1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect], flush: Bool): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 flush || (redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(3.W)) 63 val scommit = Output(UInt(3.W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo { 80 val crossPageIPFFix = Bool() 81} 82 83class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 84 val io = IO(new Bundle { 85 // for commits/flush 86 val state = Input(UInt(2.W)) 87 val deq_v = Vec(CommitWidth, Input(Bool())) 88 val deq_w = Vec(CommitWidth, Input(Bool())) 89 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 90 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 91 val intrBitSetReg = Input(Bool()) 92 val hasNoSpecExec = Input(Bool()) 93 val commitType = Input(CommitType()) 94 val misPredBlock = Input(Bool()) 95 val isReplaying = Input(Bool()) 96 // output: the CommitWidth deqPtr 97 val out = Vec(CommitWidth, Output(new RobPtr)) 98 val next_out = Vec(CommitWidth, Output(new RobPtr)) 99 }) 100 101 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 102 103 // for exceptions (flushPipe included) and interrupts: 104 // only consider the first instruction 105 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 106 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.robIdx === deqPtrVec(0) 107 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 108 109 // for normal commits: only to consider when there're no exceptions 110 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 111 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 112 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 113 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 114 // when io.intrBitSetReg or there're possible exceptions in these instructions, only one instruction is allowed to commit 115 val allowOnlyOne = commit_exception || io.intrBitSetReg 116 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 117 118 val resetDeqPtrVec = VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))) 119 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 120 val deqPtrVec_next = Mux(redirectOutValid, resetDeqPtrVec, Mux(io.state === 0.U, commitDeqPtrVec, deqPtrVec)) 121 122 deqPtrVec := deqPtrVec_next 123 124 io.next_out := deqPtrVec_next 125 io.out := deqPtrVec 126 127 when (io.state === 0.U) { 128 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 129 } 130 131} 132 133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 134 val io = IO(new Bundle { 135 // for exceptions and interrupts 136 val state = Input(UInt(2.W)) 137 val deq_v = Input(Bool()) 138 val deq_w = Input(Bool()) 139 val deqPtr = Input(new RobPtr) 140 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 141 val intrBitSetReg = Input(Bool()) 142 val hasNoSpecExec = Input(Bool()) 143 val commitType = Input(CommitType()) 144 // for input redirect 145 val redirect = Input(Valid(new Redirect)) 146 // for enqueue 147 val allowEnqueue = Input(Bool()) 148 val hasBlockBackward = Input(Bool()) 149 val enq = Vec(RenameWidth, Input(Bool())) 150 val out = Output(new RobPtr) 151 }) 152 153 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 154 155 // for exceptions (flushPipe included) and interrupts: 156 // only consider the first instruction 157 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 158 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.robIdx === io.deqPtr 159 val redirectOutValid = io.state === 0.U && io.deq_v && (intrEnable || exceptionEnable) 160 161 // enqueue 162 val canAccept = io.allowEnqueue && !io.hasBlockBackward 163 val dispatchNum = Mux(canAccept && !RegNext(redirectOutValid), PopCount(io.enq), 0.U) 164 165 when (redirectOutValid) { 166 enqPtr := 0.U.asTypeOf(new RobPtr) 167 }.elsewhen (io.redirect.valid) { 168 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 169 }.otherwise { 170 enqPtr := enqPtr + dispatchNum 171 } 172 173 io.out := enqPtr 174 175} 176 177class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 178 // val valid = Bool() 179 val robIdx = new RobPtr 180 val exceptionVec = ExceptionVec() 181 val flushPipe = Bool() 182 val replayInst = Bool() // redirect to that inst itself 183 val singleStep = Bool() 184 185 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst 186 // only exceptions are allowed to writeback when enqueue 187 def can_writeback = exceptionVec.asUInt.orR || singleStep 188} 189 190class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 191 val io = IO(new Bundle { 192 val redirect = Input(Valid(new Redirect)) 193 val flush = Input(Bool()) 194 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 195 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 196 val out = ValidIO(new RobExceptionInfo) 197 val state = ValidIO(new RobExceptionInfo) 198 }) 199 200 val current = Reg(Valid(new RobExceptionInfo)) 201 202 // orR the exceptionVec 203 val lastCycleFlush = RegNext(io.flush) 204 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 205 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 206 207 // s0: compare wb(1),wb(2) and wb(3),wb(4) 208 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !bits.robIdx.needFlush(io.redirect, io.flush) } 209 val csr_wb_bits = io.wb(0).bits 210 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 211 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 212 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 213 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 214 215 // s1: compare last four and current flush 216 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !b.robIdx.needFlush(io.redirect, io.flush) }) 217 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 218 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 219 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 220 val s1_out_bits = RegNext(compare_bits) 221 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 222 223 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 224 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 225 226 // s2: compare the input exception with the current one 227 // priorities: 228 // (1) system reset 229 // (2) current is valid: flush, remain, merge, update 230 // (3) current is not valid: s1 or enq 231 val current_flush = current.bits.robIdx.needFlush(io.redirect, io.flush) 232 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect, io.flush) 233 when (reset.asBool) { 234 current.valid := false.B 235 }.elsewhen (current.valid) { 236 when (current_flush) { 237 current.valid := Mux(s1_flush, false.B, s1_out_valid) 238 } 239 when (s1_out_valid && !s1_flush) { 240 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 241 current.bits := s1_out_bits 242 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 243 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 244 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 245 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 246 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 247 } 248 } 249 }.elsewhen (s1_out_valid && !s1_flush) { 250 current.valid := true.B 251 current.bits := s1_out_bits 252 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 253 current.valid := true.B 254 current.bits := enq_bits 255 } 256 257 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 258 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 259 io.state := current 260 261} 262 263class RobFlushInfo(implicit p: Parameters) extends XSBundle { 264 val ftqIdx = new FtqPtr 265 val ftqOffset = UInt(log2Up(PredictWidth).W) 266 val replayInst = Bool() 267} 268 269class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 270 val io = IO(new Bundle() { 271 val redirect = Input(Valid(new Redirect)) 272 val enq = new RobEnqIO 273 val flushOut = ValidIO(new RobFlushInfo) 274 val exception = ValidIO(new ExceptionInfo) 275 // exu + brq 276 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 277 val commits = new RobCommitIO 278 val lsq = new RobLsqIO 279 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 280 val robDeqPtr = Output(new RobPtr) 281 val csr = new RobCSRIO 282 val robFull = Output(Bool()) 283 }) 284 285 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 286 287 // instvalid field 288 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 289 val valid = Mem(RobSize, Bool()) 290 // writeback status 291 // val writebacked = Reg(Vec(RobSize, Bool())) 292 val writebacked = Mem(RobSize, Bool()) 293 val store_data_writebacked = Mem(RobSize, Bool()) 294 // data for redirect, exception, etc. 295 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 296 val flagBkup = Mem(RobSize, Bool()) 297 // record move elimination info for each instruction 298 val eliminatedMove = Mem(RobSize, Bool()) 299 300 // data for debug 301 // Warn: debug_* prefix should not exist in generated verilog. 302 val debug_microOp = Mem(RobSize, new MicroOp) 303 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 304 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 305 306 // pointers 307 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 308 val enqPtr = Wire(new RobPtr) 309 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 310 311 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 312 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 313 val allowEnqueue = RegInit(true.B) 314 315 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 316 val deqPtr = deqPtrVec(0) 317 val walkPtr = walkPtrVec(0) 318 319 val isEmpty = enqPtr === deqPtr 320 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 321 322 /** 323 * states of Rob 324 */ 325 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 326 val state = RegInit(s_idle) 327 328 /** 329 * Data Modules 330 * 331 * CommitDataModule: data from dispatch 332 * (1) read: commits/walk/exception 333 * (2) write: enqueue 334 * 335 * WritebackData: data from writeback 336 * (1) read: commits/walk/exception 337 * (2) write: write back from exe units 338 */ 339 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 340 val dispatchDataRead = dispatchData.io.rdata 341 342 val exceptionGen = Module(new ExceptionGen) 343 val exceptionDataRead = exceptionGen.io.state 344 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 345 346 io.robDeqPtr := deqPtr 347 348 /** 349 * Enqueue (from dispatch) 350 */ 351 // special cases 352 val hasBlockBackward = RegInit(false.B) 353 val hasNoSpecExec = RegInit(false.B) 354 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 355 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 356 when (isEmpty) { hasBlockBackward:= false.B } 357 // When any instruction commits, hasNoSpecExec should be set to false.B 358 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 359 360 io.enq.canAccept := allowEnqueue && !hasBlockBackward 361 io.enq.resp := enqPtrVec 362 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 363 val timer = GTimer() 364 for (i <- 0 until RenameWidth) { 365 // we don't check whether io.redirect is valid here since redirect has higher priority 366 when (canEnqueue(i)) { 367 // store uop in data module and debug_microOp Vec 368 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 369 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 370 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 371 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 372 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 373 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 374 when (io.enq.req(i).bits.ctrl.blockBackward) { 375 hasBlockBackward := true.B 376 } 377 when (io.enq.req(i).bits.ctrl.noSpecExec) { 378 hasNoSpecExec := true.B 379 } 380 } 381 } 382 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 383 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 384 385 // debug info for enqueue (dispatch) 386 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 387 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 388 389 390 /** 391 * Writeback (from execution units) 392 */ 393 for (i <- 0 until numWbPorts) { 394 when (io.exeWbResults(i).valid) { 395 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 396 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 397 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 398 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 399 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 400 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 401 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 402 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 403 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 404 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 405 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 406 407 val debug_Uop = debug_microOp(wbIdx) 408 XSInfo(true.B, 409 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 410 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 411 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 412 ) 413 } 414 } 415 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 416 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 417 418 419 /** 420 * RedirectOut: Interrupt and Exceptions 421 */ 422 val deqDispatchData = dispatchDataRead(0) 423 val debug_deqUop = debug_microOp(deqPtr.value) 424 425 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 426 // However, we cannot determine whether a load/store instruction is MMIO. 427 // Thus, we don't allow load/store instructions to trigger an interrupt. 428 val intrBitSetReg = RegNext(io.csr.intrBitSet) 429 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 430 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 431 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 432 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 433 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 434 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 435 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 436 437 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) 438 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 439 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 440 io.flushOut.bits.replayInst := deqHasReplayInst 441 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 442 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 443 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 444 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 445 446 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) 447 io.exception.valid := RegNext(exceptionHappen) 448 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 449 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 450 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 451 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 452 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(deqDispatchData.crossPageIPFFix, exceptionHappen) 453 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 454 455 XSDebug(io.flushOut.valid, 456 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 457 p"excp $exceptionEnable flushPipe $isFlushPipe " + 458 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 459 460 461 /** 462 * Commits (and walk) 463 * They share the same width. 464 */ 465 val walkCounter = Reg(UInt(log2Up(RobSize).W)) 466 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 467 val walkFinished = walkCounter <= CommitWidth.U 468 469 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 470 require(RenameWidth <= CommitWidth) 471 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 472 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 473 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 474 usedSpaceForMPR := io.enq.needAlloc 475 extraSpaceForMPR := dispatchData.io.wdata 476 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 477 } 478 479 // wiring to csr 480 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 481 val v = io.commits.valid(i) 482 val info = io.commits.info(i) 483 (v & info.wflags, v & info.fpWen) 484 }).unzip 485 val fflags = Wire(Valid(UInt(5.W))) 486 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 487 fflags.bits := wflags.zip(fflagsDataRead).map({ 488 case (w, f) => Mux(w, f, 0.U) 489 }).reduce(_|_) 490 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 491 492 // when mispredict branches writeback, stop commit in the next 2 cycles 493 // TODO: don't check all exu write back 494 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 495 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 496 ))).orR() 497 val misPredBlockCounter = Reg(UInt(3.W)) 498 misPredBlockCounter := Mux(misPredWb, 499 "b111".U, 500 misPredBlockCounter >> 1.U 501 ) 502 val misPredBlock = misPredBlockCounter(0) 503 504 io.commits.isWalk := state =/= s_idle 505 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 506 // store will be commited iff both sta & std have been writebacked 507 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 508 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 509 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 510 val allowOnlyOneCommit = commit_exception || intrBitSetReg 511 // for instructions that may block others, we don't allow them to commit 512 for (i <- 0 until CommitWidth) { 513 // defaults: state === s_idle and instructions commit 514 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 515 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 516 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying 517 io.commits.info(i) := dispatchDataRead(i) 518 519 when (state === s_walk) { 520 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 521 }.elsewhen(state === s_extrawalk) { 522 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 523 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 524 } 525 526 XSInfo(state === s_idle && io.commits.valid(i), 527 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 528 debug_microOp(deqPtrVec(i).value).cf.pc, 529 io.commits.info(i).rfWen, 530 io.commits.info(i).ldest, 531 io.commits.info(i).pdest, 532 io.commits.info(i).old_pdest, 533 debug_exuData(deqPtrVec(i).value), 534 fflagsDataRead(i) 535 ) 536 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 537 debug_microOp(walkPtrVec(i).value).cf.pc, 538 io.commits.info(i).rfWen, 539 io.commits.info(i).ldest, 540 debug_exuData(walkPtrVec(i).value) 541 ) 542 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 543 io.commits.info(i).rfWen, 544 io.commits.info(i).ldest 545 ) 546 } 547 if (!env.FPGAPlatform) { 548 io.commits.info.map(info => dontTouch(info.pc)) 549 } 550 551 // sync fflags/dirty_fs to csr 552 io.csr.fflags := fflags 553 io.csr.dirty_fs := dirty_fs 554 555 // commit branch to brq 556 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 557 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 558 559 // commit load/store to lsq 560 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 561 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 562 io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)) 563 io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)) 564 io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) 565 io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) 566 io.lsq.commit := !io.commits.isWalk && io.commits.valid(0) 567 568 /** 569 * state changes 570 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 571 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 572 * (3) walk: when walking comes to the end, switch to s_walk 573 * (4) s_extrawalk to s_walk 574 */ 575 val state_next = Mux(io.flushOut.valid, 576 s_idle, 577 Mux(io.redirect.valid, 578 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 579 Mux(state === s_walk && walkFinished, 580 s_idle, 581 Mux(state === s_extrawalk, s_walk, state) 582 ) 583 ) 584 ) 585 state := state_next 586 587 /** 588 * pointers and counters 589 */ 590 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 591 deqPtrGenModule.io.state := state 592 deqPtrGenModule.io.deq_v := commit_v 593 deqPtrGenModule.io.deq_w := commit_w 594 deqPtrGenModule.io.exception_state := exceptionDataRead 595 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 596 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 597 deqPtrGenModule.io.commitType := deqDispatchData.commitType 598 599 deqPtrGenModule.io.misPredBlock := misPredBlock 600 deqPtrGenModule.io.isReplaying := isReplaying 601 deqPtrVec := deqPtrGenModule.io.out 602 val deqPtrVec_next = deqPtrGenModule.io.next_out 603 604 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 605 enqPtrGenModule.io.state := state 606 enqPtrGenModule.io.deq_v := commit_v(0) 607 enqPtrGenModule.io.deq_w := commit_w(0) 608 enqPtrGenModule.io.deqPtr := deqPtr 609 enqPtrGenModule.io.exception_state := exceptionDataRead 610 enqPtrGenModule.io.intrBitSetReg := intrBitSetReg 611 enqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 612 enqPtrGenModule.io.commitType := deqDispatchData.commitType 613 enqPtrGenModule.io.redirect := io.redirect 614 enqPtrGenModule.io.allowEnqueue := allowEnqueue 615 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 616 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 617 enqPtr := enqPtrGenModule.io.out 618 619 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 620 // next walkPtrVec: 621 // (1) redirect occurs: update according to state 622 // (2) walk: move backwards 623 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 624 Mux(state === s_walk, 625 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 626 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 627 ), 628 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 629 ) 630 walkPtrVec := walkPtrVec_next 631 632 val lastCycleRedirect = RegNext(io.redirect.valid) 633 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 634 val commitCnt = PopCount(io.commits.valid) 635 validCounter := Mux(io.flushOut.valid, 636 0.U, 637 Mux(state === s_idle, 638 (validCounter - commitCnt) + dispatchNum, 639 trueValidCounter 640 ) 641 ) 642 643 allowEnqueue := Mux(io.flushOut.valid, 644 true.B, 645 Mux(state === s_idle, 646 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 647 trueValidCounter <= (RobSize - RenameWidth).U 648 ) 649 ) 650 651 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 652 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 653 when (io.redirect.valid) { 654 walkCounter := Mux(state === s_walk, 655 redirectWalkDistance + io.redirect.bits.flushItself() - commitCnt, 656 redirectWalkDistance + io.redirect.bits.flushItself() 657 ) 658 }.elsewhen (state === s_walk) { 659 walkCounter := walkCounter - commitCnt 660 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 661 } 662 663 664 /** 665 * States 666 * We put all the stage bits changes here. 667 668 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 669 * All states: (1) valid; (2) writebacked; (3) flagBkup 670 */ 671 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 672 673 // enqueue logic writes 6 valid 674 for (i <- 0 until RenameWidth) { 675 when (canEnqueue(i) && !io.redirect.valid && !RegNext(io.flushOut.valid)) { 676 valid(enqPtrVec(i).value) := true.B 677 } 678 } 679 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 680 for (i <- 0 until CommitWidth) { 681 when (io.commits.valid(i) && state =/= s_extrawalk) { 682 valid(commitReadAddr(i)) := false.B 683 } 684 } 685 // reset: when exception, reset all valid to false 686 when (io.flushOut.valid) { 687 for (i <- 0 until RobSize) { 688 valid(i) := false.B 689 } 690 } 691 when (reset.asBool) { 692 for (i <- 0 until RobSize) { 693 valid(i) := false.B 694 } 695 } 696 697 // status field: writebacked 698 // enqueue logic set 6 writebacked to false 699 for (i <- 0 until RenameWidth) { 700 when (canEnqueue(i)) { 701 eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 702 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 703 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 704 store_data_writebacked(enqPtrVec(i).value) := !isStu 705 } 706 } 707 when (exceptionGen.io.out.valid) { 708 val wbIdx = exceptionGen.io.out.bits.robIdx.value 709 writebacked(wbIdx) := true.B 710 store_data_writebacked(wbIdx) := true.B 711 } 712 // writeback logic set numWbPorts writebacked to true 713 for (i <- 0 until numWbPorts) { 714 when (io.exeWbResults(i).valid) { 715 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 716 val block_wb = 717 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 718 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 719 io.exeWbResults(i).bits.uop.ctrl.replayInst 720 writebacked(wbIdx) := !block_wb 721 } 722 } 723 // store data writeback logic mark store as data_writebacked 724 for (i <- 0 until StorePipelineWidth) { 725 when(io.lsq.storeDataRobWb(i).valid) { 726 store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B 727 } 728 } 729 730 // flagBkup 731 // enqueue logic set 6 flagBkup at most 732 for (i <- 0 until RenameWidth) { 733 when (canEnqueue(i)) { 734 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 735 } 736 } 737 738 739 /** 740 * read and write of data modules 741 */ 742 val commitReadAddr_next = Mux(state_next === s_idle, 743 VecInit(deqPtrVec_next.map(_.value)), 744 VecInit(walkPtrVec_next.map(_.value)) 745 ) 746 dispatchData.io.wen := canEnqueue 747 dispatchData.io.waddr := enqPtrVec.map(_.value) 748 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 749 wdata.ldest := req.ctrl.ldest 750 wdata.rfWen := req.ctrl.rfWen 751 wdata.fpWen := req.ctrl.fpWen 752 wdata.wflags := req.ctrl.fpu.wflags 753 wdata.commitType := req.ctrl.commitType 754 wdata.eliminatedMove := req.eliminatedMove 755 wdata.pdest := req.pdest 756 wdata.old_pdest := req.old_pdest 757 wdata.ftqIdx := req.cf.ftqPtr 758 wdata.ftqOffset := req.cf.ftqOffset 759 wdata.pc := req.cf.pc 760 wdata.crossPageIPFFix := req.cf.crossPageIPFFix 761 wdata.isFused := req.ctrl.isFused 762 // wdata.exceptionVec := req.cf.exceptionVec 763 } 764 dispatchData.io.raddr := commitReadAddr_next 765 766 exceptionGen.io.redirect <> io.redirect 767 exceptionGen.io.flush := io.flushOut.valid 768 for (i <- 0 until RenameWidth) { 769 exceptionGen.io.enq(i).valid := canEnqueue(i) 770 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 771 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 772 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 773 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 774 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 775 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 776 } 777 778 // TODO: don't hard code these idxes 779 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 780 // CSR is after Alu and Load 781 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 782 def atomic_wb_idx = exuParameters.AluCnt // first port for load 783 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 784 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 785 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 786 all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) } 787 def connect_exception(index: Int, wb_index: Int) = { 788 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 789 // A temporary fix for float load writeback 790 // TODO: let int/fp load use the same two wb ports 791 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 792 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 793 exceptionGen.io.wb(index).valid := true.B 794 } 795 } 796 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 797 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 798 else if (wb_index == atomic_wb_idx) selectAtomics _ 799 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 800 else { 801 assert(store_wb_idxes.contains(wb_index)) 802 selectStore _ 803 } 804 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 805 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 806 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 807 exceptionGen.io.wb(index).bits.singleStep := false.B 808 } 809 810 // 4 fmac + 2 fmisc + 1 i2f 811 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 812 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 813 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 814 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 815 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 816 }).map(_._1) 817 val fflagsDataModule = Module(new SyncDataModuleTemplate( 818 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 819 ) 820 for(i <- fflags_wb.indices){ 821 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 822 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 823 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 824 } 825 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 826 fflagsDataRead := fflagsDataModule.io.rdata 827 828 829 val instrCnt = RegInit(0.U(64.W)) 830 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && i.isFused =/= 0.U }) 831 val trueCommitCnt = commitCnt +& fuseCommitCnt 832 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 833 instrCnt := instrCnt + retireCounter 834 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 835 io.robFull := !allowEnqueue 836 837 /** 838 * debug info 839 */ 840 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 841 XSDebug("") 842 for(i <- 0 until RobSize){ 843 XSDebug(false, !valid(i), "-") 844 XSDebug(false, valid(i) && writebacked(i), "w") 845 XSDebug(false, valid(i) && !writebacked(i), "v") 846 } 847 XSDebug(false, true.B, "\n") 848 849 for(i <- 0 until RobSize) { 850 if(i % 4 == 0) XSDebug("") 851 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 852 XSDebug(false, !valid(i), "- ") 853 XSDebug(false, valid(i) && writebacked(i), "w ") 854 XSDebug(false, valid(i) && !writebacked(i), "v ") 855 if(i % 4 == 3) XSDebug(false, true.B, "\n") 856 } 857 858 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 859 860 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 861 XSPerfAccumulate("clock_cycle", 1.U) 862 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 863 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 864 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 865 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 866 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 867 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 868 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 869 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 870 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 871 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 872 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 873 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 874 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 875 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 876 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 877 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 878 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 879 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 880 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 881 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 882 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 883 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 884 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 885 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 886 val deqUopCommitType = io.commits.info(0).commitType 887 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 888 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 889 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 890 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 891 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 892 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 893 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 894 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 895 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 896 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 897 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 898 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 899 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 900 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 901 } 902 for (fuType <- FuType.functionNameMap.keys) { 903 val fuName = FuType.functionNameMap(fuType) 904 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 905 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 906 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 907 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 908 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 909 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 910 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 911 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 912 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 913 if (fuType == FuType.fmac.litValue()) { 914 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 915 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 916 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 917 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 918 } 919 } 920 921 val l1Miss = Wire(Bool()) 922 l1Miss := false.B 923 ExcitingUtils.addSink(l1Miss, "TMA_l1miss") 924 XSPerfAccumulate("TMA_L1miss", deqNotWritebacked && deqUopCommitType === CommitType.LOAD && l1Miss) 925 926 927 //difftest signals 928 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 929 930 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 931 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 932 val trapVec = Wire(Vec(CommitWidth, Bool())) 933 for(i <- 0 until CommitWidth) { 934 val idx = deqPtrVec(i).value 935 wdata(i) := debug_exuData(idx) 936 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 937 trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap 938 } 939 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 940 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 941 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 942 943 val hitTrap = trapVec.reduce(_||_) 944 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 945 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 946 947 if (!env.FPGAPlatform) { 948 for (i <- 0 until CommitWidth) { 949 val difftest = Module(new DifftestInstrCommit) 950 difftest.io.clock := clock 951 difftest.io.coreid := hardId.U 952 difftest.io.index := i.U 953 954 val ptr = deqPtrVec(i).value 955 val uop = commitDebugUop(i) 956 val exuOut = debug_exuDebug(ptr) 957 val exuData = debug_exuData(ptr) 958 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 959 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 960 difftest.io.instr := RegNext(uop.cf.instr) 961 difftest.io.special := RegNext(uop.ctrl.isFused =/= 0.U) 962 // when committing an eliminated move instruction, 963 // we must make sure that skip is properly set to false (output from EXU is random value) 964 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 965 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 966 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 967 uop.ctrl.fuType === FuType.mou && 968 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 969 difftest.io.wen := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U) 970 difftest.io.wdata := RegNext(exuData) 971 difftest.io.wdest := RegNext(uop.ctrl.ldest) 972 973 // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n") 974 975 // runahead commit hint 976 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 977 runahead_commit.io.clock := clock 978 runahead_commit.io.coreid := hardId.U 979 runahead_commit.io.index := i.U 980 runahead_commit.io.valid := difftest.io.valid && 981 (commitBranchValid(i) || commitIsStore(i)) 982 // TODO: is branch or store 983 runahead_commit.io.pc := difftest.io.pc 984 } 985 } 986 987 if (!env.FPGAPlatform) { 988 for (i <- 0 until CommitWidth) { 989 val difftest = Module(new DifftestLoadEvent) 990 difftest.io.clock := clock 991 difftest.io.coreid := hardId.U 992 difftest.io.index := i.U 993 994 val ptr = deqPtrVec(i).value 995 val uop = commitDebugUop(i) 996 val exuOut = debug_exuDebug(ptr) 997 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 998 difftest.io.paddr := RegNext(exuOut.paddr) 999 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1000 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1001 } 1002 } 1003 1004 if (!env.FPGAPlatform) { 1005 val difftest = Module(new DifftestTrapEvent) 1006 difftest.io.clock := clock 1007 difftest.io.coreid := hardId.U 1008 difftest.io.valid := hitTrap 1009 difftest.io.code := trapCode 1010 difftest.io.pc := trapPC 1011 difftest.io.cycleCnt := timer 1012 difftest.io.instrCnt := instrCnt 1013 } 1014} 1015