1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 val wfiEvent = Input(Bool()) 54 55 val fflags = Output(Valid(UInt(5.W))) 56 val dirty_fs = Output(Bool()) 57 val perfinfo = new Bundle { 58 val retiredInstr = Output(UInt(3.W)) 59 } 60} 61 62class RobLsqIO(implicit p: Parameters) extends XSBundle { 63 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val pendingld = Output(Bool()) 66 val pendingst = Output(Bool()) 67 val commit = Output(Bool()) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 val hasWFI = Input(Bool()) 95 // output: the CommitWidth deqPtr 96 val out = Vec(CommitWidth, Output(new RobPtr)) 97 val next_out = Vec(CommitWidth, Output(new RobPtr)) 98 }) 99 100 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 101 102 // for exceptions (flushPipe included) and interrupts: 103 // only consider the first instruction 104 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 105 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 106 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 107 108 // for normal commits: only to consider when there're no exceptions 109 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 110 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 111 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI)) 112 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 113 // when io.intrBitSetReg or there're possible exceptions in these instructions, 114 // only one instruction is allowed to commit 115 val allowOnlyOne = commit_exception || io.intrBitSetReg 116 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 117 118 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 119 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 120 121 deqPtrVec := deqPtrVec_next 122 123 io.next_out := deqPtrVec_next 124 io.out := deqPtrVec 125 126 when (io.state === 0.U) { 127 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 128 } 129 130} 131 132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 133 val io = IO(new Bundle { 134 // for input redirect 135 val redirect = Input(Valid(new Redirect)) 136 // for enqueue 137 val allowEnqueue = Input(Bool()) 138 val hasBlockBackward = Input(Bool()) 139 val enq = Vec(RenameWidth, Input(Bool())) 140 val out = Output(new RobPtr) 141 }) 142 143 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 144 145 // enqueue 146 val canAccept = io.allowEnqueue && !io.hasBlockBackward 147 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 148 149 when (io.redirect.valid) { 150 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 151 }.otherwise { 152 enqPtr := enqPtr + dispatchNum 153 } 154 155 io.out := enqPtr 156 157} 158 159class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 160 // val valid = Bool() 161 val robIdx = new RobPtr 162 val exceptionVec = ExceptionVec() 163 val flushPipe = Bool() 164 val replayInst = Bool() // redirect to that inst itself 165 val singleStep = Bool() // TODO add frontend hit beneath 166 val crossPageIPFFix = Bool() 167 val trigger = new TriggerCf 168 169// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 170// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 171 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 172 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 173 // only exceptions are allowed to writeback when enqueue 174 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 175} 176 177class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 178 val io = IO(new Bundle { 179 val redirect = Input(Valid(new Redirect)) 180 val flush = Input(Bool()) 181 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 182 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 183 val out = ValidIO(new RobExceptionInfo) 184 val state = ValidIO(new RobExceptionInfo) 185 }) 186 187 val current = Reg(Valid(new RobExceptionInfo)) 188 189 // orR the exceptionVec 190 val lastCycleFlush = RegNext(io.flush) 191 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 192 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 193 194 // s0: compare wb(1),wb(2) and wb(3),wb(4) 195 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 196 val csr_wb_bits = io.wb(0).bits 197 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 198 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 199 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 200 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 201 202 // s1: compare last four and current flush 203 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 204 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 205 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 206 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 207 val s1_out_bits = RegNext(compare_bits) 208 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 209 210 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 211 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 212 213 // s2: compare the input exception with the current one 214 // priorities: 215 // (1) system reset 216 // (2) current is valid: flush, remain, merge, update 217 // (3) current is not valid: s1 or enq 218 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 219 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 220 when (reset.asBool) { 221 current.valid := false.B 222 }.elsewhen (current.valid) { 223 when (current_flush) { 224 current.valid := Mux(s1_flush, false.B, s1_out_valid) 225 } 226 when (s1_out_valid && !s1_flush) { 227 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 228 current.bits := s1_out_bits 229 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 230 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 231 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 232 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 233 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 234 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 235 } 236 } 237 }.elsewhen (s1_out_valid && !s1_flush) { 238 current.valid := true.B 239 current.bits := s1_out_bits 240 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 241 current.valid := true.B 242 current.bits := enq_bits 243 } 244 245 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 246 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 247 io.state := current 248 249} 250 251class RobFlushInfo(implicit p: Parameters) extends XSBundle { 252 val ftqIdx = new FtqPtr 253 val robIdx = new RobPtr 254 val ftqOffset = UInt(log2Up(PredictWidth).W) 255 val replayInst = Bool() 256} 257 258class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 259 260 lazy val module = new RobImp(this) 261 262 override def generateWritebackIO( 263 thisMod: Option[HasWritebackSource] = None, 264 thisModImp: Option[HasWritebackSourceImp] = None 265 ): Unit = { 266 val sources = writebackSinksImp(thisMod, thisModImp) 267 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 268 } 269} 270 271class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 272 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 273 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 274 val numWbPorts = wbExuConfigs.map(_.length) 275 276 val io = IO(new Bundle() { 277 val hartId = Input(UInt(8.W)) 278 val redirect = Input(Valid(new Redirect)) 279 val enq = new RobEnqIO 280 val flushOut = ValidIO(new Redirect) 281 val exception = ValidIO(new ExceptionInfo) 282 // exu + brq 283 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 284 val commits = new RobCommitIO 285 val lsq = new RobLsqIO 286 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 287 val robDeqPtr = Output(new RobPtr) 288 val csr = new RobCSRIO 289 val robFull = Output(Bool()) 290 val cpu_halt = Output(Bool()) 291 }) 292 293 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 294 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 295 } 296 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 297 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 298 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 299 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 300 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 301 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 302 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 303 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 304 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 305 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 306 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 307 308 309 val exuWriteback = exuWbPorts.map(_._2) 310 val stdWriteback = stdWbPorts.map(_._2) 311 312 // instvalid field 313 val valid = Mem(RobSize, Bool()) 314 // writeback status 315 val writebacked = Mem(RobSize, Bool()) 316 val store_data_writebacked = Mem(RobSize, Bool()) 317 // data for redirect, exception, etc. 318 val flagBkup = Mem(RobSize, Bool()) 319 // some instructions are not allowed to trigger interrupts 320 // They have side effects on the states of the processor before they write back 321 val interrupt_safe = Mem(RobSize, Bool()) 322 323 // data for debug 324 // Warn: debug_* prefix should not exist in generated verilog. 325 val debug_microOp = Mem(RobSize, new MicroOp) 326 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 327 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 328 329 // pointers 330 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 331 val enqPtr = Wire(new RobPtr) 332 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 333 334 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 335 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 336 val allowEnqueue = RegInit(true.B) 337 338 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 339 val deqPtr = deqPtrVec(0) 340 val walkPtr = walkPtrVec(0) 341 342 val isEmpty = enqPtr === deqPtr 343 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 344 345 /** 346 * states of Rob 347 */ 348 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 349 val state = RegInit(s_idle) 350 351 /** 352 * Data Modules 353 * 354 * CommitDataModule: data from dispatch 355 * (1) read: commits/walk/exception 356 * (2) write: enqueue 357 * 358 * WritebackData: data from writeback 359 * (1) read: commits/walk/exception 360 * (2) write: write back from exe units 361 */ 362 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 363 val dispatchDataRead = dispatchData.io.rdata 364 365 val exceptionGen = Module(new ExceptionGen) 366 val exceptionDataRead = exceptionGen.io.state 367 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 368 369 io.robDeqPtr := deqPtr 370 371 /** 372 * Enqueue (from dispatch) 373 */ 374 // special cases 375 val hasBlockBackward = RegInit(false.B) 376 val hasNoSpecExec = RegInit(false.B) 377 val doingSvinval = RegInit(false.B) 378 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 379 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 380 when (isEmpty) { hasBlockBackward:= false.B } 381 // When any instruction commits, hasNoSpecExec should be set to false.B 382 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 383 384 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 385 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 386 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 387 val hasWFI = RegInit(false.B) 388 io.cpu_halt := hasWFI 389 when (RegNext(RegNext(io.csr.wfiEvent))) { 390 hasWFI := false.B 391 } 392 393 io.enq.canAccept := allowEnqueue && !hasBlockBackward 394 io.enq.resp := enqPtrVec 395 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 396 val timer = GTimer() 397 for (i <- 0 until RenameWidth) { 398 // we don't check whether io.redirect is valid here since redirect has higher priority 399 when (canEnqueue(i)) { 400 val enqUop = io.enq.req(i).bits 401 // store uop in data module and debug_microOp Vec 402 debug_microOp(enqPtrVec(i).value) := enqUop 403 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 404 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 405 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 406 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 407 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 408 when (enqUop.ctrl.blockBackward) { 409 hasBlockBackward := true.B 410 } 411 when (enqUop.ctrl.noSpecExec) { 412 hasNoSpecExec := true.B 413 } 414 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 415 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 416 when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 417 { 418 doingSvinval := true.B 419 } 420 // the end instruction of Svinval enqs so clear doingSvinval 421 when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 422 { 423 doingSvinval := false.B 424 } 425 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 426 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 427 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 428 when (enqUop.ctrl.isWFI) { 429 hasWFI := true.B 430 } 431 } 432 } 433 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 434 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 435 436 // debug info for enqueue (dispatch) 437 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 438 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 439 440 441 /** 442 * Writeback (from execution units) 443 */ 444 for (wb <- exuWriteback) { 445 when (wb.valid) { 446 val wbIdx = wb.bits.uop.robIdx.value 447 debug_exuData(wbIdx) := wb.bits.data 448 debug_exuDebug(wbIdx) := wb.bits.debug 449 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 450 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 451 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 452 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 453 454 val debug_Uop = debug_microOp(wbIdx) 455 XSInfo(true.B, 456 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 457 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 458 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 459 ) 460 } 461 } 462 val writebackNum = PopCount(exuWriteback.map(_.valid)) 463 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 464 465 466 /** 467 * RedirectOut: Interrupt and Exceptions 468 */ 469 val deqDispatchData = dispatchDataRead(0) 470 val debug_deqUop = debug_microOp(deqPtr.value) 471 472 val intrBitSetReg = RegNext(io.csr.intrBitSet) 473 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 474 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 475 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 476 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 477 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 478 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 479 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 480 481 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 482 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 483 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 484 485 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 486 487 // io.flushOut will trigger redirect at the next cycle. 488 // Block any redirect or commit at the next cycle. 489 val lastCycleFlush = RegNext(io.flushOut.valid) 490 491 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 492 io.flushOut.bits := DontCare 493 io.flushOut.bits.robIdx := deqPtr 494 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 495 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 496 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 497 io.flushOut.bits.interrupt := true.B 498 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 499 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 500 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 501 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 502 503 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 504 io.exception.valid := RegNext(exceptionHappen) 505 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 506 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 507 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 508 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 509 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 510 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 511 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 512 513 XSDebug(io.flushOut.valid, 514 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 515 p"excp $exceptionEnable flushPipe $isFlushPipe " + 516 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 517 518 519 /** 520 * Commits (and walk) 521 * They share the same width. 522 */ 523 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 524 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 525 val walkFinished = walkCounter <= CommitWidth.U 526 527 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 528 require(RenameWidth <= CommitWidth) 529 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 530 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 531 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 532 usedSpaceForMPR := io.enq.needAlloc 533 extraSpaceForMPR := dispatchData.io.wdata 534 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 535 } 536 537 // wiring to csr 538 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 539 val v = io.commits.valid(i) 540 val info = io.commits.info(i) 541 (v & info.wflags, v & info.fpWen) 542 }).unzip 543 val fflags = Wire(Valid(UInt(5.W))) 544 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 545 fflags.bits := wflags.zip(fflagsDataRead).map({ 546 case (w, f) => Mux(w, f, 0.U) 547 }).reduce(_|_) 548 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 549 550 // when mispredict branches writeback, stop commit in the next 2 cycles 551 // TODO: don't check all exu write back 552 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 553 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 554 ))).orR() 555 val misPredBlockCounter = Reg(UInt(3.W)) 556 misPredBlockCounter := Mux(misPredWb, 557 "b111".U, 558 misPredBlockCounter >> 1.U 559 ) 560 val misPredBlock = misPredBlockCounter(0) 561 562 io.commits.isWalk := state =/= s_idle 563 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 564 // store will be commited iff both sta & std have been writebacked 565 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 566 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 567 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 568 val allowOnlyOneCommit = commit_exception || intrBitSetReg 569 // for instructions that may block others, we don't allow them to commit 570 for (i <- 0 until CommitWidth) { 571 // defaults: state === s_idle and instructions commit 572 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 573 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 574 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI 575 io.commits.info(i) := dispatchDataRead(i) 576 577 when (state === s_walk) { 578 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 579 }.elsewhen(state === s_extrawalk) { 580 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 581 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 582 } 583 584 XSInfo(state === s_idle && io.commits.valid(i), 585 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 586 debug_microOp(deqPtrVec(i).value).cf.pc, 587 io.commits.info(i).rfWen, 588 io.commits.info(i).ldest, 589 io.commits.info(i).pdest, 590 io.commits.info(i).old_pdest, 591 debug_exuData(deqPtrVec(i).value), 592 fflagsDataRead(i) 593 ) 594 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 595 debug_microOp(walkPtrVec(i).value).cf.pc, 596 io.commits.info(i).rfWen, 597 io.commits.info(i).ldest, 598 debug_exuData(walkPtrVec(i).value) 599 ) 600 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 601 io.commits.info(i).rfWen, 602 io.commits.info(i).ldest 603 ) 604 } 605 if (env.EnableDifftest) { 606 io.commits.info.map(info => dontTouch(info.pc)) 607 } 608 609 // sync fflags/dirty_fs to csr 610 io.csr.fflags := RegNext(fflags) 611 io.csr.dirty_fs := RegNext(dirty_fs) 612 613 // commit branch to brq 614 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 615 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 616 617 // commit load/store to lsq 618 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 619 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 620 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 621 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 622 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 623 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 624 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 625 626 /** 627 * state changes 628 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 629 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 630 * (3) walk: when walking comes to the end, switch to s_walk 631 * (4) s_extrawalk to s_walk 632 */ 633 val state_next = Mux(io.redirect.valid, 634 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 635 Mux(state === s_walk && walkFinished, 636 s_idle, 637 Mux(state === s_extrawalk, s_walk, state) 638 ) 639 ) 640 state := state_next 641 642 /** 643 * pointers and counters 644 */ 645 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 646 deqPtrGenModule.io.state := state 647 deqPtrGenModule.io.deq_v := commit_v 648 deqPtrGenModule.io.deq_w := commit_w 649 deqPtrGenModule.io.exception_state := exceptionDataRead 650 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 651 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 652 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 653 deqPtrGenModule.io.misPredBlock := misPredBlock 654 deqPtrGenModule.io.isReplaying := isReplaying 655 deqPtrGenModule.io.hasWFI := hasWFI 656 deqPtrVec := deqPtrGenModule.io.out 657 val deqPtrVec_next = deqPtrGenModule.io.next_out 658 659 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 660 enqPtrGenModule.io.redirect := io.redirect 661 enqPtrGenModule.io.allowEnqueue := allowEnqueue 662 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 663 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 664 enqPtr := enqPtrGenModule.io.out 665 666 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 667 // next walkPtrVec: 668 // (1) redirect occurs: update according to state 669 // (2) walk: move backwards 670 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 671 Mux(state === s_walk, 672 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 673 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 674 ), 675 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 676 ) 677 walkPtrVec := walkPtrVec_next 678 679 val lastCycleRedirect = RegNext(io.redirect.valid) 680 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 681 val commitCnt = PopCount(io.commits.valid) 682 validCounter := Mux(state === s_idle, 683 (validCounter - commitCnt) + dispatchNum, 684 trueValidCounter 685 ) 686 687 allowEnqueue := Mux(state === s_idle, 688 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 689 trueValidCounter <= (RobSize - RenameWidth).U 690 ) 691 692 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 693 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 694 when (io.redirect.valid) { 695 walkCounter := Mux(state === s_walk, 696 // NOTE: +& is used here because: 697 // When rob is full and the head instruction causes an exception, 698 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 699 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 700 // Since exceptions flush the instruction itself, flushItSelf is true.B. 701 // Previously we use `+` to count the walk distance and it causes overflows 702 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 703 // The width of walkCounter also needs to be changed. 704 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 705 redirectWalkDistance +& io.redirect.bits.flushItself() 706 ) 707 }.elsewhen (state === s_walk) { 708 walkCounter := walkCounter - commitCnt 709 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 710 } 711 712 713 /** 714 * States 715 * We put all the stage bits changes here. 716 717 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 718 * All states: (1) valid; (2) writebacked; (3) flagBkup 719 */ 720 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 721 722 // enqueue logic writes 6 valid 723 for (i <- 0 until RenameWidth) { 724 when (canEnqueue(i) && !io.redirect.valid) { 725 valid(enqPtrVec(i).value) := true.B 726 } 727 } 728 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 729 for (i <- 0 until CommitWidth) { 730 when (io.commits.valid(i) && state =/= s_extrawalk) { 731 valid(commitReadAddr(i)) := false.B 732 } 733 } 734 // reset: when exception, reset all valid to false 735 when (reset.asBool) { 736 for (i <- 0 until RobSize) { 737 valid(i) := false.B 738 } 739 } 740 741 // status field: writebacked 742 // enqueue logic set 6 writebacked to false 743 for (i <- 0 until RenameWidth) { 744 when (canEnqueue(i)) { 745 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 746 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 747 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 748 writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 749 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 750 store_data_writebacked(enqPtrVec(i).value) := !isStu 751 } 752 } 753 when (exceptionGen.io.out.valid) { 754 val wbIdx = exceptionGen.io.out.bits.robIdx.value 755 writebacked(wbIdx) := true.B 756 store_data_writebacked(wbIdx) := true.B 757 } 758 // writeback logic set numWbPorts writebacked to true 759 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 760 when (wb.valid) { 761 val wbIdx = wb.bits.uop.robIdx.value 762 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 763 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 764 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 765 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 766 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 767 writebacked(wbIdx) := !block_wb 768 } 769 } 770 // store data writeback logic mark store as data_writebacked 771 for (wb <- stdWriteback) { 772 when(RegNext(wb.valid)) { 773 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 774 } 775 } 776 777 // flagBkup 778 // enqueue logic set 6 flagBkup at most 779 for (i <- 0 until RenameWidth) { 780 when (canEnqueue(i)) { 781 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 782 } 783 } 784 785 // interrupt_safe 786 for (i <- 0 until RenameWidth) { 787 // We RegNext the updates for better timing. 788 // Note that instructions won't change the system's states in this cycle. 789 when (RegNext(canEnqueue(i))) { 790 // For now, we allow non-load-store instructions to trigger interrupts 791 // For MMIO instructions, they should not trigger interrupts since they may 792 // be sent to lower level before it writes back. 793 // However, we cannot determine whether a load/store instruction is MMIO. 794 // Thus, we don't allow load/store instructions to trigger an interrupt. 795 // TODO: support non-MMIO load-store instructions to trigger interrupts 796 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 797 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 798 } 799 } 800 801 /** 802 * read and write of data modules 803 */ 804 val commitReadAddr_next = Mux(state_next === s_idle, 805 VecInit(deqPtrVec_next.map(_.value)), 806 VecInit(walkPtrVec_next.map(_.value)) 807 ) 808 dispatchData.io.wen := canEnqueue 809 dispatchData.io.waddr := enqPtrVec.map(_.value) 810 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 811 wdata.ldest := req.ctrl.ldest 812 wdata.rfWen := req.ctrl.rfWen 813 wdata.fpWen := req.ctrl.fpWen 814 wdata.wflags := req.ctrl.fpu.wflags 815 wdata.commitType := req.ctrl.commitType 816 wdata.pdest := req.pdest 817 wdata.old_pdest := req.old_pdest 818 wdata.ftqIdx := req.cf.ftqPtr 819 wdata.ftqOffset := req.cf.ftqOffset 820 wdata.pc := req.cf.pc 821 } 822 dispatchData.io.raddr := commitReadAddr_next 823 824 exceptionGen.io.redirect <> io.redirect 825 exceptionGen.io.flush := io.flushOut.valid 826 for (i <- 0 until RenameWidth) { 827 exceptionGen.io.enq(i).valid := canEnqueue(i) 828 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 829 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 830 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 831 exceptionGen.io.enq(i).bits.replayInst := false.B 832 assert(io.enq.req(i).bits.ctrl.replayInst === false.B) 833 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 834 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 835 exceptionGen.io.enq(i).bits.trigger.clear() 836 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 837 } 838 839 println(s"ExceptionGen:") 840 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 841 require(exceptionCases.length == exceptionGen.io.wb.length) 842 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 843 exc_wb.valid := wb.valid 844 exc_wb.bits.robIdx := wb.bits.uop.robIdx 845 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 846 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 847 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 848 exc_wb.bits.singleStep := false.B 849 exc_wb.bits.crossPageIPFFix := false.B 850 // TODO: make trigger configurable 851 exc_wb.bits.trigger.clear() 852 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 853 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 854 s"flushPipe ${configs.exists(_.flushPipe)}, " + 855 s"replayInst ${configs.exists(_.replayInst)}") 856 } 857 858 val fflags_wb = fflagsPorts.map(_._2) 859 val fflagsDataModule = Module(new SyncDataModuleTemplate( 860 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 861 ) 862 for(i <- fflags_wb.indices){ 863 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 864 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 865 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 866 } 867 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 868 fflagsDataRead := fflagsDataModule.io.rdata 869 870 871 val instrCnt = RegInit(0.U(64.W)) 872 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 873 val trueCommitCnt = commitCnt +& fuseCommitCnt 874 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 875 instrCnt := instrCnt + retireCounter 876 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 877 io.robFull := !allowEnqueue 878 879 /** 880 * debug info 881 */ 882 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 883 XSDebug("") 884 for(i <- 0 until RobSize){ 885 XSDebug(false, !valid(i), "-") 886 XSDebug(false, valid(i) && writebacked(i), "w") 887 XSDebug(false, valid(i) && !writebacked(i), "v") 888 } 889 XSDebug(false, true.B, "\n") 890 891 for(i <- 0 until RobSize) { 892 if(i % 4 == 0) XSDebug("") 893 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 894 XSDebug(false, !valid(i), "- ") 895 XSDebug(false, valid(i) && writebacked(i), "w ") 896 XSDebug(false, valid(i) && !writebacked(i), "v ") 897 if(i % 4 == 3) XSDebug(false, true.B, "\n") 898 } 899 900 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 901 902 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 903 XSPerfAccumulate("clock_cycle", 1.U) 904 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 905 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 906 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 907 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 908 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 909 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 910 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 911 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 912 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 913 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 914 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 915 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 916 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 917 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 918 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 919 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 920 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 921 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 922 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 923 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 924 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 925 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 926 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 927 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 928 val deqUopCommitType = io.commits.info(0).commitType 929 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 930 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 931 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 932 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 933 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 934 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 935 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 936 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 937 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 938 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 939 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 940 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 941 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 942 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 943 } 944 for (fuType <- FuType.functionNameMap.keys) { 945 val fuName = FuType.functionNameMap(fuType) 946 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 947 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 948 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 949 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 950 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 951 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 952 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 953 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 954 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 955 if (fuType == FuType.fmac.litValue()) { 956 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 957 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 958 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 959 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 960 } 961 } 962 963 //difftest signals 964 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 965 966 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 967 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 968 969 for(i <- 0 until CommitWidth) { 970 val idx = deqPtrVec(i).value 971 wdata(i) := debug_exuData(idx) 972 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 973 } 974 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 975 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 976 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 977 978 if (env.EnableDifftest) { 979 for (i <- 0 until CommitWidth) { 980 val difftest = Module(new DifftestInstrCommit) 981 difftest.io.clock := clock 982 difftest.io.coreid := io.hartId 983 difftest.io.index := i.U 984 985 val ptr = deqPtrVec(i).value 986 val uop = commitDebugUop(i) 987 val exuOut = debug_exuDebug(ptr) 988 val exuData = debug_exuData(ptr) 989 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 990 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 991 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 992 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 993 // when committing an eliminated move instruction, 994 // we must make sure that skip is properly set to false (output from EXU is random value) 995 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 996 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 997 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 998 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen))) 999 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1000 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1001 1002 // runahead commit hint 1003 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1004 runahead_commit.io.clock := clock 1005 runahead_commit.io.coreid := io.hartId 1006 runahead_commit.io.index := i.U 1007 runahead_commit.io.valid := difftest.io.valid && 1008 (commitBranchValid(i) || commitIsStore(i)) 1009 // TODO: is branch or store 1010 runahead_commit.io.pc := difftest.io.pc 1011 } 1012 } 1013 else if (env.AlwaysBasicDiff) { 1014 // These are the structures used by difftest only and should be optimized after synthesis. 1015 val dt_eliminatedMove = Mem(RobSize, Bool()) 1016 val dt_isRVC = Mem(RobSize, Bool()) 1017 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1018 for (i <- 0 until RenameWidth) { 1019 when (canEnqueue(i)) { 1020 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1021 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1022 } 1023 } 1024 for (wb <- exuWriteback) { 1025 when (wb.valid) { 1026 val wbIdx = wb.bits.uop.robIdx.value 1027 dt_exuDebug(wbIdx) := wb.bits.debug 1028 } 1029 } 1030 // Always instantiate basic difftest modules. 1031 for (i <- 0 until CommitWidth) { 1032 val commitInfo = io.commits.info(i) 1033 val ptr = deqPtrVec(i).value 1034 val exuOut = dt_exuDebug(ptr) 1035 val eliminatedMove = dt_eliminatedMove(ptr) 1036 val isRVC = dt_isRVC(ptr) 1037 1038 val difftest = Module(new DifftestBasicInstrCommit) 1039 difftest.io.clock := clock 1040 difftest.io.coreid := io.hartId 1041 difftest.io.index := i.U 1042 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1043 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1044 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1045 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1046 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1047 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen))) 1048 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1049 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1050 } 1051 } 1052 1053 if (env.EnableDifftest) { 1054 for (i <- 0 until CommitWidth) { 1055 val difftest = Module(new DifftestLoadEvent) 1056 difftest.io.clock := clock 1057 difftest.io.coreid := io.hartId 1058 difftest.io.index := i.U 1059 1060 val ptr = deqPtrVec(i).value 1061 val uop = commitDebugUop(i) 1062 val exuOut = debug_exuDebug(ptr) 1063 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1064 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1065 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1066 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1067 } 1068 } 1069 1070 // Always instantiate basic difftest modules. 1071 if (env.EnableDifftest) { 1072 val dt_isXSTrap = Mem(RobSize, Bool()) 1073 for (i <- 0 until RenameWidth) { 1074 when (canEnqueue(i)) { 1075 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1076 } 1077 } 1078 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1079 val hitTrap = trapVec.reduce(_||_) 1080 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1081 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1082 val difftest = Module(new DifftestTrapEvent) 1083 difftest.io.clock := clock 1084 difftest.io.coreid := io.hartId 1085 difftest.io.valid := hitTrap 1086 difftest.io.code := trapCode 1087 difftest.io.pc := trapPC 1088 difftest.io.cycleCnt := timer 1089 difftest.io.instrCnt := instrCnt 1090 difftest.io.hasWFI := hasWFI 1091 } 1092 else if (env.AlwaysBasicDiff) { 1093 val dt_isXSTrap = Mem(RobSize, Bool()) 1094 for (i <- 0 until RenameWidth) { 1095 when (canEnqueue(i)) { 1096 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1097 } 1098 } 1099 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1100 val hitTrap = trapVec.reduce(_||_) 1101 val difftest = Module(new DifftestBasicTrapEvent) 1102 difftest.io.clock := clock 1103 difftest.io.coreid := io.hartId 1104 difftest.io.valid := hitTrap 1105 difftest.io.cycleCnt := timer 1106 difftest.io.instrCnt := instrCnt 1107 } 1108 1109 val perfEvents = Seq( 1110 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1111 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1112 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1113 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1114 ("rob_commitUop ", ifCommit(commitCnt) ), 1115 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1116 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1117 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1118 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1119 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1120 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1121 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1122 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1123 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1124 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1125 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1126 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1127 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1128 ) 1129 generatePerfEvent() 1130} 1131