xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 7531c765d87d92e3c772b0d55aa810c2041ba3e3)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuType, FuConfig}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36
37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
38  entries
39) with HasCircularQueuePtrHelper {
40
41  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
42
43  def needFlush(redirect: Valid[Redirect]): Bool = {
44    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
45    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
46  }
47
48  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
49}
50
51object RobPtr {
52  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
53    val ptr = Wire(new RobPtr)
54    ptr.flag := f
55    ptr.value := v
56    ptr
57  }
58}
59
60class RobCSRIO(implicit p: Parameters) extends XSBundle {
61  val intrBitSet = Input(Bool())
62  val trapTarget = Input(UInt(VAddrBits.W))
63  val isXRet     = Input(Bool())
64  val wfiEvent   = Input(Bool())
65
66  val fflags     = Output(Valid(UInt(5.W)))
67  val vxsat      = Output(Valid(Bool()))
68  val vstart     = Output(Valid(UInt(XLEN.W)))
69  val dirty_fs   = Output(Bool())
70  val perfinfo   = new Bundle {
71    val retiredInstr = Output(UInt(3.W))
72  }
73
74  val vcsrFlag   = Output(Bool())
75}
76
77class RobLsqIO(implicit p: Parameters) extends XSBundle {
78  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
79  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val pendingld = Output(Bool())
81  val pendingst = Output(Bool())
82  val commit = Output(Bool())
83  val pendingPtr = Output(new RobPtr)
84  val pendingPtrNext = Output(new RobPtr)
85
86  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
87  // Todo: what's this?
88  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
89}
90
91class RobEnqIO(implicit p: Parameters) extends XSBundle {
92  val canAccept = Output(Bool())
93  val isEmpty = Output(Bool())
94  // valid vector, for robIdx gen and walk
95  val needAlloc = Vec(RenameWidth, Input(Bool()))
96  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
97  val resp = Vec(RenameWidth, Output(new RobPtr))
98}
99
100class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
101  val robHeadVaddr = Valid(UInt(VAddrBits.W))
102  val robHeadPaddr = Valid(UInt(PAddrBits.W))
103}
104
105class RobDispatchTopDownIO extends Bundle {
106  val robTrueCommit = Output(UInt(64.W))
107  val robHeadLsIssue = Output(Bool())
108}
109
110class RobDebugRollingIO extends Bundle {
111  val robTrueCommit = Output(UInt(64.W))
112}
113
114class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
115
116class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
117  val io = IO(new Bundle {
118    // for commits/flush
119    val state = Input(UInt(2.W))
120    val deq_v = Vec(CommitWidth, Input(Bool()))
121    val deq_w = Vec(CommitWidth, Input(Bool()))
122    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
123    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
124    val intrBitSetReg = Input(Bool())
125    val hasNoSpecExec = Input(Bool())
126    val interrupt_safe = Input(Bool())
127    val blockCommit = Input(Bool())
128    // output: the CommitWidth deqPtr
129    val out = Vec(CommitWidth, Output(new RobPtr))
130    val next_out = Vec(CommitWidth, Output(new RobPtr))
131  })
132
133  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
134
135  // for exceptions (flushPipe included) and interrupts:
136  // only consider the first instruction
137  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
138  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
139  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
140
141  // for normal commits: only to consider when there're no exceptions
142  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
143  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
144  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
145  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
146  // when io.intrBitSetReg or there're possible exceptions in these instructions,
147  // only one instruction is allowed to commit
148  val allowOnlyOne = commit_exception || io.intrBitSetReg
149  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
150
151  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
152  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
153
154  deqPtrVec := deqPtrVec_next
155
156  io.next_out := deqPtrVec_next
157  io.out      := deqPtrVec
158
159  when (io.state === 0.U) {
160    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
161  }
162
163}
164
165class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
166  val io = IO(new Bundle {
167    // for input redirect
168    val redirect = Input(Valid(new Redirect))
169    // for enqueue
170    val allowEnqueue = Input(Bool())
171    val hasBlockBackward = Input(Bool())
172    val enq = Vec(RenameWidth, Input(Bool()))
173    val out = Output(Vec(RenameWidth, new RobPtr))
174  })
175
176  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
177
178  // enqueue
179  val canAccept = io.allowEnqueue && !io.hasBlockBackward
180  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
181
182  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
183    when(io.redirect.valid) {
184      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
185    }.otherwise {
186      ptr := ptr + dispatchNum
187    }
188  }
189
190  io.out := enqPtrVec
191
192}
193
194class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
195  // val valid = Bool()
196  val robIdx = new RobPtr
197  val exceptionVec = ExceptionVec()
198  val flushPipe = Bool()
199  val isVset = Bool()
200  val replayInst = Bool() // redirect to that inst itself
201  val singleStep = Bool() // TODO add frontend hit beneath
202  val crossPageIPFFix = Bool()
203  val trigger = new TriggerCf
204  val vstartEn = Bool()
205  val vstart = UInt(XLEN.W)
206
207//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
208//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
209  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
210  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
211  // only exceptions are allowed to writeback when enqueue
212  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
213}
214
215class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
216  val io = IO(new Bundle {
217    val redirect = Input(Valid(new Redirect))
218    val flush = Input(Bool())
219    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
220    // csr + load + store + varith + vload + vstore
221    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
222    val out = ValidIO(new RobExceptionInfo)
223    val state = ValidIO(new RobExceptionInfo)
224  })
225
226  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
227
228  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
229    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
230      assert(valid.length == bits.length)
231      if (valid.length == 1) {
232        (valid, bits)
233      } else if (valid.length == 2) {
234        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
235        for (i <- res.indices) {
236          res(i).valid := valid(i)
237          res(i).bits := bits(i)
238        }
239        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
240        (Seq(oldest.valid), Seq(oldest.bits))
241      } else {
242        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
243        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
244        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
245      }
246    }
247    getOldest_recursion(valid, bits)._2.head
248  }
249
250
251  val currentValid = RegInit(false.B)
252  val current = Reg(new RobExceptionInfo)
253
254  // orR the exceptionVec
255  val lastCycleFlush = RegNext(io.flush)
256  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
257
258  // s0: compare wb in 6 groups
259  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
260  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
261  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
262  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
263  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
264  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
265
266  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
267  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
268  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
269    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
270  }
271  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
272
273  val s0_out_valid = wb_valid.map(x => RegNext(x))
274  val s0_out_bits = wb_bits.map(x => RegNext(x))
275
276  // s1: compare last six and current flush
277  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
278  val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits))
279  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
280
281  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
282  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
283
284  // s2: compare the input exception with the current one
285  // priorities:
286  // (1) system reset
287  // (2) current is valid: flush, remain, merge, update
288  // (3) current is not valid: s1 or enq
289  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
290  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
291  when (currentValid) {
292    when (current_flush) {
293      currentValid := Mux(s1_flush, false.B, s1_out_valid)
294    }
295    when (s1_out_valid && !s1_flush) {
296      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
297        current := s1_out_bits
298      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
299        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
300        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
301        current.replayInst := s1_out_bits.replayInst || current.replayInst
302        current.singleStep := s1_out_bits.singleStep || current.singleStep
303        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
304      }
305    }
306  }.elsewhen (s1_out_valid && !s1_flush) {
307    currentValid := true.B
308    current := s1_out_bits
309  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
310    currentValid := true.B
311    current := enq_bits
312  }
313
314  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
315  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
316  io.state.valid := currentValid
317  io.state.bits  := current
318
319}
320
321class RobFlushInfo(implicit p: Parameters) extends XSBundle {
322  val ftqIdx = new FtqPtr
323  val robIdx = new RobPtr
324  val ftqOffset = UInt(log2Up(PredictWidth).W)
325  val replayInst = Bool()
326}
327
328class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
329  override def shouldBeInlined: Boolean = false
330
331  lazy val module = new RobImp(this)(p, params)
332}
333
334class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
335  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
336
337  private val LduCnt = params.LduCnt
338  private val StaCnt = params.StaCnt
339  private val HyuCnt = params.HyuCnt
340
341  val io = IO(new Bundle() {
342    val hartId = Input(UInt(8.W))
343    val redirect = Input(Valid(new Redirect))
344    val enq = new RobEnqIO
345    val flushOut = ValidIO(new Redirect)
346    val exception = ValidIO(new ExceptionInfo)
347    // exu + brq
348    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
349    val commits = Output(new RobCommitIO)
350    val rabCommits = Output(new RobCommitIO)
351    val diffCommits = Output(new DiffCommitIO)
352    val isVsetFlushPipe = Output(Bool())
353    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
354    val lsq = new RobLsqIO
355    val robDeqPtr = Output(new RobPtr)
356    val csr = new RobCSRIO
357    val snpt = Input(new SnapshotPort)
358    val robFull = Output(Bool())
359    val headNotReady = Output(Bool())
360    val cpu_halt = Output(Bool())
361    val wfi_enable = Input(Bool())
362
363    val debug_ls = Flipped(new DebugLSIO)
364    val debugRobHead = Output(new DynInst)
365    val debugEnqLsq = Input(new LsqEnqIO)
366    val debugHeadLsIssue = Input(Bool())
367    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
368    val debugTopDown = new Bundle {
369      val toCore = new RobCoreTopDownIO
370      val toDispatch = new RobDispatchTopDownIO
371      val robHeadLqIdx = Valid(new LqPtr)
372    }
373    val debugRolling = new RobDebugRollingIO
374  })
375
376  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
377  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
378  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
379  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
380  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
381
382  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
383  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
384  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
385  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
386  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
387  val numExuWbPorts = exuWBs.length
388  val numStdWbPorts = stdWBs.length
389
390
391  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
392//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
393//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
394//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
395
396
397  // instvalid field
398  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
399  // writeback status
400
401  val stdWritebacked = Reg(Vec(RobSize, Bool()))
402  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
403  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
404  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
405  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
406
407  def isWritebacked(ptr: UInt): Bool = {
408    !uopNumVec(ptr).orR && stdWritebacked(ptr)
409  }
410
411  def isUopWritebacked(ptr: UInt): Bool = {
412    !uopNumVec(ptr).orR
413  }
414
415  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
416
417  // data for redirect, exception, etc.
418  val flagBkup = Mem(RobSize, Bool())
419  // some instructions are not allowed to trigger interrupts
420  // They have side effects on the states of the processor before they write back
421  val interrupt_safe = Mem(RobSize, Bool())
422
423  // data for debug
424  // Warn: debug_* prefix should not exist in generated verilog.
425  val debug_microOp = DebugMem(RobSize, new DynInst)
426  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
427  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
428  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
429  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
430  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
431  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
432
433  // pointers
434  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
435  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
436  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
437
438  dontTouch(enqPtrVec)
439  dontTouch(deqPtrVec)
440
441  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
442  val lastWalkPtr = Reg(new RobPtr)
443  val allowEnqueue = RegInit(true.B)
444
445  val enqPtr = enqPtrVec.head
446  val deqPtr = deqPtrVec(0)
447  val walkPtr = walkPtrVec(0)
448
449  val isEmpty = enqPtr === deqPtr
450  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
451
452  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
453  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
454  val debug_lsIssue = WireDefault(debug_lsIssued)
455  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
456
457  /**
458    * states of Rob
459    */
460  val s_idle :: s_walk :: Nil = Enum(2)
461  val state = RegInit(s_idle)
462
463  /**
464    * Data Modules
465    *
466    * CommitDataModule: data from dispatch
467    * (1) read: commits/walk/exception
468    * (2) write: enqueue
469    *
470    * WritebackData: data from writeback
471    * (1) read: commits/walk/exception
472    * (2) write: write back from exe units
473    */
474  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
475  val dispatchDataRead = dispatchData.io.rdata
476
477  val exceptionGen = Module(new ExceptionGen(params))
478  val exceptionDataRead = exceptionGen.io.state
479  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
480  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
481
482  io.robDeqPtr := deqPtr
483  io.debugRobHead := debug_microOp(deqPtr.value)
484
485  val rab = Module(new RenameBuffer(RabSize))
486
487  rab.io.redirect.valid := io.redirect.valid
488
489  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
490    dest.bits := src.bits
491    dest.valid := src.valid && io.enq.canAccept
492  }
493
494  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
495  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
496
497  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
498    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
499  }.reduce(_ +& _)
500  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
501    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
502  }.reduce(_ +& _)
503
504  rab.io.fromRob.commitSize := commitSizeSum
505  rab.io.fromRob.walkSize := walkSizeSum
506  rab.io.snpt := io.snpt
507  rab.io.snpt.snptEnq := snptEnq
508
509  io.rabCommits := rab.io.commits
510  io.diffCommits := rab.io.diffCommits
511
512  /**
513    * Enqueue (from dispatch)
514    */
515  // special cases
516  val hasBlockBackward = RegInit(false.B)
517  val hasWaitForward = RegInit(false.B)
518  val doingSvinval = RegInit(false.B)
519  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
520  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
521  when (isEmpty) { hasBlockBackward:= false.B }
522  // When any instruction commits, hasNoSpecExec should be set to false.B
523  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
524
525  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
526  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
527  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
528  val hasWFI = RegInit(false.B)
529  io.cpu_halt := hasWFI
530  // WFI Timeout: 2^20 = 1M cycles
531  val wfi_cycles = RegInit(0.U(20.W))
532  when (hasWFI) {
533    wfi_cycles := wfi_cycles + 1.U
534  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
535    wfi_cycles := 0.U
536  }
537  val wfi_timeout = wfi_cycles.andR
538  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
539    hasWFI := false.B
540  }
541
542  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
543  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
544  io.enq.resp      := allocatePtrVec
545  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
546  val timer = GTimer()
547  for (i <- 0 until RenameWidth) {
548    // we don't check whether io.redirect is valid here since redirect has higher priority
549    when (canEnqueue(i)) {
550      val enqUop = io.enq.req(i).bits
551      val enqIndex = allocatePtrVec(i).value
552      // store uop in data module and debug_microOp Vec
553      debug_microOp(enqIndex) := enqUop
554      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
555      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
556      debug_microOp(enqIndex).debugInfo.selectTime := timer
557      debug_microOp(enqIndex).debugInfo.issueTime := timer
558      debug_microOp(enqIndex).debugInfo.writebackTime := timer
559      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
560      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
561      debug_lsInfo(enqIndex) := DebugLsInfo.init
562      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
563      debug_lqIdxValid(enqIndex) := false.B
564      debug_lsIssued(enqIndex) := false.B
565
566      when (enqUop.blockBackward) {
567        hasBlockBackward := true.B
568      }
569      when (enqUop.waitForward) {
570        hasWaitForward := true.B
571      }
572      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
573      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
574      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
575      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
576      {
577        doingSvinval := true.B
578      }
579      // the end instruction of Svinval enqs so clear doingSvinval
580      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
581      {
582        doingSvinval := false.B
583      }
584      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
585      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
586      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
587        hasWFI := true.B
588      }
589
590      mmio(enqIndex) := false.B
591    }
592  }
593  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
594  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
595
596  when (!io.wfi_enable) {
597    hasWFI := false.B
598  }
599  // sel vsetvl's flush position
600  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
601  val vsetvlState = RegInit(vs_idle)
602
603  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
604  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
605  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
606
607  val enq0            = io.enq.req(0)
608  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
609  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
610  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
611  // for vs_idle
612  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
613  // for vs_waitVinstr
614  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
615  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
616  when(vsetvlState === vs_idle){
617    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
618    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
619    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
620  }.elsewhen(vsetvlState === vs_waitVinstr){
621    when(Cat(enqIsVInstrOrVset).orR){
622      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
623      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
624      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
625    }
626  }
627
628  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
629  when(vsetvlState === vs_idle && !io.redirect.valid){
630    when(enq0IsVsetFlush){
631      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
632    }
633  }.elsewhen(vsetvlState === vs_waitVinstr){
634    when(io.redirect.valid){
635      vsetvlState := vs_idle
636    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
637      vsetvlState := vs_waitFlush
638    }
639  }.elsewhen(vsetvlState === vs_waitFlush){
640    when(io.redirect.valid){
641      vsetvlState := vs_idle
642    }
643  }
644
645  // lqEnq
646  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
647    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
648      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
649      debug_lqIdxValid(req.bits.robIdx.value) := true.B
650    }
651  }
652
653  // lsIssue
654  when(io.debugHeadLsIssue) {
655    debug_lsIssued(deqPtr.value) := true.B
656  }
657
658  /**
659    * Writeback (from execution units)
660    */
661  for (wb <- exuWBs) {
662    when (wb.valid) {
663      val wbIdx = wb.bits.robIdx.value
664      debug_exuData(wbIdx) := wb.bits.data
665      debug_exuDebug(wbIdx) := wb.bits.debug
666      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
667      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
668      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
669      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
670
671      // debug for lqidx and sqidx
672      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
673      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
674
675      val debug_Uop = debug_microOp(wbIdx)
676      XSInfo(true.B,
677        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
678        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
679        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
680      )
681    }
682  }
683
684  val writebackNum = PopCount(exuWBs.map(_.valid))
685  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
686
687  for (i <- 0 until LoadPipelineWidth) {
688    when (RegNext(io.lsq.mmio(i))) {
689      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
690    }
691  }
692
693  /**
694    * RedirectOut: Interrupt and Exceptions
695    */
696  val deqDispatchData = dispatchDataRead(0)
697  val debug_deqUop = debug_microOp(deqPtr.value)
698
699  val intrBitSetReg = RegNext(io.csr.intrBitSet)
700  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
701  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
702  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
703    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
704  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
705  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
706  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
707
708  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
709  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
710  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
711
712  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
713
714  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
715//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
716  val needModifyFtqIdxOffset = false.B
717  io.isVsetFlushPipe := isVsetFlushPipe
718  io.vconfigPdest := rab.io.vconfigPdest
719  // io.flushOut will trigger redirect at the next cycle.
720  // Block any redirect or commit at the next cycle.
721  val lastCycleFlush = RegNext(io.flushOut.valid)
722
723  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
724  io.flushOut.bits := DontCare
725  io.flushOut.bits.isRVC := deqDispatchData.isRVC
726  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
727  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
728  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
729  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
730  io.flushOut.bits.interrupt := true.B
731  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
732  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
733  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
734  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
735
736  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
737  io.exception.valid                := RegNext(exceptionHappen)
738  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
739  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
740  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
741  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
742  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
743  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
744  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
745  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
746  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
747//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
748
749  XSDebug(io.flushOut.valid,
750    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
751    p"excp $exceptionEnable flushPipe $isFlushPipe " +
752    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
753
754
755  /**
756    * Commits (and walk)
757    * They share the same width.
758    */
759  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
760  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
761  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
762
763  require(RenameWidth <= CommitWidth)
764
765  // wiring to csr
766  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
767    val v = io.commits.commitValid(i)
768    val info = io.commits.info(i)
769    (v & info.wflags, v & info.dirtyFs)
770  }).unzip
771  val fflags = Wire(Valid(UInt(5.W)))
772  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
773  fflags.bits := wflags.zip(fflagsDataRead).map({
774    case (w, f) => Mux(w, f, 0.U)
775  }).reduce(_|_)
776  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
777
778  val vxsat = Wire(Valid(Bool()))
779  vxsat.valid := io.commits.isCommit && vxsat.bits
780  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
781    case (valid, vxsat) => valid & vxsat
782  }.reduce(_ | _)
783
784  // when mispredict branches writeback, stop commit in the next 2 cycles
785  // TODO: don't check all exu write back
786  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
787    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
788  ).toSeq)).orR
789  val misPredBlockCounter = Reg(UInt(3.W))
790  misPredBlockCounter := Mux(misPredWb,
791    "b111".U,
792    misPredBlockCounter >> 1.U
793  )
794  val misPredBlock = misPredBlockCounter(0)
795  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
796
797  io.commits.isWalk := state === s_walk
798  io.commits.isCommit := state === s_idle && !blockCommit
799  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
800  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
801  // store will be commited iff both sta & std have been writebacked
802  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
803  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
804  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
805  val allowOnlyOneCommit = commit_exception || intrBitSetReg
806  // for instructions that may block others, we don't allow them to commit
807  for (i <- 0 until CommitWidth) {
808    // defaults: state === s_idle and instructions commit
809    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
810    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
811    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
812    io.commits.info(i) := dispatchDataRead(i)
813    io.commits.robIdx(i) := deqPtrVec(i)
814
815    io.commits.walkValid(i) := shouldWalkVec(i)
816    when (state === s_walk) {
817      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
818        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
819      }
820    }
821
822    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
823      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
824      debug_microOp(deqPtrVec(i).value).pc,
825      io.commits.info(i).rfWen,
826      io.commits.info(i).ldest,
827      io.commits.info(i).pdest,
828      debug_exuData(deqPtrVec(i).value),
829      fflagsDataRead(i),
830      vxsatDataRead(i)
831    )
832    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
833      debug_microOp(walkPtrVec(i).value).pc,
834      io.commits.info(i).rfWen,
835      io.commits.info(i).ldest,
836      debug_exuData(walkPtrVec(i).value)
837    )
838  }
839  if (env.EnableDifftest) {
840    io.commits.info.map(info => dontTouch(info.pc))
841  }
842
843  // sync fflags/dirty_fs/vxsat to csr
844  io.csr.fflags := RegNext(fflags)
845  io.csr.dirty_fs := RegNext(dirty_fs)
846  io.csr.vxsat := RegNext(vxsat)
847
848  // sync v csr to csr
849  // for difftest
850  if(env.AlwaysBasicDiff || env.EnableDifftest) {
851    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
852    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
853  }
854  else{
855    io.csr.vcsrFlag := false.B
856  }
857
858  // commit load/store to lsq
859  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
860  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
861  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
862  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
863  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
864  // indicate a pending load or store
865  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
866  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
867  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
868  io.lsq.pendingPtr := RegNext(deqPtr)
869  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
870
871  /**
872    * state changes
873    * (1) redirect: switch to s_walk
874    * (2) walk: when walking comes to the end, switch to s_idle
875    */
876  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state))
877  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
878  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
879  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
880  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
881  state := state_next
882
883  /**
884    * pointers and counters
885    */
886  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
887  deqPtrGenModule.io.state := state
888  deqPtrGenModule.io.deq_v := commit_v
889  deqPtrGenModule.io.deq_w := commit_w
890  deqPtrGenModule.io.exception_state := exceptionDataRead
891  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
892  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
893  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
894  deqPtrGenModule.io.blockCommit := blockCommit
895  deqPtrVec := deqPtrGenModule.io.out
896  deqPtrVec_next := deqPtrGenModule.io.next_out
897
898  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
899  enqPtrGenModule.io.redirect := io.redirect
900  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
901  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
902  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
903  enqPtrVec := enqPtrGenModule.io.out
904
905  // next walkPtrVec:
906  // (1) redirect occurs: update according to state
907  // (2) walk: move forwards
908  val walkPtrVec_next = Mux(io.redirect.valid,
909    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
910    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
911  )
912  walkPtrVec := walkPtrVec_next
913
914  val numValidEntries = distanceBetween(enqPtr, deqPtr)
915  val commitCnt = PopCount(io.commits.commitValid)
916
917  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
918
919  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
920  when (io.redirect.valid) {
921    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
922  }
923
924
925  /**
926    * States
927    * We put all the stage bits changes here.
928
929    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
930    * All states: (1) valid; (2) writebacked; (3) flagBkup
931    */
932  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
933
934  // redirect logic writes 6 valid
935  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
936  val redirectTail = Reg(new RobPtr)
937  val redirectIdle :: redirectBusy :: Nil = Enum(2)
938  val redirectState = RegInit(redirectIdle)
939  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
940  when(redirectState === redirectBusy) {
941    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
942    redirectHeadVec zip invMask foreach {
943      case (redirectHead, inv) => when(inv) {
944        valid(redirectHead.value) := false.B
945      }
946    }
947    when(!invMask.last) {
948      redirectState := redirectIdle
949    }
950  }
951  when(io.redirect.valid) {
952    redirectState := redirectBusy
953    when(redirectState === redirectIdle) {
954      redirectTail := enqPtr
955    }
956    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
957      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
958    }
959  }
960  // enqueue logic writes 6 valid
961  for (i <- 0 until RenameWidth) {
962    when (canEnqueue(i) && !io.redirect.valid) {
963      valid(allocatePtrVec(i).value) := true.B
964    }
965  }
966  // dequeue logic writes 6 valid
967  for (i <- 0 until CommitWidth) {
968    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
969    when (commitValid) {
970      valid(commitReadAddr(i)) := false.B
971    }
972  }
973
974  // debug_inst update
975  for(i <- 0 until (LduCnt + StaCnt)) {
976    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
977    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
978  }
979  for (i <- 0 until LduCnt) {
980    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
981    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
982  }
983
984  // writeback logic set numWbPorts writebacked to true
985  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
986  blockWbSeq.map(_ := false.B)
987  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
988    when(wb.valid) {
989      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
990      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
991      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
992      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
993      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
994    }
995  }
996
997  // if the first uop of an instruction is valid , write writebackedCounter
998  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
999  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1000  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1001  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1002  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1003  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1004
1005  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1006    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1007  })
1008  val fflags_wb = fflagsPorts
1009  val vxsat_wb = vxsatPorts
1010  for(i <- 0 until RobSize){
1011
1012    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1013    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1014    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1015    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1016
1017    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1018
1019    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1020    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1021    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1022
1023    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1024    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1025    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1026    val wbCnt = PopCount(canWbNoBlockSeq)
1027
1028    val exceptionHas = RegInit(false.B)
1029    val exceptionHasWire = Wire(Bool())
1030    exceptionHasWire := MuxCase(exceptionHas, Seq(
1031      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1032      !valid(i) -> false.B
1033    ))
1034    exceptionHas := exceptionHasWire
1035
1036    when (exceptionHas || exceptionHasWire) {
1037      // exception flush
1038      uopNumVec(i) := 0.U
1039      stdWritebacked(i) := true.B
1040    }.elsewhen(!valid(i) && instCanEnqFlag) {
1041      // enq set num of uops
1042      uopNumVec(i) := enqUopNum
1043      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1044    }.elsewhen(valid(i)) {
1045      // update by writing back
1046      uopNumVec(i) := uopNumVec(i) - wbCnt
1047      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!")
1048      when (canStdWbSeq.asUInt.orR) {
1049        stdWritebacked(i) := true.B
1050      }
1051    }.otherwise {
1052      uopNumVec(i) := 0.U
1053    }
1054
1055    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1056    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1057    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1058
1059    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1060    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1061    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1062  }
1063
1064  // flagBkup
1065  // enqueue logic set 6 flagBkup at most
1066  for (i <- 0 until RenameWidth) {
1067    when (canEnqueue(i)) {
1068      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1069    }
1070  }
1071
1072  // interrupt_safe
1073  for (i <- 0 until RenameWidth) {
1074    // We RegNext the updates for better timing.
1075    // Note that instructions won't change the system's states in this cycle.
1076    when (RegNext(canEnqueue(i))) {
1077      // For now, we allow non-load-store instructions to trigger interrupts
1078      // For MMIO instructions, they should not trigger interrupts since they may
1079      // be sent to lower level before it writes back.
1080      // However, we cannot determine whether a load/store instruction is MMIO.
1081      // Thus, we don't allow load/store instructions to trigger an interrupt.
1082      // TODO: support non-MMIO load-store instructions to trigger interrupts
1083      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1084      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1085    }
1086  }
1087
1088  /**
1089    * read and write of data modules
1090    */
1091  val commitReadAddr_next = Mux(state_next === s_idle,
1092    VecInit(deqPtrVec_next.map(_.value)),
1093    VecInit(walkPtrVec_next.map(_.value))
1094  )
1095  dispatchData.io.wen := canEnqueue
1096  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1097  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1098    wdata.ldest := req.ldest
1099    wdata.rfWen := req.rfWen
1100    wdata.dirtyFs := req.dirtyFs
1101    wdata.vecWen := req.vecWen
1102    wdata.wflags := req.wfflags
1103    wdata.commitType := req.commitType
1104    wdata.pdest := req.pdest
1105    wdata.ftqIdx := req.ftqPtr
1106    wdata.ftqOffset := req.ftqOffset
1107    wdata.isMove := req.eliminatedMove
1108    wdata.isRVC := req.preDecodeInfo.isRVC
1109    wdata.pc := req.pc
1110    wdata.vtype := req.vpu.vtype
1111    wdata.isVset := req.isVset
1112    wdata.instrSize := req.instrSize
1113  }
1114  dispatchData.io.raddr := commitReadAddr_next
1115
1116  exceptionGen.io.redirect <> io.redirect
1117  exceptionGen.io.flush := io.flushOut.valid
1118
1119  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1120  for (i <- 0 until RenameWidth) {
1121    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1122    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1123    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1124    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1125    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1126    exceptionGen.io.enq(i).bits.replayInst := false.B
1127    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1128    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1129    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1130    exceptionGen.io.enq(i).bits.trigger.clear()
1131    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1132    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1133    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1134  }
1135
1136  println(s"ExceptionGen:")
1137  println(s"num of exceptions: ${params.numException}")
1138  require(exceptionWBs.length == exceptionGen.io.wb.length,
1139    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1140      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1141  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1142    exc_wb.valid                := wb.valid
1143    exc_wb.bits.robIdx          := wb.bits.robIdx
1144    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1145    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1146    exc_wb.bits.isVset          := false.B
1147    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1148    exc_wb.bits.singleStep      := false.B
1149    exc_wb.bits.crossPageIPFFix := false.B
1150    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1151    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1152    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1153//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1154//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1155//      s"replayInst ${configs.exists(_.replayInst)}")
1156  }
1157
1158  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1159  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1160
1161  val instrCntReg = RegInit(0.U(64.W))
1162  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1163  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1164  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1165  val instrCnt = instrCntReg + retireCounter
1166  instrCntReg := instrCnt
1167  io.csr.perfinfo.retiredInstr := retireCounter
1168  io.robFull := !allowEnqueue
1169  io.headNotReady := commit_v.head && !commit_w.head
1170
1171  /**
1172    * debug info
1173    */
1174  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1175  XSDebug("")
1176  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1177  for(i <- 0 until RobSize) {
1178    XSDebug(false, !valid(i), "-")
1179    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1180    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1181  }
1182  XSDebug(false, true.B, "\n")
1183
1184  for(i <- 0 until RobSize) {
1185    if (i % 4 == 0) XSDebug("")
1186    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1187    XSDebug(false, !valid(i), "- ")
1188    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1189    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1190    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1191  }
1192
1193  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1194  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1195
1196  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1197  XSPerfAccumulate("clock_cycle", 1.U)
1198  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1199  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1200  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1201  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1202  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1203  val commitIsMove = commitDebugUop.map(_.isMove)
1204  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1205  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1206  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1207  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1208  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1209  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1210  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1211  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1212  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1213  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1214  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1215  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1216  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1217  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1218  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1219  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1220  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1221  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1222  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1223  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1224  private val walkCycle = RegInit(0.U(8.W))
1225  private val waitRabWalkCycle = RegInit(0.U(8.W))
1226  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1227  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1228
1229  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1230  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1231  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1232
1233  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1234  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1235  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1236  private val deqHeadInfo = debug_microOp(deqPtr.value)
1237  val deqUopCommitType = io.commits.info(0).commitType
1238
1239  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1240  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1241  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1242  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1243  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1244  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1245  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1246  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1247  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1248  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1249  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1250  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1251  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1252
1253  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1254  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1255  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1256  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1257  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1258  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1259  (2 to RenameWidth).foreach(i =>
1260    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1261  )
1262  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1263  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1264  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1265  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1266  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1267  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1268  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1269  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1270  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1271    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1272  }
1273  for (fuType <- FuType.functionNameMap.keys) {
1274    val fuName = FuType.functionNameMap(fuType)
1275    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1276    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1277    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1278    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1279    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1280    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1281    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1282    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1283    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1284    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1285  }
1286  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1287
1288  // top-down info
1289  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1290  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1291  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1292  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1293  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1294  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1295  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1296  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1297
1298  // rolling
1299  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1300
1301  /**
1302    * DataBase info:
1303    * log trigger is at writeback valid
1304    * */
1305
1306  /**
1307    * @todo add InstInfoEntry back
1308    * @author Maxpicca-Li
1309    */
1310
1311  //difftest signals
1312  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1313
1314  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1315  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1316
1317  for(i <- 0 until CommitWidth) {
1318    val idx = deqPtrVec(i).value
1319    wdata(i) := debug_exuData(idx)
1320    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1321  }
1322
1323  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1324    // These are the structures used by difftest only and should be optimized after synthesis.
1325    val dt_eliminatedMove = Mem(RobSize, Bool())
1326    val dt_isRVC = Mem(RobSize, Bool())
1327    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1328    for (i <- 0 until RenameWidth) {
1329      when (canEnqueue(i)) {
1330        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1331        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1332      }
1333    }
1334    for (wb <- exuWBs) {
1335      when (wb.valid) {
1336        val wbIdx = wb.bits.robIdx.value
1337        dt_exuDebug(wbIdx) := wb.bits.debug
1338      }
1339    }
1340    // Always instantiate basic difftest modules.
1341    for (i <- 0 until CommitWidth) {
1342      val uop = commitDebugUop(i)
1343      val commitInfo = io.commits.info(i)
1344      val ptr = deqPtrVec(i).value
1345      val exuOut = dt_exuDebug(ptr)
1346      val eliminatedMove = dt_eliminatedMove(ptr)
1347      val isRVC = dt_isRVC(ptr)
1348
1349      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1350      difftest.coreid  := io.hartId
1351      difftest.index   := i.U
1352      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1353      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1354      difftest.isRVC   := isRVC
1355      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1356      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1357      difftest.wpdest  := commitInfo.pdest
1358      difftest.wdest   := commitInfo.ldest
1359      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1360      when(difftest.valid) {
1361        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1362      }
1363      if (env.EnableDifftest) {
1364        val uop = commitDebugUop(i)
1365        difftest.pc       := SignExt(uop.pc, XLEN)
1366        difftest.instr    := uop.instr
1367        difftest.robIdx   := ZeroExt(ptr, 10)
1368        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1369        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1370        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1371        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1372      }
1373    }
1374  }
1375
1376  if (env.EnableDifftest) {
1377    for (i <- 0 until CommitWidth) {
1378      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1379      difftest.coreid := io.hartId
1380      difftest.index  := i.U
1381
1382      val ptr = deqPtrVec(i).value
1383      val uop = commitDebugUop(i)
1384      val exuOut = debug_exuDebug(ptr)
1385      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1386      difftest.paddr  := exuOut.paddr
1387      difftest.opType := uop.fuOpType
1388      difftest.fuType := uop.fuType
1389    }
1390  }
1391
1392  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1393    val dt_isXSTrap = Mem(RobSize, Bool())
1394    for (i <- 0 until RenameWidth) {
1395      when (canEnqueue(i)) {
1396        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1397      }
1398    }
1399    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1400      io.commits.isCommit && v && dt_isXSTrap(d.value)
1401    }
1402    val hitTrap = trapVec.reduce(_||_)
1403    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1404    difftest.coreid   := io.hartId
1405    difftest.hasTrap  := hitTrap
1406    difftest.cycleCnt := timer
1407    difftest.instrCnt := instrCnt
1408    difftest.hasWFI   := hasWFI
1409
1410    if (env.EnableDifftest) {
1411      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1412      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1413      difftest.code     := trapCode
1414      difftest.pc       := trapPC
1415    }
1416  }
1417
1418  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1419  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1420  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1421  val commitLoadVec = VecInit(commitLoadValid)
1422  val commitBranchVec = VecInit(commitBranchValid)
1423  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1424  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1425  val perfEvents = Seq(
1426    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1427    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1428    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1429    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1430    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1431    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1432    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1433    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1434    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1435    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1436    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1437    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1438    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1439    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1440    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1441    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1442    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1443    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1444  )
1445  generatePerfEvent()
1446}
1447