xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 7154d65e61dadbebf64d138841a8804142559e30)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect], flush: Bool): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    flush || (redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(3.W))
63  val scommit = Output(UInt(3.W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {
80  val crossPageIPFFix = Bool()
81}
82
83class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
84  val io = IO(new Bundle {
85    // for commits/flush
86    val state = Input(UInt(2.W))
87    val deq_v = Vec(CommitWidth, Input(Bool()))
88    val deq_w = Vec(CommitWidth, Input(Bool()))
89    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
90    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
91    val intrBitSetReg = Input(Bool())
92    val hasNoSpecExec = Input(Bool())
93    val commitType = Input(CommitType())
94    val misPredBlock = Input(Bool())
95    val isReplaying = Input(Bool())
96    // output: the CommitWidth deqPtr
97    val out = Vec(CommitWidth, Output(new RobPtr))
98    val next_out = Vec(CommitWidth, Output(new RobPtr))
99  })
100
101  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
102
103  // for exceptions (flushPipe included) and interrupts:
104  // only consider the first instruction
105  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
106  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.robIdx === deqPtrVec(0)
107  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
108
109  // for normal commits: only to consider when there're no exceptions
110  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
111  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
112  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
113  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
114  // when io.intrBitSetReg or there're possible exceptions in these instructions, only one instruction is allowed to commit
115  val allowOnlyOne = commit_exception || io.intrBitSetReg
116  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
117
118  val resetDeqPtrVec = VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))
119  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
120  val deqPtrVec_next = Mux(redirectOutValid, resetDeqPtrVec, Mux(io.state === 0.U, commitDeqPtrVec, deqPtrVec))
121
122  deqPtrVec := deqPtrVec_next
123
124  io.next_out := deqPtrVec_next
125  io.out      := deqPtrVec
126
127  when (io.state === 0.U) {
128    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
129  }
130
131}
132
133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
134  val io = IO(new Bundle {
135    // for exceptions and interrupts
136    val state = Input(UInt(2.W))
137    val deq_v = Input(Bool())
138    val deq_w = Input(Bool())
139    val deqPtr = Input(new RobPtr)
140    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
141    val intrBitSetReg = Input(Bool())
142    val hasNoSpecExec = Input(Bool())
143    val commitType = Input(CommitType())
144    // for input redirect
145    val redirect = Input(Valid(new Redirect))
146    // for enqueue
147    val allowEnqueue = Input(Bool())
148    val hasBlockBackward = Input(Bool())
149    val enq = Vec(RenameWidth, Input(Bool()))
150    val out = Output(new RobPtr)
151  })
152
153  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
154
155  // for exceptions (flushPipe included) and interrupts:
156  // only consider the first instruction
157  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
158  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.robIdx === io.deqPtr
159  val redirectOutValid = io.state === 0.U && io.deq_v && (intrEnable || exceptionEnable)
160
161  // enqueue
162  val canAccept = io.allowEnqueue && !io.hasBlockBackward
163  val dispatchNum = Mux(canAccept && !RegNext(redirectOutValid), PopCount(io.enq), 0.U)
164
165  when (redirectOutValid) {
166    enqPtr := 0.U.asTypeOf(new RobPtr)
167  }.elsewhen (io.redirect.valid) {
168    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
169  }.otherwise {
170    enqPtr := enqPtr + dispatchNum
171  }
172
173  io.out := enqPtr
174
175}
176
177class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
178  // val valid = Bool()
179  val robIdx = new RobPtr
180  val exceptionVec = ExceptionVec()
181  val flushPipe = Bool()
182  val replayInst = Bool() // redirect to that inst itself
183  val singleStep = Bool()
184
185  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst
186  // only exceptions are allowed to writeback when enqueue
187  def can_writeback = exceptionVec.asUInt.orR || singleStep
188}
189
190class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
191  val io = IO(new Bundle {
192    val redirect = Input(Valid(new Redirect))
193    val flush = Input(Bool())
194    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
195    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
196    val out = ValidIO(new RobExceptionInfo)
197    val state = ValidIO(new RobExceptionInfo)
198  })
199
200  val current = Reg(Valid(new RobExceptionInfo))
201
202  // orR the exceptionVec
203  val lastCycleFlush = RegNext(io.flush)
204  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
205  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
206
207  // s0: compare wb(1),wb(2) and wb(3),wb(4)
208  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !bits.robIdx.needFlush(io.redirect, io.flush) }
209  val csr_wb_bits = io.wb(0).bits
210  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
211  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
212  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
213  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
214
215  // s1: compare last four and current flush
216  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !b.robIdx.needFlush(io.redirect, io.flush) })
217  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
218  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
219  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
220  val s1_out_bits = RegNext(compare_bits)
221  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
222
223  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
224  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
225
226  // s2: compare the input exception with the current one
227  // priorities:
228  // (1) system reset
229  // (2) current is valid: flush, remain, merge, update
230  // (3) current is not valid: s1 or enq
231  val current_flush = current.bits.robIdx.needFlush(io.redirect, io.flush)
232  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect, io.flush)
233  when (reset.asBool) {
234    current.valid := false.B
235  }.elsewhen (current.valid) {
236    when (current_flush) {
237      current.valid := Mux(s1_flush, false.B, s1_out_valid)
238    }
239    when (s1_out_valid && !s1_flush) {
240      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
241        current.bits := s1_out_bits
242      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
243        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
244        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
245        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
246        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
247      }
248    }
249  }.elsewhen (s1_out_valid && !s1_flush) {
250    current.valid := true.B
251    current.bits := s1_out_bits
252  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
253    current.valid := true.B
254    current.bits := enq_bits
255  }
256
257  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
258  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
259  io.state := current
260
261}
262
263class RobFlushInfo(implicit p: Parameters) extends XSBundle {
264  val ftqIdx = new FtqPtr
265  val ftqOffset = UInt(log2Up(PredictWidth).W)
266  val replayInst = Bool()
267}
268
269class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
270  val io = IO(new Bundle() {
271    val redirect = Input(Valid(new Redirect))
272    val enq = new RobEnqIO
273    val flushOut = ValidIO(new RobFlushInfo)
274    val exception = ValidIO(new ExceptionInfo)
275    // exu + brq
276    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
277    val commits = new RobCommitIO
278    val lsq = new RobLsqIO
279    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
280    val robDeqPtr = Output(new RobPtr)
281    val csr = new RobCSRIO
282    val robFull = Output(Bool())
283  })
284
285  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
286
287  // instvalid field
288  // val valid = RegInit(VecInit(List.fill(RobSize)(false.B)))
289  val valid = Mem(RobSize, Bool())
290  // writeback status
291  // val writebacked = Reg(Vec(RobSize, Bool()))
292  val writebacked = Mem(RobSize, Bool())
293  val store_data_writebacked = Mem(RobSize, Bool())
294  // data for redirect, exception, etc.
295  // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B)))
296  val flagBkup = Mem(RobSize, Bool())
297  // record move elimination info for each instruction
298  val eliminatedMove = Mem(RobSize, Bool())
299
300  // data for debug
301  // Warn: debug_* prefix should not exist in generated verilog.
302  val debug_microOp = Mem(RobSize, new MicroOp)
303  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
304  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
305
306  // pointers
307  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
308  val enqPtr = Wire(new RobPtr)
309  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
310
311  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
312  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
313  val allowEnqueue = RegInit(true.B)
314
315  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
316  val deqPtr = deqPtrVec(0)
317  val walkPtr = walkPtrVec(0)
318
319  val isEmpty = enqPtr === deqPtr
320  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
321
322  /**
323    * states of Rob
324    */
325  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
326  val state = RegInit(s_idle)
327
328  /**
329    * Data Modules
330    *
331    * CommitDataModule: data from dispatch
332    * (1) read: commits/walk/exception
333    * (2) write: enqueue
334    *
335    * WritebackData: data from writeback
336    * (1) read: commits/walk/exception
337    * (2) write: write back from exe units
338    */
339  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
340  val dispatchDataRead = dispatchData.io.rdata
341
342  val exceptionGen = Module(new ExceptionGen)
343  val exceptionDataRead = exceptionGen.io.state
344  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
345
346  io.robDeqPtr := deqPtr
347
348  /**
349    * Enqueue (from dispatch)
350    */
351  // special cases
352  val hasBlockBackward = RegInit(false.B)
353  val hasNoSpecExec = RegInit(false.B)
354  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
355  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
356  when (isEmpty) { hasBlockBackward:= false.B }
357  // When any instruction commits, hasNoSpecExec should be set to false.B
358  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
359
360  io.enq.canAccept := allowEnqueue && !hasBlockBackward
361  io.enq.resp      := enqPtrVec
362  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
363  val timer = GTimer()
364  for (i <- 0 until RenameWidth) {
365    // we don't check whether io.redirect is valid here since redirect has higher priority
366    when (canEnqueue(i)) {
367      // store uop in data module and debug_microOp Vec
368      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
369      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
370      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
371      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
372      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
373      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
374      when (io.enq.req(i).bits.ctrl.blockBackward) {
375        hasBlockBackward := true.B
376      }
377      when (io.enq.req(i).bits.ctrl.noSpecExec) {
378        hasNoSpecExec := true.B
379      }
380    }
381  }
382  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
383  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
384
385  // debug info for enqueue (dispatch)
386  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
387  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
388
389
390  /**
391    * Writeback (from execution units)
392    */
393  for (i <- 0 until numWbPorts) {
394    when (io.exeWbResults(i).valid) {
395      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
396      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
397      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
398      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
399      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
400      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
401      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
402      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
403      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
404      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
405      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
406
407      val debug_Uop = debug_microOp(wbIdx)
408      XSInfo(true.B,
409        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
410        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
411        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
412      )
413    }
414  }
415  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
416  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
417
418
419  /**
420    * RedirectOut: Interrupt and Exceptions
421    */
422  val deqDispatchData = dispatchDataRead(0)
423  val debug_deqUop = debug_microOp(deqPtr.value)
424
425  // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back.
426  // However, we cannot determine whether a load/store instruction is MMIO.
427  // Thus, we don't allow load/store instructions to trigger an interrupt.
428  val intrBitSetReg = RegNext(io.csr.intrBitSet)
429  val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType)
430  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
431  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
432  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
433  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
434  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
435  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
436
437  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe)
438  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
439  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
440  io.flushOut.bits.replayInst := deqHasReplayInst
441  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
442  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
443  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
444  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
445
446  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable)
447  io.exception.valid := RegNext(exceptionHappen)
448  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
449  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
450  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
451  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
452  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(deqDispatchData.crossPageIPFFix, exceptionHappen)
453  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
454
455  XSDebug(io.flushOut.valid,
456    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
457    p"excp $exceptionEnable flushPipe $isFlushPipe " +
458    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
459
460
461  /**
462    * Commits (and walk)
463    * They share the same width.
464    */
465  val walkCounter = Reg(UInt(log2Up(RobSize).W))
466  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
467  val walkFinished = walkCounter <= CommitWidth.U
468
469  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
470  require(RenameWidth <= CommitWidth)
471  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
472  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
473  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
474    usedSpaceForMPR := io.enq.needAlloc
475    extraSpaceForMPR := dispatchData.io.wdata
476    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
477  }
478
479  // wiring to csr
480  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
481    val v = io.commits.valid(i)
482    val info = io.commits.info(i)
483    (v & info.wflags, v & info.fpWen)
484  }).unzip
485  val fflags = Wire(Valid(UInt(5.W)))
486  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
487  fflags.bits := wflags.zip(fflagsDataRead).map({
488    case (w, f) => Mux(w, f, 0.U)
489  }).reduce(_|_)
490  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
491
492  // when mispredict branches writeback, stop commit in the next 2 cycles
493  // TODO: don't check all exu write back
494  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
495    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
496  ))).orR()
497  val misPredBlockCounter = Reg(UInt(3.W))
498  misPredBlockCounter := Mux(misPredWb,
499    "b111".U,
500    misPredBlockCounter >> 1.U
501  )
502  val misPredBlock = misPredBlockCounter(0)
503
504  io.commits.isWalk := state =/= s_idle
505  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
506  // store will be commited iff both sta & std have been writebacked
507  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
508  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
509  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
510  val allowOnlyOneCommit = commit_exception || intrBitSetReg
511  // for instructions that may block others, we don't allow them to commit
512  for (i <- 0 until CommitWidth) {
513    // defaults: state === s_idle and instructions commit
514    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
515    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
516    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying
517    io.commits.info(i)  := dispatchDataRead(i)
518
519    when (state === s_walk) {
520      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
521    }.elsewhen(state === s_extrawalk) {
522      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
523      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
524    }
525
526    XSInfo(state === s_idle && io.commits.valid(i),
527      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
528      debug_microOp(deqPtrVec(i).value).cf.pc,
529      io.commits.info(i).rfWen,
530      io.commits.info(i).ldest,
531      io.commits.info(i).pdest,
532      io.commits.info(i).old_pdest,
533      debug_exuData(deqPtrVec(i).value),
534      fflagsDataRead(i)
535    )
536    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
537      debug_microOp(walkPtrVec(i).value).cf.pc,
538      io.commits.info(i).rfWen,
539      io.commits.info(i).ldest,
540      debug_exuData(walkPtrVec(i).value)
541    )
542    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
543      io.commits.info(i).rfWen,
544      io.commits.info(i).ldest
545    )
546  }
547  if (!env.FPGAPlatform) {
548    io.commits.info.map(info => dontTouch(info.pc))
549  }
550
551  // sync fflags/dirty_fs to csr
552  io.csr.fflags := fflags
553  io.csr.dirty_fs := dirty_fs
554
555  // commit branch to brq
556  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
557  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
558
559  // commit load/store to lsq
560  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
561  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
562  io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))
563  io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))
564  io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)
565  io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)
566  io.lsq.commit := !io.commits.isWalk && io.commits.valid(0)
567
568  /**
569    * state changes
570    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
571    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
572    * (3) walk: when walking comes to the end, switch to s_walk
573    * (4) s_extrawalk to s_walk
574    */
575  val state_next = Mux(io.flushOut.valid,
576    s_idle,
577    Mux(io.redirect.valid,
578      Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
579      Mux(state === s_walk && walkFinished,
580        s_idle,
581        Mux(state === s_extrawalk, s_walk, state)
582      )
583    )
584  )
585  state := state_next
586
587  /**
588    * pointers and counters
589    */
590  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
591  deqPtrGenModule.io.state := state
592  deqPtrGenModule.io.deq_v := commit_v
593  deqPtrGenModule.io.deq_w := commit_w
594  deqPtrGenModule.io.exception_state := exceptionDataRead
595  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
596  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
597  deqPtrGenModule.io.commitType := deqDispatchData.commitType
598
599  deqPtrGenModule.io.misPredBlock := misPredBlock
600  deqPtrGenModule.io.isReplaying := isReplaying
601  deqPtrVec := deqPtrGenModule.io.out
602  val deqPtrVec_next = deqPtrGenModule.io.next_out
603
604  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
605  enqPtrGenModule.io.state := state
606  enqPtrGenModule.io.deq_v := commit_v(0)
607  enqPtrGenModule.io.deq_w := commit_w(0)
608  enqPtrGenModule.io.deqPtr := deqPtr
609  enqPtrGenModule.io.exception_state := exceptionDataRead
610  enqPtrGenModule.io.intrBitSetReg := intrBitSetReg
611  enqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
612  enqPtrGenModule.io.commitType := deqDispatchData.commitType
613  enqPtrGenModule.io.redirect := io.redirect
614  enqPtrGenModule.io.allowEnqueue := allowEnqueue
615  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
616  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
617  enqPtr := enqPtrGenModule.io.out
618
619  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
620  // next walkPtrVec:
621  // (1) redirect occurs: update according to state
622  // (2) walk: move backwards
623  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
624    Mux(state === s_walk,
625      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
626      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
627    ),
628    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
629  )
630  walkPtrVec := walkPtrVec_next
631
632  val lastCycleRedirect = RegNext(io.redirect.valid)
633  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
634  val commitCnt = PopCount(io.commits.valid)
635  validCounter := Mux(io.flushOut.valid,
636    0.U,
637    Mux(state === s_idle,
638      (validCounter - commitCnt) + dispatchNum,
639      trueValidCounter
640    )
641  )
642
643  allowEnqueue := Mux(io.flushOut.valid,
644    true.B,
645    Mux(state === s_idle,
646      validCounter + dispatchNum <= (RobSize - RenameWidth).U,
647      trueValidCounter <= (RobSize - RenameWidth).U
648    )
649  )
650
651  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
652  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
653  when (io.redirect.valid) {
654    walkCounter := Mux(state === s_walk,
655      redirectWalkDistance + io.redirect.bits.flushItself() - commitCnt,
656      redirectWalkDistance + io.redirect.bits.flushItself()
657    )
658  }.elsewhen (state === s_walk) {
659    walkCounter := walkCounter - commitCnt
660    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
661  }
662
663
664  /**
665    * States
666    * We put all the stage bits changes here.
667
668    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
669    * All states: (1) valid; (2) writebacked; (3) flagBkup
670    */
671  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
672
673  // enqueue logic writes 6 valid
674  for (i <- 0 until RenameWidth) {
675    when (canEnqueue(i) && !io.redirect.valid && !RegNext(io.flushOut.valid)) {
676      valid(enqPtrVec(i).value) := true.B
677    }
678  }
679  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
680  for (i <- 0 until CommitWidth) {
681    when (io.commits.valid(i) && state =/= s_extrawalk) {
682      valid(commitReadAddr(i)) := false.B
683    }
684  }
685  // reset: when exception, reset all valid to false
686  when (io.flushOut.valid) {
687    for (i <- 0 until RobSize) {
688      valid(i) := false.B
689    }
690  }
691  when (reset.asBool) {
692    for (i <- 0 until RobSize) {
693      valid(i) := false.B
694    }
695  }
696
697  // status field: writebacked
698  // enqueue logic set 6 writebacked to false
699  for (i <- 0 until RenameWidth) {
700    when (canEnqueue(i)) {
701      if (EnableIntMoveElim) {
702        eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
703        writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt().orR
704      } else {
705        writebacked(enqPtrVec(i).value) := false.B
706      }
707      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
708      store_data_writebacked(enqPtrVec(i).value) := !isStu
709    }
710  }
711  when (exceptionGen.io.out.valid) {
712    val wbIdx = exceptionGen.io.out.bits.robIdx.value
713    writebacked(wbIdx) := true.B
714    store_data_writebacked(wbIdx) := true.B
715  }
716  // writeback logic set numWbPorts writebacked to true
717  for (i <- 0 until numWbPorts) {
718    when (io.exeWbResults(i).valid) {
719      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
720      val block_wb =
721        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
722        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
723        io.exeWbResults(i).bits.uop.ctrl.replayInst
724      writebacked(wbIdx) := !block_wb
725    }
726  }
727  // store data writeback logic mark store as data_writebacked
728  for (i <- 0 until StorePipelineWidth) {
729    when(io.lsq.storeDataRobWb(i).valid) {
730      store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B
731    }
732  }
733
734  // flagBkup
735  // enqueue logic set 6 flagBkup at most
736  for (i <- 0 until RenameWidth) {
737    when (canEnqueue(i)) {
738      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
739    }
740  }
741
742
743  /**
744    * read and write of data modules
745    */
746  val commitReadAddr_next = Mux(state_next === s_idle,
747    VecInit(deqPtrVec_next.map(_.value)),
748    VecInit(walkPtrVec_next.map(_.value))
749  )
750  dispatchData.io.wen := canEnqueue
751  dispatchData.io.waddr := enqPtrVec.map(_.value)
752  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
753    wdata.ldest := req.ctrl.ldest
754    wdata.rfWen := req.ctrl.rfWen
755    wdata.fpWen := req.ctrl.fpWen
756    wdata.wflags := req.ctrl.fpu.wflags
757    wdata.commitType := req.ctrl.commitType
758    if (EnableIntMoveElim) {
759      wdata.eliminatedMove := req.eliminatedMove
760    } else {
761      wdata.eliminatedMove := DontCare
762    }
763    wdata.pdest := req.pdest
764    wdata.old_pdest := req.old_pdest
765    wdata.ftqIdx := req.cf.ftqPtr
766    wdata.ftqOffset := req.cf.ftqOffset
767    wdata.pc := req.cf.pc
768    wdata.crossPageIPFFix := req.cf.crossPageIPFFix
769    wdata.isFused := req.ctrl.isFused
770    // wdata.exceptionVec := req.cf.exceptionVec
771  }
772  dispatchData.io.raddr := commitReadAddr_next
773
774  exceptionGen.io.redirect <> io.redirect
775  exceptionGen.io.flush := io.flushOut.valid
776  for (i <- 0 until RenameWidth) {
777    exceptionGen.io.enq(i).valid := canEnqueue(i)
778    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
779    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
780    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
781    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
782    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
783    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
784  }
785
786  // TODO: don't hard code these idxes
787  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
788  // CSR is after Alu and Load
789  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
790  def atomic_wb_idx = exuParameters.AluCnt // first port for load
791  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
792  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
793  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
794  all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) }
795  def connect_exception(index: Int, wb_index: Int) = {
796    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
797    // A temporary fix for float load writeback
798    // TODO: let int/fp load use the same two wb ports
799    if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) {
800      when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) {
801        exceptionGen.io.wb(index).valid := true.B
802      }
803    }
804    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
805    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
806    else if (wb_index == atomic_wb_idx) selectAtomics _
807    else if (load_wb_idxes.contains(wb_index)) selectLoad _
808    else {
809      assert(store_wb_idxes.contains(wb_index))
810      selectStore _
811    }
812    exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
813    exceptionGen.io.wb(index).bits.flushPipe    := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
814    exceptionGen.io.wb(index).bits.replayInst   := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
815    exceptionGen.io.wb(index).bits.singleStep   := false.B
816  }
817
818  // 4 fmac + 2 fmisc + 1 i2f
819  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
820  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2)
821  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
822  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
823    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
824  }).map(_._1)
825  val fflagsDataModule = Module(new SyncDataModuleTemplate(
826    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
827  )
828  for(i <- fflags_wb.indices){
829    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
830    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
831    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
832  }
833  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
834  fflagsDataRead := fflagsDataModule.io.rdata
835
836
837  val instrCnt = RegInit(0.U(64.W))
838  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && i.isFused =/= 0.U })
839  val trueCommitCnt = commitCnt +& fuseCommitCnt
840  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
841  instrCnt := instrCnt + retireCounter
842  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
843  io.robFull := !allowEnqueue
844
845  /**
846    * debug info
847    */
848  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
849  XSDebug("")
850  for(i <- 0 until RobSize){
851    XSDebug(false, !valid(i), "-")
852    XSDebug(false, valid(i) && writebacked(i), "w")
853    XSDebug(false, valid(i) && !writebacked(i), "v")
854  }
855  XSDebug(false, true.B, "\n")
856
857  for(i <- 0 until RobSize) {
858    if(i % 4 == 0) XSDebug("")
859    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
860    XSDebug(false, !valid(i), "- ")
861    XSDebug(false, valid(i) && writebacked(i), "w ")
862    XSDebug(false, valid(i) && !writebacked(i), "v ")
863    if(i % 4 == 3) XSDebug(false, true.B, "\n")
864  }
865
866  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
867
868  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
869  XSPerfAccumulate("clock_cycle", 1.U)
870  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
871  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
872  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
873  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
874  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
875  if (EnableIntMoveElim) {
876    val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
877    XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
878  }
879  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
880  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
881  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
882  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
883  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
884  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
885  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
886  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
887  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
888  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
889  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
890  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
891  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
892  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
893  val deqUopCommitType = io.commits.info(0).commitType
894  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
895  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
896  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
897  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
898  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
899  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
900  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
901  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
902  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
903  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
904  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
905  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
906  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
907    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
908  }
909  for (fuType <- FuType.functionNameMap.keys) {
910    val fuName = FuType.functionNameMap(fuType)
911    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
912    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
913    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
914    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
915    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
916    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
917    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
918    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
919    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
920    if (fuType == FuType.fmac.litValue()) {
921      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
922      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
923      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
924      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
925    }
926  }
927
928  val l1Miss = Wire(Bool())
929  l1Miss := false.B
930  ExcitingUtils.addSink(l1Miss, "TMA_l1miss")
931  XSPerfAccumulate("TMA_L1miss", deqNotWritebacked && deqUopCommitType === CommitType.LOAD && l1Miss)
932
933
934  //difftest signals
935  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
936
937  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
938  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
939  val trapVec = Wire(Vec(CommitWidth, Bool()))
940  for(i <- 0 until CommitWidth) {
941    val idx = deqPtrVec(i).value
942    wdata(i) := debug_exuData(idx)
943    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
944    trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap
945  }
946  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
947  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
948  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
949
950  val hitTrap = trapVec.reduce(_||_)
951  val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
952  val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
953
954  if (!env.FPGAPlatform) {
955    for (i <- 0 until CommitWidth) {
956      val difftest = Module(new DifftestInstrCommit)
957      difftest.io.clock    := clock
958      difftest.io.coreid   := hardId.U
959      difftest.io.index    := i.U
960
961      val ptr = deqPtrVec(i).value
962      val uop = commitDebugUop(i)
963      val exuOut = debug_exuDebug(ptr)
964      val exuData = debug_exuData(ptr)
965      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
966      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
967      difftest.io.instr    := RegNext(uop.cf.instr)
968      difftest.io.special  := RegNext(uop.ctrl.isFused =/= 0.U)
969      if (EnableIntMoveElim) {
970        // when committing an eliminated move instruction,
971        // we must make sure that skip is properly set to false (output from EXU is random value)
972        difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
973      } else {
974        difftest.io.skip     := RegNext(exuOut.isMMIO || exuOut.isPerfCnt)
975      }
976      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
977      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
978        uop.ctrl.fuType === FuType.mou &&
979        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
980      difftest.io.wen      := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U)
981      difftest.io.wdata    := RegNext(exuData)
982      difftest.io.wdest    := RegNext(uop.ctrl.ldest)
983
984      // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n")
985    }
986  }
987
988  if (!env.FPGAPlatform) {
989    for (i <- 0 until CommitWidth) {
990      val difftest = Module(new DifftestLoadEvent)
991      difftest.io.clock  := clock
992      difftest.io.coreid := hardId.U
993      difftest.io.index  := i.U
994
995      val ptr = deqPtrVec(i).value
996      val uop = commitDebugUop(i)
997      val exuOut = debug_exuDebug(ptr)
998      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
999      difftest.io.paddr  := RegNext(exuOut.paddr)
1000      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
1001      difftest.io.fuType := RegNext(uop.ctrl.fuType)
1002    }
1003  }
1004
1005  if (!env.FPGAPlatform) {
1006    val difftest = Module(new DifftestTrapEvent)
1007    difftest.io.clock    := clock
1008    difftest.io.coreid   := hardId.U
1009    difftest.io.valid    := hitTrap
1010    difftest.io.code     := trapCode
1011    difftest.io.pc       := trapPC
1012    difftest.io.cycleCnt := timer
1013    difftest.io.instrCnt := instrCnt
1014  }
1015}
1016