xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 5d6698336c94d105e1cfab6c82c739a2fd970d37)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet     = Input(Bool())
53  val wfiEvent   = Input(Bool())
54
55  val fflags     = Output(Valid(UInt(5.W)))
56  val dirty_fs   = Output(Bool())
57  val perfinfo   = new Bundle {
58    val retiredInstr = Output(UInt(3.W))
59  }
60}
61
62class RobLsqIO(implicit p: Parameters) extends XSBundle {
63  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val pendingld = Output(Bool())
66  val pendingst = Output(Bool())
67  val commit = Output(Bool())
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    val hasWFI = Input(Bool())
95    // output: the CommitWidth deqPtr
96    val out = Vec(CommitWidth, Output(new RobPtr))
97    val next_out = Vec(CommitWidth, Output(new RobPtr))
98  })
99
100  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
101
102  // for exceptions (flushPipe included) and interrupts:
103  // only consider the first instruction
104  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
105  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
106  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
107
108  // for normal commits: only to consider when there're no exceptions
109  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
110  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
111  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI))
112  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
113  // when io.intrBitSetReg or there're possible exceptions in these instructions,
114  // only one instruction is allowed to commit
115  val allowOnlyOne = commit_exception || io.intrBitSetReg
116  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
117
118  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
119  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
120
121  deqPtrVec := deqPtrVec_next
122
123  io.next_out := deqPtrVec_next
124  io.out      := deqPtrVec
125
126  when (io.state === 0.U) {
127    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
128  }
129
130}
131
132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
133  val io = IO(new Bundle {
134    // for input redirect
135    val redirect = Input(Valid(new Redirect))
136    // for enqueue
137    val allowEnqueue = Input(Bool())
138    val hasBlockBackward = Input(Bool())
139    val enq = Vec(RenameWidth, Input(Bool()))
140    val out = Output(new RobPtr)
141  })
142
143  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
144
145  // enqueue
146  val canAccept = io.allowEnqueue && !io.hasBlockBackward
147  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
148
149  when (io.redirect.valid) {
150    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
151  }.otherwise {
152    enqPtr := enqPtr + dispatchNum
153  }
154
155  io.out := enqPtr
156
157}
158
159class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
160  // val valid = Bool()
161  val robIdx = new RobPtr
162  val exceptionVec = ExceptionVec()
163  val flushPipe = Bool()
164  val replayInst = Bool() // redirect to that inst itself
165  val singleStep = Bool() // TODO add frontend hit beneath
166  val crossPageIPFFix = Bool()
167  val trigger = new TriggerCf
168
169//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
170//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
171  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
172  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
173  // only exceptions are allowed to writeback when enqueue
174  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
175}
176
177class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
178  val io = IO(new Bundle {
179    val redirect = Input(Valid(new Redirect))
180    val flush = Input(Bool())
181    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
182    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
183    val out = ValidIO(new RobExceptionInfo)
184    val state = ValidIO(new RobExceptionInfo)
185  })
186
187  val current = Reg(Valid(new RobExceptionInfo))
188
189  // orR the exceptionVec
190  val lastCycleFlush = RegNext(io.flush)
191  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
192  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
193
194  // s0: compare wb(1),wb(2) and wb(3),wb(4)
195  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
196  val csr_wb_bits = io.wb(0).bits
197  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
198  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
199  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
200  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
201
202  // s1: compare last four and current flush
203  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
204  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
205  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
206  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
207  val s1_out_bits = RegNext(compare_bits)
208  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
209
210  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
211  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
212
213  // s2: compare the input exception with the current one
214  // priorities:
215  // (1) system reset
216  // (2) current is valid: flush, remain, merge, update
217  // (3) current is not valid: s1 or enq
218  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
219  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
220  when (reset.asBool) {
221    current.valid := false.B
222  }.elsewhen (current.valid) {
223    when (current_flush) {
224      current.valid := Mux(s1_flush, false.B, s1_out_valid)
225    }
226    when (s1_out_valid && !s1_flush) {
227      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
228        current.bits := s1_out_bits
229      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
230        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
231        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
232        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
233        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
234        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
235      }
236    }
237  }.elsewhen (s1_out_valid && !s1_flush) {
238    current.valid := true.B
239    current.bits := s1_out_bits
240  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
241    current.valid := true.B
242    current.bits := enq_bits
243  }
244
245  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
246  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
247  io.state := current
248
249}
250
251class RobFlushInfo(implicit p: Parameters) extends XSBundle {
252  val ftqIdx = new FtqPtr
253  val robIdx = new RobPtr
254  val ftqOffset = UInt(log2Up(PredictWidth).W)
255  val replayInst = Bool()
256}
257
258class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
259
260  lazy val module = new RobImp(this)
261
262  override def generateWritebackIO(
263    thisMod: Option[HasWritebackSource] = None,
264    thisModImp: Option[HasWritebackSourceImp] = None
265  ): Unit = {
266    val sources = writebackSinksImp(thisMod, thisModImp)
267    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
268  }
269}
270
271class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
272  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
273  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
274  val numWbPorts = wbExuConfigs.map(_.length)
275
276  val io = IO(new Bundle() {
277    val hartId = Input(UInt(8.W))
278    val redirect = Input(Valid(new Redirect))
279    val enq = new RobEnqIO
280    val flushOut = ValidIO(new Redirect)
281    val exception = ValidIO(new ExceptionInfo)
282    // exu + brq
283    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
284    val commits = new RobCommitIO
285    val lsq = new RobLsqIO
286    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
287    val robDeqPtr = Output(new RobPtr)
288    val csr = new RobCSRIO
289    val robFull = Output(Bool())
290    val cpu_halt = Output(Bool())
291  })
292
293  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
294    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
295  }
296  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
297  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
298  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
299  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
300  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
301  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
302  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
303  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
304  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
305  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
306  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
307
308
309  val exuWriteback = exuWbPorts.map(_._2)
310  val stdWriteback = stdWbPorts.map(_._2)
311
312  // instvalid field
313  val valid = Mem(RobSize, Bool())
314  // writeback status
315  val writebacked = Mem(RobSize, Bool())
316  val store_data_writebacked = Mem(RobSize, Bool())
317  // data for redirect, exception, etc.
318  val flagBkup = Mem(RobSize, Bool())
319  // some instructions are not allowed to trigger interrupts
320  // They have side effects on the states of the processor before they write back
321  val interrupt_safe = Mem(RobSize, Bool())
322
323  // data for debug
324  // Warn: debug_* prefix should not exist in generated verilog.
325  val debug_microOp = Mem(RobSize, new MicroOp)
326  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
327  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
328
329  // pointers
330  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
331  val enqPtr = Wire(new RobPtr)
332  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
333
334  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
335  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
336  val allowEnqueue = RegInit(true.B)
337
338  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
339  val deqPtr = deqPtrVec(0)
340  val walkPtr = walkPtrVec(0)
341
342  val isEmpty = enqPtr === deqPtr
343  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
344
345  /**
346    * states of Rob
347    */
348  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
349  val state = RegInit(s_idle)
350
351  /**
352    * Data Modules
353    *
354    * CommitDataModule: data from dispatch
355    * (1) read: commits/walk/exception
356    * (2) write: enqueue
357    *
358    * WritebackData: data from writeback
359    * (1) read: commits/walk/exception
360    * (2) write: write back from exe units
361    */
362  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
363  val dispatchDataRead = dispatchData.io.rdata
364
365  val exceptionGen = Module(new ExceptionGen)
366  val exceptionDataRead = exceptionGen.io.state
367  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
368
369  io.robDeqPtr := deqPtr
370
371  /**
372    * Enqueue (from dispatch)
373    */
374  // special cases
375  val hasBlockBackward = RegInit(false.B)
376  val hasNoSpecExec = RegInit(false.B)
377  val doingSvinval = RegInit(false.B)
378  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
379  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
380  when (isEmpty) { hasBlockBackward:= false.B }
381  // When any instruction commits, hasNoSpecExec should be set to false.B
382  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
383
384  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
385  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
386  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
387  val hasWFI = RegInit(false.B)
388  io.cpu_halt := hasWFI
389  when (RegNext(RegNext(io.csr.wfiEvent))) {
390    hasWFI := false.B
391  }
392
393  io.enq.canAccept := allowEnqueue && !hasBlockBackward
394  io.enq.resp      := enqPtrVec
395  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
396  val timer = GTimer()
397  for (i <- 0 until RenameWidth) {
398    // we don't check whether io.redirect is valid here since redirect has higher priority
399    when (canEnqueue(i)) {
400      val enqUop = io.enq.req(i).bits
401      // store uop in data module and debug_microOp Vec
402      debug_microOp(enqPtrVec(i).value) := enqUop
403      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
404      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
405      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
406      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
407      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
408      when (enqUop.ctrl.blockBackward) {
409        hasBlockBackward := true.B
410      }
411      when (enqUop.ctrl.noSpecExec) {
412        hasNoSpecExec := true.B
413      }
414      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
415      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
416      when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
417      {
418        doingSvinval := true.B
419      }
420      // the end instruction of Svinval enqs so clear doingSvinval
421      when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
422      {
423        doingSvinval := false.B
424      }
425      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
426      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
427        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
428      when (enqUop.ctrl.isWFI) {
429        hasWFI := true.B
430      }
431    }
432  }
433  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
434  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
435
436  // debug info for enqueue (dispatch)
437  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
438  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
439
440
441  /**
442    * Writeback (from execution units)
443    */
444  for (wb <- exuWriteback) {
445    when (wb.valid) {
446      val wbIdx = wb.bits.uop.robIdx.value
447      debug_exuData(wbIdx) := wb.bits.data
448      debug_exuDebug(wbIdx) := wb.bits.debug
449      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
450      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
451      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
452      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
453
454      val debug_Uop = debug_microOp(wbIdx)
455      XSInfo(true.B,
456        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
457        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
458        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
459      )
460    }
461  }
462  val writebackNum = PopCount(exuWriteback.map(_.valid))
463  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
464
465
466  /**
467    * RedirectOut: Interrupt and Exceptions
468    */
469  val deqDispatchData = dispatchDataRead(0)
470  val debug_deqUop = debug_microOp(deqPtr.value)
471
472  val intrBitSetReg = RegNext(io.csr.intrBitSet)
473  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
474  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
475  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
476    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
477  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
478  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
479  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
480
481  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
482  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
483  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
484
485  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
486
487  // io.flushOut will trigger redirect at the next cycle.
488  // Block any redirect or commit at the next cycle.
489  val lastCycleFlush = RegNext(io.flushOut.valid)
490
491  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
492  io.flushOut.bits := DontCare
493  io.flushOut.bits.robIdx := deqPtr
494  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
495  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
496  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
497  io.flushOut.bits.interrupt := true.B
498  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
499  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
500  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
501  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
502
503  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
504  io.exception.valid := RegNext(exceptionHappen)
505  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
506  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
507  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
508  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
509  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
510  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
511  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
512
513  XSDebug(io.flushOut.valid,
514    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
515    p"excp $exceptionEnable flushPipe $isFlushPipe " +
516    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
517
518
519  /**
520    * Commits (and walk)
521    * They share the same width.
522    */
523  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
524  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
525  val walkFinished = walkCounter <= CommitWidth.U
526
527  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
528  require(RenameWidth <= CommitWidth)
529  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
530  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
531  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
532    usedSpaceForMPR := io.enq.needAlloc
533    extraSpaceForMPR := dispatchData.io.wdata
534    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
535  }
536
537  // wiring to csr
538  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
539    val v = io.commits.valid(i)
540    val info = io.commits.info(i)
541    (v & info.wflags, v & info.fpWen)
542  }).unzip
543  val fflags = Wire(Valid(UInt(5.W)))
544  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
545  fflags.bits := wflags.zip(fflagsDataRead).map({
546    case (w, f) => Mux(w, f, 0.U)
547  }).reduce(_|_)
548  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
549
550  // when mispredict branches writeback, stop commit in the next 2 cycles
551  // TODO: don't check all exu write back
552  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
553    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
554  ))).orR()
555  val misPredBlockCounter = Reg(UInt(3.W))
556  misPredBlockCounter := Mux(misPredWb,
557    "b111".U,
558    misPredBlockCounter >> 1.U
559  )
560  val misPredBlock = misPredBlockCounter(0)
561
562  io.commits.isWalk := state =/= s_idle
563  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
564  // store will be commited iff both sta & std have been writebacked
565  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
566  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
567  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
568  val allowOnlyOneCommit = commit_exception || intrBitSetReg
569  // for instructions that may block others, we don't allow them to commit
570  for (i <- 0 until CommitWidth) {
571    // defaults: state === s_idle and instructions commit
572    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
573    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
574    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI
575    io.commits.info(i)  := dispatchDataRead(i)
576
577    when (state === s_walk) {
578      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
579    }.elsewhen(state === s_extrawalk) {
580      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
581      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
582    }
583
584    XSInfo(state === s_idle && io.commits.valid(i),
585      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
586      debug_microOp(deqPtrVec(i).value).cf.pc,
587      io.commits.info(i).rfWen,
588      io.commits.info(i).ldest,
589      io.commits.info(i).pdest,
590      io.commits.info(i).old_pdest,
591      debug_exuData(deqPtrVec(i).value),
592      fflagsDataRead(i)
593    )
594    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
595      debug_microOp(walkPtrVec(i).value).cf.pc,
596      io.commits.info(i).rfWen,
597      io.commits.info(i).ldest,
598      debug_exuData(walkPtrVec(i).value)
599    )
600    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
601      io.commits.info(i).rfWen,
602      io.commits.info(i).ldest
603    )
604  }
605  if (env.EnableDifftest) {
606    io.commits.info.map(info => dontTouch(info.pc))
607  }
608
609  // sync fflags/dirty_fs to csr
610  io.csr.fflags := RegNext(fflags)
611  io.csr.dirty_fs := RegNext(dirty_fs)
612
613  // commit branch to brq
614  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
615  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
616
617  // commit load/store to lsq
618  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
619  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
620  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
621  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
622  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
623  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
624  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
625
626  /**
627    * state changes
628    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
629    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
630    * (3) walk: when walking comes to the end, switch to s_walk
631    * (4) s_extrawalk to s_walk
632    */
633  val state_next = Mux(io.redirect.valid,
634    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
635    Mux(state === s_walk && walkFinished,
636      s_idle,
637      Mux(state === s_extrawalk, s_walk, state)
638    )
639  )
640  state := state_next
641
642  /**
643    * pointers and counters
644    */
645  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
646  deqPtrGenModule.io.state := state
647  deqPtrGenModule.io.deq_v := commit_v
648  deqPtrGenModule.io.deq_w := commit_w
649  deqPtrGenModule.io.exception_state := exceptionDataRead
650  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
651  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
652  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
653  deqPtrGenModule.io.misPredBlock := misPredBlock
654  deqPtrGenModule.io.isReplaying := isReplaying
655  deqPtrGenModule.io.hasWFI := hasWFI
656  deqPtrVec := deqPtrGenModule.io.out
657  val deqPtrVec_next = deqPtrGenModule.io.next_out
658
659  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
660  enqPtrGenModule.io.redirect := io.redirect
661  enqPtrGenModule.io.allowEnqueue := allowEnqueue
662  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
663  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
664  enqPtr := enqPtrGenModule.io.out
665
666  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
667  // next walkPtrVec:
668  // (1) redirect occurs: update according to state
669  // (2) walk: move backwards
670  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
671    Mux(state === s_walk,
672      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
673      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
674    ),
675    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
676  )
677  walkPtrVec := walkPtrVec_next
678
679  val lastCycleRedirect = RegNext(io.redirect.valid)
680  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
681  val commitCnt = PopCount(io.commits.valid)
682  validCounter := Mux(state === s_idle,
683    (validCounter - commitCnt) + dispatchNum,
684    trueValidCounter
685  )
686
687  allowEnqueue := Mux(state === s_idle,
688    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
689    trueValidCounter <= (RobSize - RenameWidth).U
690  )
691
692  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
693  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
694  when (io.redirect.valid) {
695    walkCounter := Mux(state === s_walk,
696      // NOTE: +& is used here because:
697      // When rob is full and the head instruction causes an exception,
698      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
699      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
700      // Since exceptions flush the instruction itself, flushItSelf is true.B.
701      // Previously we use `+` to count the walk distance and it causes overflows
702      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
703      // The width of walkCounter also needs to be changed.
704      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
705      redirectWalkDistance +& io.redirect.bits.flushItself()
706    )
707  }.elsewhen (state === s_walk) {
708    walkCounter := walkCounter - commitCnt
709    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
710  }
711
712
713  /**
714    * States
715    * We put all the stage bits changes here.
716
717    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
718    * All states: (1) valid; (2) writebacked; (3) flagBkup
719    */
720  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
721
722  // enqueue logic writes 6 valid
723  for (i <- 0 until RenameWidth) {
724    when (canEnqueue(i) && !io.redirect.valid) {
725      valid(enqPtrVec(i).value) := true.B
726    }
727  }
728  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
729  for (i <- 0 until CommitWidth) {
730    when (io.commits.valid(i) && state =/= s_extrawalk) {
731      valid(commitReadAddr(i)) := false.B
732    }
733  }
734  // reset: when exception, reset all valid to false
735  when (reset.asBool) {
736    for (i <- 0 until RobSize) {
737      valid(i) := false.B
738    }
739  }
740
741  // status field: writebacked
742  // enqueue logic set 6 writebacked to false
743  for (i <- 0 until RenameWidth) {
744    when (canEnqueue(i)) {
745      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
746      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
747      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
748      writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
749      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
750      store_data_writebacked(enqPtrVec(i).value) := !isStu
751    }
752  }
753  when (exceptionGen.io.out.valid) {
754    val wbIdx = exceptionGen.io.out.bits.robIdx.value
755    writebacked(wbIdx) := true.B
756    store_data_writebacked(wbIdx) := true.B
757  }
758  // writeback logic set numWbPorts writebacked to true
759  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
760    when (wb.valid) {
761      val wbIdx = wb.bits.uop.robIdx.value
762      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
763      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
764      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
765      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
766      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
767      writebacked(wbIdx) := !block_wb
768    }
769  }
770  // store data writeback logic mark store as data_writebacked
771  for (wb <- stdWriteback) {
772    when(RegNext(wb.valid)) {
773      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
774    }
775  }
776
777  // flagBkup
778  // enqueue logic set 6 flagBkup at most
779  for (i <- 0 until RenameWidth) {
780    when (canEnqueue(i)) {
781      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
782    }
783  }
784
785  // interrupt_safe
786  for (i <- 0 until RenameWidth) {
787    // We RegNext the updates for better timing.
788    // Note that instructions won't change the system's states in this cycle.
789    when (RegNext(canEnqueue(i))) {
790      // For now, we allow non-load-store instructions to trigger interrupts
791      // For MMIO instructions, they should not trigger interrupts since they may
792      // be sent to lower level before it writes back.
793      // However, we cannot determine whether a load/store instruction is MMIO.
794      // Thus, we don't allow load/store instructions to trigger an interrupt.
795      // TODO: support non-MMIO load-store instructions to trigger interrupts
796      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
797      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
798    }
799  }
800
801  /**
802    * read and write of data modules
803    */
804  val commitReadAddr_next = Mux(state_next === s_idle,
805    VecInit(deqPtrVec_next.map(_.value)),
806    VecInit(walkPtrVec_next.map(_.value))
807  )
808  dispatchData.io.wen := canEnqueue
809  dispatchData.io.waddr := enqPtrVec.map(_.value)
810  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
811    wdata.ldest := req.ctrl.ldest
812    wdata.rfWen := req.ctrl.rfWen
813    wdata.fpWen := req.ctrl.fpWen
814    wdata.wflags := req.ctrl.fpu.wflags
815    wdata.commitType := req.ctrl.commitType
816    wdata.pdest := req.pdest
817    wdata.old_pdest := req.old_pdest
818    wdata.ftqIdx := req.cf.ftqPtr
819    wdata.ftqOffset := req.cf.ftqOffset
820    wdata.pc := req.cf.pc
821  }
822  dispatchData.io.raddr := commitReadAddr_next
823
824  exceptionGen.io.redirect <> io.redirect
825  exceptionGen.io.flush := io.flushOut.valid
826  for (i <- 0 until RenameWidth) {
827    exceptionGen.io.enq(i).valid := canEnqueue(i)
828    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
829    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
830    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
831    exceptionGen.io.enq(i).bits.replayInst := false.B
832    assert(io.enq.req(i).bits.ctrl.replayInst === false.B)
833    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
834    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
835    exceptionGen.io.enq(i).bits.trigger.clear()
836    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
837  }
838
839  println(s"ExceptionGen:")
840  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
841  require(exceptionCases.length == exceptionGen.io.wb.length)
842  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
843    exc_wb.valid                := wb.valid
844    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
845    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
846    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
847    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
848    exc_wb.bits.singleStep      := false.B
849    exc_wb.bits.crossPageIPFFix := false.B
850    // TODO: make trigger configurable
851    exc_wb.bits.trigger.clear()
852    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
853    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
854      s"flushPipe ${configs.exists(_.flushPipe)}, " +
855      s"replayInst ${configs.exists(_.replayInst)}")
856  }
857
858  val fflags_wb = fflagsPorts.map(_._2)
859  val fflagsDataModule = Module(new SyncDataModuleTemplate(
860    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
861  )
862  for(i <- fflags_wb.indices){
863    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
864    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
865    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
866  }
867  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
868  fflagsDataRead := fflagsDataModule.io.rdata
869
870
871  val instrCnt = RegInit(0.U(64.W))
872  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
873  val trueCommitCnt = commitCnt +& fuseCommitCnt
874  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
875  instrCnt := instrCnt + retireCounter
876  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
877  io.robFull := !allowEnqueue
878
879  /**
880    * debug info
881    */
882  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
883  XSDebug("")
884  for(i <- 0 until RobSize){
885    XSDebug(false, !valid(i), "-")
886    XSDebug(false, valid(i) && writebacked(i), "w")
887    XSDebug(false, valid(i) && !writebacked(i), "v")
888  }
889  XSDebug(false, true.B, "\n")
890
891  for(i <- 0 until RobSize) {
892    if(i % 4 == 0) XSDebug("")
893    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
894    XSDebug(false, !valid(i), "- ")
895    XSDebug(false, valid(i) && writebacked(i), "w ")
896    XSDebug(false, valid(i) && !writebacked(i), "v ")
897    if(i % 4 == 3) XSDebug(false, true.B, "\n")
898  }
899
900  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
901
902  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
903  XSPerfAccumulate("clock_cycle", 1.U)
904  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
905  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
906  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
907  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
908  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
909  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
910  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
911  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
912  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
913  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
914  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
915  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
916  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
917  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
918  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
919  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
920  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
921  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
922  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
923  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
924  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
925  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
926  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
927  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
928  val deqUopCommitType = io.commits.info(0).commitType
929  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
930  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
931  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
932  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
933  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
934  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
935  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
936  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
937  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
938  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
939  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
940  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
941  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
942    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
943  }
944  for (fuType <- FuType.functionNameMap.keys) {
945    val fuName = FuType.functionNameMap(fuType)
946    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
947    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
948    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
949    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
950    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
951    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
952    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
953    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
954    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
955    if (fuType == FuType.fmac.litValue()) {
956      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
957      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
958      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
959      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
960    }
961  }
962
963  //difftest signals
964  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
965
966  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
967  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
968
969  for(i <- 0 until CommitWidth) {
970    val idx = deqPtrVec(i).value
971    wdata(i) := debug_exuData(idx)
972    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
973  }
974  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
975  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
976  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
977
978  if (env.EnableDifftest) {
979    for (i <- 0 until CommitWidth) {
980      val difftest = Module(new DifftestInstrCommit)
981      difftest.io.clock    := clock
982      difftest.io.coreid   := io.hartId
983      difftest.io.index    := i.U
984
985      val ptr = deqPtrVec(i).value
986      val uop = commitDebugUop(i)
987      val exuOut = debug_exuDebug(ptr)
988      val exuData = debug_exuData(ptr)
989      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
990      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
991      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
992      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
993      // when committing an eliminated move instruction,
994      // we must make sure that skip is properly set to false (output from EXU is random value)
995      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
996      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
997      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
998      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen)))
999      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1000      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1001
1002      // runahead commit hint
1003      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1004      runahead_commit.io.clock := clock
1005      runahead_commit.io.coreid := io.hartId
1006      runahead_commit.io.index := i.U
1007      runahead_commit.io.valid := difftest.io.valid &&
1008        (commitBranchValid(i) || commitIsStore(i))
1009      // TODO: is branch or store
1010      runahead_commit.io.pc    := difftest.io.pc
1011    }
1012  }
1013  else if (env.AlwaysBasicDiff) {
1014    // These are the structures used by difftest only and should be optimized after synthesis.
1015    val dt_eliminatedMove = Mem(RobSize, Bool())
1016    val dt_isRVC = Mem(RobSize, Bool())
1017    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1018    for (i <- 0 until RenameWidth) {
1019      when (canEnqueue(i)) {
1020        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1021        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1022      }
1023    }
1024    for (wb <- exuWriteback) {
1025      when (wb.valid) {
1026        val wbIdx = wb.bits.uop.robIdx.value
1027        dt_exuDebug(wbIdx) := wb.bits.debug
1028      }
1029    }
1030    // Always instantiate basic difftest modules.
1031    for (i <- 0 until CommitWidth) {
1032      val commitInfo = io.commits.info(i)
1033      val ptr = deqPtrVec(i).value
1034      val exuOut = dt_exuDebug(ptr)
1035      val eliminatedMove = dt_eliminatedMove(ptr)
1036      val isRVC = dt_isRVC(ptr)
1037
1038      val difftest = Module(new DifftestBasicInstrCommit)
1039      difftest.io.clock   := clock
1040      difftest.io.coreid  := io.hartId
1041      difftest.io.index   := i.U
1042      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1043      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1044      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1045      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1046      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1047      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen)))
1048      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1049      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1050    }
1051  }
1052
1053  if (env.EnableDifftest) {
1054    for (i <- 0 until CommitWidth) {
1055      val difftest = Module(new DifftestLoadEvent)
1056      difftest.io.clock  := clock
1057      difftest.io.coreid := io.hartId
1058      difftest.io.index  := i.U
1059
1060      val ptr = deqPtrVec(i).value
1061      val uop = commitDebugUop(i)
1062      val exuOut = debug_exuDebug(ptr)
1063      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1064      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1065      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1066      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1067    }
1068  }
1069
1070  // Always instantiate basic difftest modules.
1071  if (env.EnableDifftest) {
1072    val dt_isXSTrap = Mem(RobSize, Bool())
1073    for (i <- 0 until RenameWidth) {
1074      when (canEnqueue(i)) {
1075        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1076      }
1077    }
1078    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1079    val hitTrap = trapVec.reduce(_||_)
1080    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1081    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1082    val difftest = Module(new DifftestTrapEvent)
1083    difftest.io.clock    := clock
1084    difftest.io.coreid   := io.hartId
1085    difftest.io.valid    := hitTrap
1086    difftest.io.code     := trapCode
1087    difftest.io.pc       := trapPC
1088    difftest.io.cycleCnt := timer
1089    difftest.io.instrCnt := instrCnt
1090    difftest.io.hasWFI   := hasWFI
1091  }
1092  else if (env.AlwaysBasicDiff) {
1093    val dt_isXSTrap = Mem(RobSize, Bool())
1094    for (i <- 0 until RenameWidth) {
1095      when (canEnqueue(i)) {
1096        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1097      }
1098    }
1099    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1100    val hitTrap = trapVec.reduce(_||_)
1101    val difftest = Module(new DifftestBasicTrapEvent)
1102    difftest.io.clock    := clock
1103    difftest.io.coreid   := io.hartId
1104    difftest.io.valid    := hitTrap
1105    difftest.io.cycleCnt := timer
1106    difftest.io.instrCnt := instrCnt
1107  }
1108
1109  val perfEvents = Seq(
1110    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1111    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1112    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1113    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1114    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1115    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1116    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1117    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1118    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1119    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1120    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1121    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1122    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1123    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1124    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1125    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1126    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1127    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1128  )
1129  generatePerfEvent()
1130}
1131