1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val vstart = Output(Valid(UInt(XLEN.W))) 69 val dirty_fs = Output(Bool()) 70 val perfinfo = new Bundle { 71 val retiredInstr = Output(UInt(3.W)) 72 } 73 74 val vcsrFlag = Output(Bool()) 75} 76 77class RobLsqIO(implicit p: Parameters) extends XSBundle { 78 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val pendingld = Output(Bool()) 81 val pendingst = Output(Bool()) 82 val commit = Output(Bool()) 83 val pendingPtr = Output(new RobPtr) 84 val pendingPtrNext = Output(new RobPtr) 85 86 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 87 // Todo: what's this? 88 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 89} 90 91class RobEnqIO(implicit p: Parameters) extends XSBundle { 92 val canAccept = Output(Bool()) 93 val isEmpty = Output(Bool()) 94 // valid vector, for robIdx gen and walk 95 val needAlloc = Vec(RenameWidth, Input(Bool())) 96 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 97 val resp = Vec(RenameWidth, Output(new RobPtr)) 98} 99 100class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 101 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 102 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 103} 104 105class RobDispatchTopDownIO extends Bundle { 106 val robTrueCommit = Output(UInt(64.W)) 107 val robHeadLsIssue = Output(Bool()) 108} 109 110class RobDebugRollingIO extends Bundle { 111 val robTrueCommit = Output(UInt(64.W)) 112} 113 114class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 115 116class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 117 val io = IO(new Bundle { 118 // for commits/flush 119 val state = Input(UInt(2.W)) 120 val deq_v = Vec(CommitWidth, Input(Bool())) 121 val deq_w = Vec(CommitWidth, Input(Bool())) 122 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 123 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 124 val intrBitSetReg = Input(Bool()) 125 val hasNoSpecExec = Input(Bool()) 126 val interrupt_safe = Input(Bool()) 127 val blockCommit = Input(Bool()) 128 // output: the CommitWidth deqPtr 129 val out = Vec(CommitWidth, Output(new RobPtr)) 130 val next_out = Vec(CommitWidth, Output(new RobPtr)) 131 }) 132 133 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 134 135 // for exceptions (flushPipe included) and interrupts: 136 // only consider the first instruction 137 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 138 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 139 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 140 141 // for normal commits: only to consider when there're no exceptions 142 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 143 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 144 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 145 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 146 // when io.intrBitSetReg or there're possible exceptions in these instructions, 147 // only one instruction is allowed to commit 148 val allowOnlyOne = commit_exception || io.intrBitSetReg 149 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 150 151 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 152 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 153 154 deqPtrVec := deqPtrVec_next 155 156 io.next_out := deqPtrVec_next 157 io.out := deqPtrVec 158 159 when (io.state === 0.U) { 160 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 161 } 162 163} 164 165class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 166 val io = IO(new Bundle { 167 // for input redirect 168 val redirect = Input(Valid(new Redirect)) 169 // for enqueue 170 val allowEnqueue = Input(Bool()) 171 val hasBlockBackward = Input(Bool()) 172 val enq = Vec(RenameWidth, Input(Bool())) 173 val out = Output(Vec(RenameWidth, new RobPtr)) 174 }) 175 176 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 177 178 // enqueue 179 val canAccept = io.allowEnqueue && !io.hasBlockBackward 180 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 181 182 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 183 when(io.redirect.valid) { 184 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 185 }.otherwise { 186 ptr := ptr + dispatchNum 187 } 188 } 189 190 io.out := enqPtrVec 191 192} 193 194class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 195 // val valid = Bool() 196 val robIdx = new RobPtr 197 val exceptionVec = ExceptionVec() 198 val flushPipe = Bool() 199 val isVset = Bool() 200 val replayInst = Bool() // redirect to that inst itself 201 val singleStep = Bool() // TODO add frontend hit beneath 202 val crossPageIPFFix = Bool() 203 val trigger = new TriggerCf 204 val vstartEn = Bool() 205 val vstart = UInt(XLEN.W) 206 207// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 208// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 209 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 210 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 211 // only exceptions are allowed to writeback when enqueue 212 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 213} 214 215class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 216 val io = IO(new Bundle { 217 val redirect = Input(Valid(new Redirect)) 218 val flush = Input(Bool()) 219 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 220 // csr + load + store + varith + vload + vstore 221 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 222 val out = ValidIO(new RobExceptionInfo) 223 val state = ValidIO(new RobExceptionInfo) 224 }) 225 226 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 227 228 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 229 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 230 assert(valid.length == bits.length) 231 if (valid.length == 1) { 232 (valid, bits) 233 } else if (valid.length == 2) { 234 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 235 for (i <- res.indices) { 236 res(i).valid := valid(i) 237 res(i).bits := bits(i) 238 } 239 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 240 (Seq(oldest.valid), Seq(oldest.bits)) 241 } else { 242 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 243 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 244 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 245 } 246 } 247 getOldest_recursion(valid, bits)._2.head 248 } 249 250 251 val currentValid = RegInit(false.B) 252 val current = Reg(new RobExceptionInfo) 253 254 // orR the exceptionVec 255 val lastCycleFlush = RegNext(io.flush) 256 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 257 258 // s0: compare wb in 6 groups 259 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 260 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 261 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 262 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 263 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 264 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 265 266 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 267 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 268 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 269 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 270 } 271 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 272 273 val s0_out_valid = wb_valid.map(x => RegNext(x)) 274 val s0_out_bits = wb_bits.map(x => RegNext(x)) 275 276 // s1: compare last six and current flush 277 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 278 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 279 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 280 281 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 282 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 283 284 // s2: compare the input exception with the current one 285 // priorities: 286 // (1) system reset 287 // (2) current is valid: flush, remain, merge, update 288 // (3) current is not valid: s1 or enq 289 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 290 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 291 when (currentValid) { 292 when (current_flush) { 293 currentValid := Mux(s1_flush, false.B, s1_out_valid) 294 } 295 when (s1_out_valid && !s1_flush) { 296 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 297 current := s1_out_bits 298 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 299 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 300 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 301 current.replayInst := s1_out_bits.replayInst || current.replayInst 302 current.singleStep := s1_out_bits.singleStep || current.singleStep 303 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 304 } 305 } 306 }.elsewhen (s1_out_valid && !s1_flush) { 307 currentValid := true.B 308 current := s1_out_bits 309 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 310 currentValid := true.B 311 current := enq_bits 312 } 313 314 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 315 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 316 io.state.valid := currentValid 317 io.state.bits := current 318 319} 320 321class RobFlushInfo(implicit p: Parameters) extends XSBundle { 322 val ftqIdx = new FtqPtr 323 val robIdx = new RobPtr 324 val ftqOffset = UInt(log2Up(PredictWidth).W) 325 val replayInst = Bool() 326} 327 328class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 329 override def shouldBeInlined: Boolean = false 330 331 lazy val module = new RobImp(this)(p, params) 332} 333 334class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 335 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 336 337 private val LduCnt = params.LduCnt 338 private val StaCnt = params.StaCnt 339 private val HyuCnt = params.HyuCnt 340 341 val io = IO(new Bundle() { 342 val hartId = Input(UInt(8.W)) 343 val redirect = Input(Valid(new Redirect)) 344 val enq = new RobEnqIO 345 val flushOut = ValidIO(new Redirect) 346 val exception = ValidIO(new ExceptionInfo) 347 // exu + brq 348 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 349 val commits = Output(new RobCommitIO) 350 val rabCommits = Output(new RobCommitIO) 351 val diffCommits = Output(new DiffCommitIO) 352 val isVsetFlushPipe = Output(Bool()) 353 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 354 val lsq = new RobLsqIO 355 val robDeqPtr = Output(new RobPtr) 356 val csr = new RobCSRIO 357 val snpt = Input(new SnapshotPort) 358 val robFull = Output(Bool()) 359 val headNotReady = Output(Bool()) 360 val cpu_halt = Output(Bool()) 361 val wfi_enable = Input(Bool()) 362 363 val debug_ls = Flipped(new DebugLSIO) 364 val debugRobHead = Output(new DynInst) 365 val debugEnqLsq = Input(new LsqEnqIO) 366 val debugHeadLsIssue = Input(Bool()) 367 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 368 val debugTopDown = new Bundle { 369 val toCore = new RobCoreTopDownIO 370 val toDispatch = new RobDispatchTopDownIO 371 val robHeadLqIdx = Valid(new LqPtr) 372 } 373 val debugRolling = new RobDebugRollingIO 374 }) 375 376 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 377 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 378 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 379 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 380 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 381 382 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 383 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 384 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 385 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 386 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 387 val numExuWbPorts = exuWBs.length 388 val numStdWbPorts = stdWBs.length 389 390 391 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 392// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 393// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 394// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 395 396 397 // instvalid field 398 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 399 // writeback status 400 401 val stdWritebacked = Reg(Vec(RobSize, Bool())) 402 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 403 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 404 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 405 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 406 407 def isWritebacked(ptr: UInt): Bool = { 408 !uopNumVec(ptr).orR && stdWritebacked(ptr) 409 } 410 411 def isUopWritebacked(ptr: UInt): Bool = { 412 !uopNumVec(ptr).orR 413 } 414 415 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 416 417 // data for redirect, exception, etc. 418 val flagBkup = Mem(RobSize, Bool()) 419 // some instructions are not allowed to trigger interrupts 420 // They have side effects on the states of the processor before they write back 421 val interrupt_safe = Mem(RobSize, Bool()) 422 423 // data for debug 424 // Warn: debug_* prefix should not exist in generated verilog. 425 val debug_microOp = DebugMem(RobSize, new DynInst) 426 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 427 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 428 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 429 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 430 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 431 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 432 433 // pointers 434 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 435 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 436 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 437 438 dontTouch(enqPtrVec) 439 dontTouch(deqPtrVec) 440 441 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 442 val lastWalkPtr = Reg(new RobPtr) 443 val allowEnqueue = RegInit(true.B) 444 445 val enqPtr = enqPtrVec.head 446 val deqPtr = deqPtrVec(0) 447 val walkPtr = walkPtrVec(0) 448 449 val isEmpty = enqPtr === deqPtr 450 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 451 452 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 453 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 454 val debug_lsIssue = WireDefault(debug_lsIssued) 455 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 456 457 /** 458 * states of Rob 459 */ 460 val s_idle :: s_walk :: Nil = Enum(2) 461 val state = RegInit(s_idle) 462 463 /** 464 * Data Modules 465 * 466 * CommitDataModule: data from dispatch 467 * (1) read: commits/walk/exception 468 * (2) write: enqueue 469 * 470 * WritebackData: data from writeback 471 * (1) read: commits/walk/exception 472 * (2) write: write back from exe units 473 */ 474 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 475 val dispatchDataRead = dispatchData.io.rdata 476 477 val exceptionGen = Module(new ExceptionGen(params)) 478 val exceptionDataRead = exceptionGen.io.state 479 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 480 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 481 482 io.robDeqPtr := deqPtr 483 io.debugRobHead := debug_microOp(deqPtr.value) 484 485 val rab = Module(new RenameBuffer(RabSize)) 486 487 rab.io.redirect.valid := io.redirect.valid 488 489 rab.io.req.zip(io.enq.req).map { case (dest, src) => 490 dest.bits := src.bits 491 dest.valid := src.valid && io.enq.canAccept 492 } 493 494 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 495 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 496 497 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 498 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 499 }.reduce(_ +& _) 500 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 501 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 502 }.reduce(_ +& _) 503 504 rab.io.fromRob.commitSize := commitSizeSum 505 rab.io.fromRob.walkSize := walkSizeSum 506 rab.io.snpt := io.snpt 507 rab.io.snpt.snptEnq := snptEnq 508 509 io.rabCommits := rab.io.commits 510 io.diffCommits := rab.io.diffCommits 511 512 /** 513 * Enqueue (from dispatch) 514 */ 515 // special cases 516 val hasBlockBackward = RegInit(false.B) 517 val hasWaitForward = RegInit(false.B) 518 val doingSvinval = RegInit(false.B) 519 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 520 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 521 when (isEmpty) { hasBlockBackward:= false.B } 522 // When any instruction commits, hasNoSpecExec should be set to false.B 523 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 524 525 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 526 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 527 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 528 val hasWFI = RegInit(false.B) 529 io.cpu_halt := hasWFI 530 // WFI Timeout: 2^20 = 1M cycles 531 val wfi_cycles = RegInit(0.U(20.W)) 532 when (hasWFI) { 533 wfi_cycles := wfi_cycles + 1.U 534 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 535 wfi_cycles := 0.U 536 } 537 val wfi_timeout = wfi_cycles.andR 538 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 539 hasWFI := false.B 540 } 541 542 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 543 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 544 io.enq.resp := allocatePtrVec 545 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 546 val timer = GTimer() 547 for (i <- 0 until RenameWidth) { 548 // we don't check whether io.redirect is valid here since redirect has higher priority 549 when (canEnqueue(i)) { 550 val enqUop = io.enq.req(i).bits 551 val enqIndex = allocatePtrVec(i).value 552 // store uop in data module and debug_microOp Vec 553 debug_microOp(enqIndex) := enqUop 554 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 555 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 556 debug_microOp(enqIndex).debugInfo.selectTime := timer 557 debug_microOp(enqIndex).debugInfo.issueTime := timer 558 debug_microOp(enqIndex).debugInfo.writebackTime := timer 559 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 560 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 561 debug_lsInfo(enqIndex) := DebugLsInfo.init 562 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 563 debug_lqIdxValid(enqIndex) := false.B 564 debug_lsIssued(enqIndex) := false.B 565 566 when (enqUop.blockBackward) { 567 hasBlockBackward := true.B 568 } 569 when (enqUop.waitForward) { 570 hasWaitForward := true.B 571 } 572 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 573 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 574 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 575 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 576 { 577 doingSvinval := true.B 578 } 579 // the end instruction of Svinval enqs so clear doingSvinval 580 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 581 { 582 doingSvinval := false.B 583 } 584 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 585 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 586 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 587 hasWFI := true.B 588 } 589 590 mmio(enqIndex) := false.B 591 } 592 } 593 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 594 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 595 596 when (!io.wfi_enable) { 597 hasWFI := false.B 598 } 599 // sel vsetvl's flush position 600 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 601 val vsetvlState = RegInit(vs_idle) 602 603 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 604 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 605 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 606 607 val enq0 = io.enq.req(0) 608 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 609 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 610 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 611 // for vs_idle 612 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 613 // for vs_waitVinstr 614 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 615 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 616 when(vsetvlState === vs_idle){ 617 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 618 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 619 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 620 }.elsewhen(vsetvlState === vs_waitVinstr){ 621 when(Cat(enqIsVInstrOrVset).orR){ 622 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 623 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 624 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 625 } 626 } 627 628 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 629 when(vsetvlState === vs_idle && !io.redirect.valid){ 630 when(enq0IsVsetFlush){ 631 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 632 } 633 }.elsewhen(vsetvlState === vs_waitVinstr){ 634 when(io.redirect.valid){ 635 vsetvlState := vs_idle 636 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 637 vsetvlState := vs_waitFlush 638 } 639 }.elsewhen(vsetvlState === vs_waitFlush){ 640 when(io.redirect.valid){ 641 vsetvlState := vs_idle 642 } 643 } 644 645 // lqEnq 646 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 647 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 648 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 649 debug_lqIdxValid(req.bits.robIdx.value) := true.B 650 } 651 } 652 653 // lsIssue 654 when(io.debugHeadLsIssue) { 655 debug_lsIssued(deqPtr.value) := true.B 656 } 657 658 /** 659 * Writeback (from execution units) 660 */ 661 for (wb <- exuWBs) { 662 when (wb.valid) { 663 val wbIdx = wb.bits.robIdx.value 664 debug_exuData(wbIdx) := wb.bits.data 665 debug_exuDebug(wbIdx) := wb.bits.debug 666 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 667 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 668 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 669 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 670 671 // debug for lqidx and sqidx 672 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 673 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 674 675 val debug_Uop = debug_microOp(wbIdx) 676 XSInfo(true.B, 677 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 678 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 679 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 680 ) 681 } 682 } 683 684 val writebackNum = PopCount(exuWBs.map(_.valid)) 685 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 686 687 for (i <- 0 until LoadPipelineWidth) { 688 when (RegNext(io.lsq.mmio(i))) { 689 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 690 } 691 } 692 693 /** 694 * RedirectOut: Interrupt and Exceptions 695 */ 696 val deqDispatchData = dispatchDataRead(0) 697 val debug_deqUop = debug_microOp(deqPtr.value) 698 699 val intrBitSetReg = RegNext(io.csr.intrBitSet) 700 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 701 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 702 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 703 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 704 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 705 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 706 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 707 708 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 709 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 710 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 711 712 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 713 714 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 715// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 716 val needModifyFtqIdxOffset = false.B 717 io.isVsetFlushPipe := isVsetFlushPipe 718 io.vconfigPdest := rab.io.vconfigPdest 719 // io.flushOut will trigger redirect at the next cycle. 720 // Block any redirect or commit at the next cycle. 721 val lastCycleFlush = RegNext(io.flushOut.valid) 722 723 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 724 io.flushOut.bits := DontCare 725 io.flushOut.bits.isRVC := deqDispatchData.isRVC 726 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 727 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 728 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 729 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 730 io.flushOut.bits.interrupt := true.B 731 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 732 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 733 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 734 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 735 736 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 737 io.exception.valid := RegNext(exceptionHappen) 738 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 739 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 740 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 741 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 742 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 743 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 744 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 745 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 746 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 747// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 748 749 XSDebug(io.flushOut.valid, 750 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 751 p"excp $exceptionEnable flushPipe $isFlushPipe " + 752 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 753 754 755 /** 756 * Commits (and walk) 757 * They share the same width. 758 */ 759 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 760 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 761 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 762 763 require(RenameWidth <= CommitWidth) 764 765 // wiring to csr 766 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 767 val v = io.commits.commitValid(i) 768 val info = io.commits.info(i) 769 (v & info.wflags, v & info.dirtyFs) 770 }).unzip 771 val fflags = Wire(Valid(UInt(5.W))) 772 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 773 fflags.bits := wflags.zip(fflagsDataRead).map({ 774 case (w, f) => Mux(w, f, 0.U) 775 }).reduce(_|_) 776 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 777 778 val vxsat = Wire(Valid(Bool())) 779 vxsat.valid := io.commits.isCommit && vxsat.bits 780 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 781 case (valid, vxsat) => valid & vxsat 782 }.reduce(_ | _) 783 784 // when mispredict branches writeback, stop commit in the next 2 cycles 785 // TODO: don't check all exu write back 786 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 787 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 788 ).toSeq)).orR 789 val misPredBlockCounter = Reg(UInt(3.W)) 790 misPredBlockCounter := Mux(misPredWb, 791 "b111".U, 792 misPredBlockCounter >> 1.U 793 ) 794 val misPredBlock = misPredBlockCounter(0) 795 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 796 797 io.commits.isWalk := state === s_walk 798 io.commits.isCommit := state === s_idle && !blockCommit 799 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 800 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 801 // store will be commited iff both sta & std have been writebacked 802 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 803 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 804 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 805 val allowOnlyOneCommit = commit_exception || intrBitSetReg 806 // for instructions that may block others, we don't allow them to commit 807 for (i <- 0 until CommitWidth) { 808 // defaults: state === s_idle and instructions commit 809 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 810 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 811 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 812 io.commits.info(i) := dispatchDataRead(i) 813 io.commits.robIdx(i) := deqPtrVec(i) 814 815 io.commits.walkValid(i) := shouldWalkVec(i) 816 when (state === s_walk) { 817 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 818 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 819 } 820 } 821 822 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 823 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 824 debug_microOp(deqPtrVec(i).value).pc, 825 io.commits.info(i).rfWen, 826 io.commits.info(i).ldest, 827 io.commits.info(i).pdest, 828 debug_exuData(deqPtrVec(i).value), 829 fflagsDataRead(i), 830 vxsatDataRead(i) 831 ) 832 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 833 debug_microOp(walkPtrVec(i).value).pc, 834 io.commits.info(i).rfWen, 835 io.commits.info(i).ldest, 836 debug_exuData(walkPtrVec(i).value) 837 ) 838 } 839 if (env.EnableDifftest) { 840 io.commits.info.map(info => dontTouch(info.pc)) 841 } 842 843 // sync fflags/dirty_fs/vxsat to csr 844 io.csr.fflags := RegNext(fflags) 845 io.csr.dirty_fs := RegNext(dirty_fs) 846 io.csr.vxsat := RegNext(vxsat) 847 848 // sync v csr to csr 849 // for difftest 850 if(env.AlwaysBasicDiff || env.EnableDifftest) { 851 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 852 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 853 } 854 else{ 855 io.csr.vcsrFlag := false.B 856 } 857 858 // commit load/store to lsq 859 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 860 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 861 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 862 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 863 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 864 // indicate a pending load or store 865 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 866 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 867 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 868 io.lsq.pendingPtr := RegNext(deqPtr) 869 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 870 871 /** 872 * state changes 873 * (1) redirect: switch to s_walk 874 * (2) walk: when walking comes to the end, switch to s_idle 875 */ 876 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 877 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 878 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 879 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 880 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 881 state := state_next 882 883 /** 884 * pointers and counters 885 */ 886 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 887 deqPtrGenModule.io.state := state 888 deqPtrGenModule.io.deq_v := commit_v 889 deqPtrGenModule.io.deq_w := commit_w 890 deqPtrGenModule.io.exception_state := exceptionDataRead 891 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 892 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 893 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 894 deqPtrGenModule.io.blockCommit := blockCommit 895 deqPtrVec := deqPtrGenModule.io.out 896 deqPtrVec_next := deqPtrGenModule.io.next_out 897 898 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 899 enqPtrGenModule.io.redirect := io.redirect 900 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 901 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 902 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 903 enqPtrVec := enqPtrGenModule.io.out 904 905 // next walkPtrVec: 906 // (1) redirect occurs: update according to state 907 // (2) walk: move forwards 908 val walkPtrVec_next = Mux(io.redirect.valid, 909 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 910 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 911 ) 912 walkPtrVec := walkPtrVec_next 913 914 val numValidEntries = distanceBetween(enqPtr, deqPtr) 915 val commitCnt = PopCount(io.commits.commitValid) 916 917 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 918 919 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 920 when (io.redirect.valid) { 921 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 922 } 923 924 925 /** 926 * States 927 * We put all the stage bits changes here. 928 929 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 930 * All states: (1) valid; (2) writebacked; (3) flagBkup 931 */ 932 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 933 934 // redirect logic writes 6 valid 935 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 936 val redirectTail = Reg(new RobPtr) 937 val redirectIdle :: redirectBusy :: Nil = Enum(2) 938 val redirectState = RegInit(redirectIdle) 939 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 940 when(redirectState === redirectBusy) { 941 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 942 redirectHeadVec zip invMask foreach { 943 case (redirectHead, inv) => when(inv) { 944 valid(redirectHead.value) := false.B 945 } 946 } 947 when(!invMask.last) { 948 redirectState := redirectIdle 949 } 950 } 951 when(io.redirect.valid) { 952 redirectState := redirectBusy 953 when(redirectState === redirectIdle) { 954 redirectTail := enqPtr 955 } 956 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 957 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 958 } 959 } 960 // enqueue logic writes 6 valid 961 for (i <- 0 until RenameWidth) { 962 when (canEnqueue(i) && !io.redirect.valid) { 963 valid(allocatePtrVec(i).value) := true.B 964 } 965 } 966 // dequeue logic writes 6 valid 967 for (i <- 0 until CommitWidth) { 968 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 969 when (commitValid) { 970 valid(commitReadAddr(i)) := false.B 971 } 972 } 973 974 // debug_inst update 975 for(i <- 0 until (LduCnt + StaCnt)) { 976 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 977 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 978 } 979 for (i <- 0 until LduCnt) { 980 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 981 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 982 } 983 984 // writeback logic set numWbPorts writebacked to true 985 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 986 blockWbSeq.map(_ := false.B) 987 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 988 when(wb.valid) { 989 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 990 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 991 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 992 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 993 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 994 } 995 } 996 997 // if the first uop of an instruction is valid , write writebackedCounter 998 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 999 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1000 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1001 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1002 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1003 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1004 1005 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1006 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1007 }) 1008 val fflags_wb = fflagsPorts 1009 val vxsat_wb = vxsatPorts 1010 for(i <- 0 until RobSize){ 1011 1012 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1013 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1014 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1015 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1016 1017 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1018 1019 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1020 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1021 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1022 1023 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1024 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1025 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1026 val wbCnt = PopCount(canWbNoBlockSeq) 1027 1028 val exceptionHas = RegInit(false.B) 1029 val exceptionHasWire = Wire(Bool()) 1030 exceptionHasWire := MuxCase(exceptionHas, Seq( 1031 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1032 !valid(i) -> false.B 1033 )) 1034 exceptionHas := exceptionHasWire 1035 1036 when (exceptionHas || exceptionHasWire) { 1037 // exception flush 1038 uopNumVec(i) := 0.U 1039 stdWritebacked(i) := true.B 1040 }.elsewhen(!valid(i) && instCanEnqFlag) { 1041 // enq set num of uops 1042 uopNumVec(i) := enqUopNum 1043 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1044 }.elsewhen(valid(i)) { 1045 // update by writing back 1046 uopNumVec(i) := uopNumVec(i) - wbCnt 1047 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!") 1048 when (canStdWbSeq.asUInt.orR) { 1049 stdWritebacked(i) := true.B 1050 } 1051 }.otherwise { 1052 uopNumVec(i) := 0.U 1053 } 1054 1055 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1056 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1057 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1058 1059 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1060 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1061 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1062 } 1063 1064 // flagBkup 1065 // enqueue logic set 6 flagBkup at most 1066 for (i <- 0 until RenameWidth) { 1067 when (canEnqueue(i)) { 1068 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1069 } 1070 } 1071 1072 // interrupt_safe 1073 for (i <- 0 until RenameWidth) { 1074 // We RegNext the updates for better timing. 1075 // Note that instructions won't change the system's states in this cycle. 1076 when (RegNext(canEnqueue(i))) { 1077 // For now, we allow non-load-store instructions to trigger interrupts 1078 // For MMIO instructions, they should not trigger interrupts since they may 1079 // be sent to lower level before it writes back. 1080 // However, we cannot determine whether a load/store instruction is MMIO. 1081 // Thus, we don't allow load/store instructions to trigger an interrupt. 1082 // TODO: support non-MMIO load-store instructions to trigger interrupts 1083 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1084 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1085 } 1086 } 1087 1088 /** 1089 * read and write of data modules 1090 */ 1091 val commitReadAddr_next = Mux(state_next === s_idle, 1092 VecInit(deqPtrVec_next.map(_.value)), 1093 VecInit(walkPtrVec_next.map(_.value)) 1094 ) 1095 dispatchData.io.wen := canEnqueue 1096 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1097 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1098 wdata.ldest := req.ldest 1099 wdata.rfWen := req.rfWen 1100 wdata.dirtyFs := req.dirtyFs 1101 wdata.vecWen := req.vecWen 1102 wdata.wflags := req.wfflags 1103 wdata.commitType := req.commitType 1104 wdata.pdest := req.pdest 1105 wdata.ftqIdx := req.ftqPtr 1106 wdata.ftqOffset := req.ftqOffset 1107 wdata.isMove := req.eliminatedMove 1108 wdata.isRVC := req.preDecodeInfo.isRVC 1109 wdata.pc := req.pc 1110 wdata.vtype := req.vpu.vtype 1111 wdata.isVset := req.isVset 1112 wdata.instrSize := req.instrSize 1113 } 1114 dispatchData.io.raddr := commitReadAddr_next 1115 1116 exceptionGen.io.redirect <> io.redirect 1117 exceptionGen.io.flush := io.flushOut.valid 1118 1119 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1120 for (i <- 0 until RenameWidth) { 1121 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1122 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1123 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1124 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1125 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1126 exceptionGen.io.enq(i).bits.replayInst := false.B 1127 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1128 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1129 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1130 exceptionGen.io.enq(i).bits.trigger.clear() 1131 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1132 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1133 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1134 } 1135 1136 println(s"ExceptionGen:") 1137 println(s"num of exceptions: ${params.numException}") 1138 require(exceptionWBs.length == exceptionGen.io.wb.length, 1139 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1140 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1141 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1142 exc_wb.valid := wb.valid 1143 exc_wb.bits.robIdx := wb.bits.robIdx 1144 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1145 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1146 exc_wb.bits.isVset := false.B 1147 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1148 exc_wb.bits.singleStep := false.B 1149 exc_wb.bits.crossPageIPFFix := false.B 1150 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1151 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1152 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1153// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1154// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1155// s"replayInst ${configs.exists(_.replayInst)}") 1156 } 1157 1158 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1159 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1160 1161 val instrCntReg = RegInit(0.U(64.W)) 1162 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1163 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1164 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1165 val instrCnt = instrCntReg + retireCounter 1166 instrCntReg := instrCnt 1167 io.csr.perfinfo.retiredInstr := retireCounter 1168 io.robFull := !allowEnqueue 1169 io.headNotReady := commit_v.head && !commit_w.head 1170 1171 /** 1172 * debug info 1173 */ 1174 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1175 XSDebug("") 1176 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1177 for(i <- 0 until RobSize) { 1178 XSDebug(false, !valid(i), "-") 1179 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1180 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1181 } 1182 XSDebug(false, true.B, "\n") 1183 1184 for(i <- 0 until RobSize) { 1185 if (i % 4 == 0) XSDebug("") 1186 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1187 XSDebug(false, !valid(i), "- ") 1188 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1189 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1190 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1191 } 1192 1193 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1194 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1195 1196 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1197 XSPerfAccumulate("clock_cycle", 1.U) 1198 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1199 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1200 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1201 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1202 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1203 val commitIsMove = commitDebugUop.map(_.isMove) 1204 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1205 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1206 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1207 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1208 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1209 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1210 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1211 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1212 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1213 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1214 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1215 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1216 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1217 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1218 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1219 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1220 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1221 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1222 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1223 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1224 private val walkCycle = RegInit(0.U(8.W)) 1225 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1226 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1227 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1228 1229 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1230 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1231 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1232 1233 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1234 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1235 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1236 private val deqHeadInfo = debug_microOp(deqPtr.value) 1237 val deqUopCommitType = io.commits.info(0).commitType 1238 1239 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1240 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1241 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1242 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1243 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1244 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1245 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1246 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1247 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1248 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1249 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1250 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1251 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1252 1253 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1254 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1255 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1256 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1257 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1258 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1259 (2 to RenameWidth).foreach(i => 1260 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1261 ) 1262 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1263 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1264 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1265 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1266 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1267 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1268 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1269 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1270 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1271 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1272 } 1273 for (fuType <- FuType.functionNameMap.keys) { 1274 val fuName = FuType.functionNameMap(fuType) 1275 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1276 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1277 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1278 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1279 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1280 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1281 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1282 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1283 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1284 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1285 } 1286 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1287 1288 // top-down info 1289 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1290 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1291 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1292 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1293 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1294 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1295 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1296 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1297 1298 // rolling 1299 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1300 1301 /** 1302 * DataBase info: 1303 * log trigger is at writeback valid 1304 * */ 1305 1306 /** 1307 * @todo add InstInfoEntry back 1308 * @author Maxpicca-Li 1309 */ 1310 1311 //difftest signals 1312 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1313 1314 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1315 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1316 1317 for(i <- 0 until CommitWidth) { 1318 val idx = deqPtrVec(i).value 1319 wdata(i) := debug_exuData(idx) 1320 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1321 } 1322 1323 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1324 // These are the structures used by difftest only and should be optimized after synthesis. 1325 val dt_eliminatedMove = Mem(RobSize, Bool()) 1326 val dt_isRVC = Mem(RobSize, Bool()) 1327 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1328 for (i <- 0 until RenameWidth) { 1329 when (canEnqueue(i)) { 1330 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1331 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1332 } 1333 } 1334 for (wb <- exuWBs) { 1335 when (wb.valid) { 1336 val wbIdx = wb.bits.robIdx.value 1337 dt_exuDebug(wbIdx) := wb.bits.debug 1338 } 1339 } 1340 // Always instantiate basic difftest modules. 1341 for (i <- 0 until CommitWidth) { 1342 val uop = commitDebugUop(i) 1343 val commitInfo = io.commits.info(i) 1344 val ptr = deqPtrVec(i).value 1345 val exuOut = dt_exuDebug(ptr) 1346 val eliminatedMove = dt_eliminatedMove(ptr) 1347 val isRVC = dt_isRVC(ptr) 1348 1349 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1350 difftest.coreid := io.hartId 1351 difftest.index := i.U 1352 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1353 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1354 difftest.isRVC := isRVC 1355 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1356 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1357 difftest.wpdest := commitInfo.pdest 1358 difftest.wdest := commitInfo.ldest 1359 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1360 when(difftest.valid) { 1361 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1362 } 1363 if (env.EnableDifftest) { 1364 val uop = commitDebugUop(i) 1365 difftest.pc := SignExt(uop.pc, XLEN) 1366 difftest.instr := uop.instr 1367 difftest.robIdx := ZeroExt(ptr, 10) 1368 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1369 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1370 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1371 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1372 } 1373 } 1374 } 1375 1376 if (env.EnableDifftest) { 1377 for (i <- 0 until CommitWidth) { 1378 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1379 difftest.coreid := io.hartId 1380 difftest.index := i.U 1381 1382 val ptr = deqPtrVec(i).value 1383 val uop = commitDebugUop(i) 1384 val exuOut = debug_exuDebug(ptr) 1385 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1386 difftest.paddr := exuOut.paddr 1387 difftest.opType := uop.fuOpType 1388 difftest.fuType := uop.fuType 1389 } 1390 } 1391 1392 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1393 val dt_isXSTrap = Mem(RobSize, Bool()) 1394 for (i <- 0 until RenameWidth) { 1395 when (canEnqueue(i)) { 1396 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1397 } 1398 } 1399 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1400 io.commits.isCommit && v && dt_isXSTrap(d.value) 1401 } 1402 val hitTrap = trapVec.reduce(_||_) 1403 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1404 difftest.coreid := io.hartId 1405 difftest.hasTrap := hitTrap 1406 difftest.cycleCnt := timer 1407 difftest.instrCnt := instrCnt 1408 difftest.hasWFI := hasWFI 1409 1410 if (env.EnableDifftest) { 1411 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1412 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1413 difftest.code := trapCode 1414 difftest.pc := trapPC 1415 } 1416 } 1417 1418 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1419 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1420 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1421 val commitLoadVec = VecInit(commitLoadValid) 1422 val commitBranchVec = VecInit(commitBranchValid) 1423 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1424 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1425 val perfEvents = Seq( 1426 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1427 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1428 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1429 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1430 ("rob_commitUop ", ifCommit(commitCnt) ), 1431 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1432 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1433 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1434 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1435 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1436 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1437 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1438 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1439 ("rob_walkCycle ", (state === s_walk) ), 1440 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1441 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1442 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1443 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1444 ) 1445 generatePerfEvent() 1446} 1447