug("")
1399  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1400  for(i <- 0 until RobSize) {
1401    XSDebug(false, !valid(i), "-")
1402    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1403    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1404  }
1405  XSDebug(false, true.B, "\n")
1406
1407  for(i <- 0 until RobSize) {
1408    if (i % 4 == 0) XSDebug("")
1409    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1410    XSDebug(false, !valid(i), "- ")
1411    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1412    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1413    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1414  }
1415
1416  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1417  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1418
1419  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1420  XSPerfAccumulate("clock_cycle", 1.U)
1421  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1422  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1423  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1424  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1425  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1426  val commitIsMove = commitDebugUop.map(_.isMove)
1427  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1428  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1429  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1430  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1431  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1432  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1433  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1434  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1435  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1436  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1437  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1438  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1439  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1440  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1441  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1442  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1443  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1444  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1445  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1446  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1447  private val walkCycle = RegInit(0.U(8.W))
1448  private val waitRabWalkCycle = RegInit(0.U(8.W))
1449  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1450  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1451
1452  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1453  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1454  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1455
1456  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1457  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1458  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1459  private val deqHeadInfo = debug_microOp(deqPtr.value)
1460  val deqUopCommitType = io.commits.info(0).commitType
1461
1462  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1463  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1464  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1465  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1466  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1467  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1468  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1469  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1470  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1471  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1472  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1473  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1474  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1475
1476  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1477  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1478  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1479  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1480  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1481  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1482  (2 to RenameWidth).foreach(i =>
1483    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1484  )
1485  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1486  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1487  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1488  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1489  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1490  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1491  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1492  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1493  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1494    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1495  }
1496  for (fuType <- FuType.functionNameMap.keys) {
1497    val fuName = FuType.functionNameMap(fuType)
1498    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1499    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1500    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1501    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1502    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1503    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1504    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1505    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1506    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1507    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1508  }
1509  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1510
1511  // top-down info
1512  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1513  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1514  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1515  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1516  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1517  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1518  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1519  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1520
1521  // rolling
1522  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1523
1524  /**
1525    * DataBase info:
1526    * log trigger is at writeback valid
1527    * */
1528
1529  /**
1530    * @todo add InstInfoEntry back
1531    * @author Maxpicca-Li
1532    */
1533
1534  //difftest signals
1535  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1536
1537  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1538  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1539
1540  for(i <- 0 until CommitWidth) {
1541    val idx = deqPtrVec(i).value
1542    wdata(i) := debug_exuData(idx)
1543    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1544  }
1545
1546  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1547    // These are the structures used by difftest only and should be optimized after synthesis.
1548    val dt_eliminatedMove = Mem(RobSize, Bool())
1549    val dt_isRVC = Mem(RobSize, Bool())
1550    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1551    for (i <- 0 until RenameWidth) {
1552      when (canEnqueue(i)) {
1553        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1554        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1555      }
1556    }
1557    for (wb <- exuWBs) {
1558      when (wb.valid) {
1559        val wbIdx = wb.bits.robIdx.value
1560        dt_exuDebug(wbIdx) := wb.bits.debug
1561      }
1562    }
1563    // Always instantiate basic difftest modules.
1564    for (i <- 0 until CommitWidth) {
1565      val uop = commitDebugUop(i)
1566      val commitInfo = io.commits.info(i)
1567      val ptr = deqPtrVec(i).value
1568      val exuOut = dt_exuDebug(ptr)
1569      val eliminatedMove = dt_eliminatedMove(ptr)
1570      val isRVC = dt_isRVC(ptr)
1571
1572      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1573      difftest.coreid  := io.hartId
1574      difftest.index   := i.U
1575      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1576      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1577      difftest.isRVC   := isRVC
1578      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1579      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1580      difftest.wpdest  := commitInfo.pdest
1581      difftest.wdest   := commitInfo.ldest
1582      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1583      when(difftest.valid) {
1584        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1585      }
1586      if (env.EnableDifftest) {
1587        val uop = commitDebugUop(i)
1588        difftest.pc       := SignExt(uop.pc, XLEN)
1589        difftest.instr    := uop.instr
1590        difftest.robIdx   := ZeroExt(ptr, 10)
1591        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1592        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1593        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1594        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1595      }
1596    }
1597  }
1598
1599  if (env.EnableDifftest) {
1600    for (i <- 0 until CommitWidth) {
1601      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1602      difftest.coreid := io.hartId
1603      difftest.index  := i.U
1604
1605      val ptr = deqPtrVec(i).value
1606      val uop = commitDebugUop(i)
1607      val exuOut = debug_exuDebug(ptr)
1608      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1609      difftest.paddr  := exuOut.paddr
1610      difftest.opType := uop.fuOpType
1611      difftest.fuType := uop.fuType
1612    }
1613  }
1614
1615  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1616    val dt_isXSTrap = Mem(RobSize, Bool())
1617    for (i <- 0 until RenameWidth) {
1618      when (canEnqueue(i)) {
1619        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1620      }
1621    }
1622    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1623      io.commits.isCommit && v && dt_isXSTrap(d.value)
1624    }
1625    val hitTrap = trapVec.reduce(_||_)
1626    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1627    difftest.coreid   := io.hartId
1628    difftest.hasTrap  := hitTrap
1629    difftest.cycleCnt := timer
1630    difftest.instrCnt := instrCnt
1631    difftest.hasWFI   := hasWFI
1632
1633    if (env.EnableDifftest) {
1634      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1635      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1636      difftest.code     := trapCode
1637      difftest.pc       := trapPC
1638    }
1639  }
1640
1641  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1642  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1643  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1644  val commitLoadVec = VecInit(commitLoadValid)
1645  val commitBranchVec = VecInit(commitBranchValid)
1646  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1647  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1648  val perfEvents = Seq(
1649    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1650    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1651    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1652    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1653    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1654    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1655    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1656    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1657    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1658    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1659    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1660    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1661    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1662    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1663    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1664    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1665    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1666    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1667  )
1668  generatePerfEvent()
1669}
1670