1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 override def cloneType = (new RobPtr).asInstanceOf[this.type] 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 55 val fflags = Output(Valid(UInt(5.W))) 56 val dirty_fs = Output(Bool()) 57 val perfinfo = new Bundle { 58 val retiredInstr = Output(UInt(3.W)) 59 } 60} 61 62class RobLsqIO(implicit p: Parameters) extends XSBundle { 63 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val pendingld = Output(Bool()) 66 val pendingst = Output(Bool()) 67 val commit = Output(Bool()) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() // TODO add frontend hit beneath 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 169// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 170 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 171 // only exceptions are allowed to writeback when enqueue 172 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 173} 174 175class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 176 val io = IO(new Bundle { 177 val redirect = Input(Valid(new Redirect)) 178 val flush = Input(Bool()) 179 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 180 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 181 val out = ValidIO(new RobExceptionInfo) 182 val state = ValidIO(new RobExceptionInfo) 183 }) 184 185 val current = Reg(Valid(new RobExceptionInfo)) 186 187 // orR the exceptionVec 188 val lastCycleFlush = RegNext(io.flush) 189 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 190 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 191 192 // s0: compare wb(1),wb(2) and wb(3),wb(4) 193 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 194 val csr_wb_bits = io.wb(0).bits 195 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 196 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 197 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 198 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 199 200 // s1: compare last four and current flush 201 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 202 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 203 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 204 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 205 val s1_out_bits = RegNext(compare_bits) 206 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 207 208 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 209 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 210 211 // s2: compare the input exception with the current one 212 // priorities: 213 // (1) system reset 214 // (2) current is valid: flush, remain, merge, update 215 // (3) current is not valid: s1 or enq 216 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 217 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 218 when (reset.asBool) { 219 current.valid := false.B 220 }.elsewhen (current.valid) { 221 when (current_flush) { 222 current.valid := Mux(s1_flush, false.B, s1_out_valid) 223 } 224 when (s1_out_valid && !s1_flush) { 225 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 226 current.bits := s1_out_bits 227 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 228 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 229 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 230 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 231 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 232 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 233 } 234 } 235 }.elsewhen (s1_out_valid && !s1_flush) { 236 current.valid := true.B 237 current.bits := s1_out_bits 238 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 239 current.valid := true.B 240 current.bits := enq_bits 241 } 242 243 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 244 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 245 io.state := current 246 247} 248 249class RobFlushInfo(implicit p: Parameters) extends XSBundle { 250 val ftqIdx = new FtqPtr 251 val robIdx = new RobPtr 252 val ftqOffset = UInt(log2Up(PredictWidth).W) 253 val replayInst = Bool() 254} 255 256class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 257 258 lazy val module = new RobImp(this) 259 260 override def generateWritebackIO( 261 thisMod: Option[HasWritebackSource] = None, 262 thisModImp: Option[HasWritebackSourceImp] = None 263 ): Unit = { 264 val sources = writebackSinksImp(thisMod, thisModImp) 265 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 266 } 267} 268 269class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 270 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 271 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 272 val numWbPorts = wbExuConfigs.map(_.length) 273 274 val io = IO(new Bundle() { 275 val hartId = Input(UInt(8.W)) 276 val redirect = Input(Valid(new Redirect)) 277 val enq = new RobEnqIO 278 val flushOut = ValidIO(new Redirect) 279 val exception = ValidIO(new ExceptionInfo) 280 // exu + brq 281 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 282 val commits = new RobCommitIO 283 val lsq = new RobLsqIO 284 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 285 val robDeqPtr = Output(new RobPtr) 286 val csr = new RobCSRIO 287 val robFull = Output(Bool()) 288 }) 289 290 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 291 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 292 } 293 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 294 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 295 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 296 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 297 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 298 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 299 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 300 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 301 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 302 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 303 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 304 305 306 val exuWriteback = exuWbPorts.map(_._2) 307 val stdWriteback = stdWbPorts.map(_._2) 308 309 // instvalid field 310 val valid = Mem(RobSize, Bool()) 311 // writeback status 312 val writebacked = Mem(RobSize, Bool()) 313 val store_data_writebacked = Mem(RobSize, Bool()) 314 // data for redirect, exception, etc. 315 val flagBkup = Mem(RobSize, Bool()) 316 // some instructions are not allowed to trigger interrupts 317 // They have side effects on the states of the processor before they write back 318 val interrupt_safe = Mem(RobSize, Bool()) 319 320 // data for debug 321 // Warn: debug_* prefix should not exist in generated verilog. 322 val debug_microOp = Mem(RobSize, new MicroOp) 323 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 324 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 325 326 // pointers 327 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 328 val enqPtr = Wire(new RobPtr) 329 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 330 331 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 332 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 333 val allowEnqueue = RegInit(true.B) 334 335 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 336 val deqPtr = deqPtrVec(0) 337 val walkPtr = walkPtrVec(0) 338 339 val isEmpty = enqPtr === deqPtr 340 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 341 342 /** 343 * states of Rob 344 */ 345 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 346 val state = RegInit(s_idle) 347 348 /** 349 * Data Modules 350 * 351 * CommitDataModule: data from dispatch 352 * (1) read: commits/walk/exception 353 * (2) write: enqueue 354 * 355 * WritebackData: data from writeback 356 * (1) read: commits/walk/exception 357 * (2) write: write back from exe units 358 */ 359 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 360 val dispatchDataRead = dispatchData.io.rdata 361 362 val exceptionGen = Module(new ExceptionGen) 363 val exceptionDataRead = exceptionGen.io.state 364 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 365 366 io.robDeqPtr := deqPtr 367 368 /** 369 * Enqueue (from dispatch) 370 */ 371 // special cases 372 val hasBlockBackward = RegInit(false.B) 373 val hasNoSpecExec = RegInit(false.B) 374 val doingSvinval = RegInit(false.B) 375 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 376 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 377 when (isEmpty) { hasBlockBackward:= false.B } 378 // When any instruction commits, hasNoSpecExec should be set to false.B 379 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 380 381 io.enq.canAccept := allowEnqueue && !hasBlockBackward 382 io.enq.resp := enqPtrVec 383 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 384 val timer = GTimer() 385 for (i <- 0 until RenameWidth) { 386 // we don't check whether io.redirect is valid here since redirect has higher priority 387 when (canEnqueue(i)) { 388 val enqUop = io.enq.req(i).bits 389 // store uop in data module and debug_microOp Vec 390 debug_microOp(enqPtrVec(i).value) := enqUop 391 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 392 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 393 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 394 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 395 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 396 when (enqUop.ctrl.blockBackward) { 397 hasBlockBackward := true.B 398 } 399 when (enqUop.ctrl.noSpecExec) { 400 hasNoSpecExec := true.B 401 } 402 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 403 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 404 when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 405 { 406 doingSvinval := true.B 407 } 408 // the end instruction of Svinval enqs so clear doingSvinval 409 when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 410 { 411 doingSvinval := false.B 412 } 413 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 414 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 415 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 416 } 417 } 418 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 419 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 420 421 // debug info for enqueue (dispatch) 422 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 423 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 424 425 426 /** 427 * Writeback (from execution units) 428 */ 429 for (wb <- exuWriteback) { 430 when (wb.valid) { 431 val wbIdx = wb.bits.uop.robIdx.value 432 debug_exuData(wbIdx) := wb.bits.data 433 debug_exuDebug(wbIdx) := wb.bits.debug 434 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 435 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 436 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 437 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 438 439 val debug_Uop = debug_microOp(wbIdx) 440 XSInfo(true.B, 441 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 442 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 443 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 444 ) 445 } 446 } 447 val writebackNum = PopCount(exuWriteback.map(_.valid)) 448 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 449 450 451 /** 452 * RedirectOut: Interrupt and Exceptions 453 */ 454 val deqDispatchData = dispatchDataRead(0) 455 val debug_deqUop = debug_microOp(deqPtr.value) 456 457 val intrBitSetReg = RegNext(io.csr.intrBitSet) 458 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 459 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 460 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 461 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 462 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 463 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 464 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 465 466 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 467 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 468 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 469 470 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 471 472 // io.flushOut will trigger redirect at the next cycle. 473 // Block any redirect or commit at the next cycle. 474 val lastCycleFlush = RegNext(io.flushOut.valid) 475 476 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 477 io.flushOut.bits := DontCare 478 io.flushOut.bits.robIdx := deqPtr 479 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 480 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 481 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 482 io.flushOut.bits.interrupt := true.B 483 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 484 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 485 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 486 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 487 488 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 489 io.exception.valid := RegNext(exceptionHappen) 490 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 491 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 492 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 493 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 494 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 495 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 496 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 497 498 XSDebug(io.flushOut.valid, 499 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 500 p"excp $exceptionEnable flushPipe $isFlushPipe " + 501 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 502 503 504 /** 505 * Commits (and walk) 506 * They share the same width. 507 */ 508 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 509 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 510 val walkFinished = walkCounter <= CommitWidth.U 511 512 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 513 require(RenameWidth <= CommitWidth) 514 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 515 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 516 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 517 usedSpaceForMPR := io.enq.needAlloc 518 extraSpaceForMPR := dispatchData.io.wdata 519 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 520 } 521 522 // wiring to csr 523 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 524 val v = io.commits.valid(i) 525 val info = io.commits.info(i) 526 (v & info.wflags, v & info.fpWen) 527 }).unzip 528 val fflags = Wire(Valid(UInt(5.W))) 529 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 530 fflags.bits := wflags.zip(fflagsDataRead).map({ 531 case (w, f) => Mux(w, f, 0.U) 532 }).reduce(_|_) 533 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 534 535 // when mispredict branches writeback, stop commit in the next 2 cycles 536 // TODO: don't check all exu write back 537 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 538 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 539 ))).orR() 540 val misPredBlockCounter = Reg(UInt(3.W)) 541 misPredBlockCounter := Mux(misPredWb, 542 "b111".U, 543 misPredBlockCounter >> 1.U 544 ) 545 val misPredBlock = misPredBlockCounter(0) 546 547 io.commits.isWalk := state =/= s_idle 548 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 549 // store will be commited iff both sta & std have been writebacked 550 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 551 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 552 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 553 val allowOnlyOneCommit = commit_exception || intrBitSetReg 554 // for instructions that may block others, we don't allow them to commit 555 for (i <- 0 until CommitWidth) { 556 // defaults: state === s_idle and instructions commit 557 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 558 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 559 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 560 io.commits.info(i) := dispatchDataRead(i) 561 562 when (state === s_walk) { 563 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 564 }.elsewhen(state === s_extrawalk) { 565 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 566 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 567 } 568 569 XSInfo(state === s_idle && io.commits.valid(i), 570 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 571 debug_microOp(deqPtrVec(i).value).cf.pc, 572 io.commits.info(i).rfWen, 573 io.commits.info(i).ldest, 574 io.commits.info(i).pdest, 575 io.commits.info(i).old_pdest, 576 debug_exuData(deqPtrVec(i).value), 577 fflagsDataRead(i) 578 ) 579 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 580 debug_microOp(walkPtrVec(i).value).cf.pc, 581 io.commits.info(i).rfWen, 582 io.commits.info(i).ldest, 583 debug_exuData(walkPtrVec(i).value) 584 ) 585 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 586 io.commits.info(i).rfWen, 587 io.commits.info(i).ldest 588 ) 589 } 590 if (env.EnableDifftest) { 591 io.commits.info.map(info => dontTouch(info.pc)) 592 } 593 594 // sync fflags/dirty_fs to csr 595 io.csr.fflags := RegNext(fflags) 596 io.csr.dirty_fs := RegNext(dirty_fs) 597 598 // commit branch to brq 599 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 600 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 601 602 // commit load/store to lsq 603 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 604 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 605 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 606 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 607 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 608 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 609 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 610 611 /** 612 * state changes 613 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 614 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 615 * (3) walk: when walking comes to the end, switch to s_walk 616 * (4) s_extrawalk to s_walk 617 */ 618 val state_next = Mux(io.redirect.valid, 619 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 620 Mux(state === s_walk && walkFinished, 621 s_idle, 622 Mux(state === s_extrawalk, s_walk, state) 623 ) 624 ) 625 state := state_next 626 627 /** 628 * pointers and counters 629 */ 630 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 631 deqPtrGenModule.io.state := state 632 deqPtrGenModule.io.deq_v := commit_v 633 deqPtrGenModule.io.deq_w := commit_w 634 deqPtrGenModule.io.exception_state := exceptionDataRead 635 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 636 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 637 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 638 639 deqPtrGenModule.io.misPredBlock := misPredBlock 640 deqPtrGenModule.io.isReplaying := isReplaying 641 deqPtrVec := deqPtrGenModule.io.out 642 val deqPtrVec_next = deqPtrGenModule.io.next_out 643 644 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 645 enqPtrGenModule.io.redirect := io.redirect 646 enqPtrGenModule.io.allowEnqueue := allowEnqueue 647 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 648 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 649 enqPtr := enqPtrGenModule.io.out 650 651 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 652 // next walkPtrVec: 653 // (1) redirect occurs: update according to state 654 // (2) walk: move backwards 655 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 656 Mux(state === s_walk, 657 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 658 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 659 ), 660 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 661 ) 662 walkPtrVec := walkPtrVec_next 663 664 val lastCycleRedirect = RegNext(io.redirect.valid) 665 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 666 val commitCnt = PopCount(io.commits.valid) 667 validCounter := Mux(state === s_idle, 668 (validCounter - commitCnt) + dispatchNum, 669 trueValidCounter 670 ) 671 672 allowEnqueue := Mux(state === s_idle, 673 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 674 trueValidCounter <= (RobSize - RenameWidth).U 675 ) 676 677 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 678 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 679 when (io.redirect.valid) { 680 walkCounter := Mux(state === s_walk, 681 // NOTE: +& is used here because: 682 // When rob is full and the head instruction causes an exception, 683 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 684 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 685 // Since exceptions flush the instruction itself, flushItSelf is true.B. 686 // Previously we use `+` to count the walk distance and it causes overflows 687 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 688 // The width of walkCounter also needs to be changed. 689 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 690 redirectWalkDistance +& io.redirect.bits.flushItself() 691 ) 692 }.elsewhen (state === s_walk) { 693 walkCounter := walkCounter - commitCnt 694 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 695 } 696 697 698 /** 699 * States 700 * We put all the stage bits changes here. 701 702 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 703 * All states: (1) valid; (2) writebacked; (3) flagBkup 704 */ 705 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 706 707 // enqueue logic writes 6 valid 708 for (i <- 0 until RenameWidth) { 709 when (canEnqueue(i) && !io.redirect.valid) { 710 valid(enqPtrVec(i).value) := true.B 711 } 712 } 713 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 714 for (i <- 0 until CommitWidth) { 715 when (io.commits.valid(i) && state =/= s_extrawalk) { 716 valid(commitReadAddr(i)) := false.B 717 } 718 } 719 // reset: when exception, reset all valid to false 720 when (reset.asBool) { 721 for (i <- 0 until RobSize) { 722 valid(i) := false.B 723 } 724 } 725 726 // status field: writebacked 727 // enqueue logic set 6 writebacked to false 728 for (i <- 0 until RenameWidth) { 729 when (canEnqueue(i)) { 730 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 731 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !enqHasException.asUInt.orR 732 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 733 store_data_writebacked(enqPtrVec(i).value) := !isStu 734 } 735 } 736 when (exceptionGen.io.out.valid) { 737 val wbIdx = exceptionGen.io.out.bits.robIdx.value 738 writebacked(wbIdx) := true.B 739 store_data_writebacked(wbIdx) := true.B 740 } 741 // writeback logic set numWbPorts writebacked to true 742 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 743 when (wb.valid) { 744 val wbIdx = wb.bits.uop.robIdx.value 745 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 746 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 747 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 748 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst 749 writebacked(wbIdx) := !block_wb 750 } 751 } 752 // store data writeback logic mark store as data_writebacked 753 for (wb <- stdWriteback) { 754 when(RegNext(wb.valid)) { 755 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 756 } 757 } 758 759 // flagBkup 760 // enqueue logic set 6 flagBkup at most 761 for (i <- 0 until RenameWidth) { 762 when (canEnqueue(i)) { 763 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 764 } 765 } 766 767 // interrupt_safe 768 for (i <- 0 until RenameWidth) { 769 // We RegNext the updates for better timing. 770 // Note that instructions won't change the system's states in this cycle. 771 when (RegNext(canEnqueue(i))) { 772 // For now, we allow non-load-store instructions to trigger interrupts 773 // For MMIO instructions, they should not trigger interrupts since they may 774 // be sent to lower level before it writes back. 775 // However, we cannot determine whether a load/store instruction is MMIO. 776 // Thus, we don't allow load/store instructions to trigger an interrupt. 777 // TODO: support non-MMIO load-store instructions to trigger interrupts 778 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 779 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 780 } 781 } 782 783 /** 784 * read and write of data modules 785 */ 786 val commitReadAddr_next = Mux(state_next === s_idle, 787 VecInit(deqPtrVec_next.map(_.value)), 788 VecInit(walkPtrVec_next.map(_.value)) 789 ) 790 dispatchData.io.wen := canEnqueue 791 dispatchData.io.waddr := enqPtrVec.map(_.value) 792 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 793 wdata.ldest := req.ctrl.ldest 794 wdata.rfWen := req.ctrl.rfWen 795 wdata.fpWen := req.ctrl.fpWen 796 wdata.wflags := req.ctrl.fpu.wflags 797 wdata.commitType := req.ctrl.commitType 798 wdata.pdest := req.pdest 799 wdata.old_pdest := req.old_pdest 800 wdata.ftqIdx := req.cf.ftqPtr 801 wdata.ftqOffset := req.cf.ftqOffset 802 wdata.pc := req.cf.pc 803 } 804 dispatchData.io.raddr := commitReadAddr_next 805 806 exceptionGen.io.redirect <> io.redirect 807 exceptionGen.io.flush := io.flushOut.valid 808 for (i <- 0 until RenameWidth) { 809 exceptionGen.io.enq(i).valid := canEnqueue(i) 810 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 811 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 812 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 813 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 814 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 815 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 816 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 817 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger 818 } 819 820 println(s"ExceptionGen:") 821 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 822 require(exceptionCases.length == exceptionGen.io.wb.length) 823 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 824 exc_wb.valid := wb.valid 825 exc_wb.bits.robIdx := wb.bits.uop.robIdx 826 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 827 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 828 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 829 exc_wb.bits.singleStep := false.B 830 exc_wb.bits.crossPageIPFFix := false.B 831 // TODO: make trigger configurable 832 exc_wb.bits.trigger := wb.bits.uop.cf.trigger 833 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 834 s"flushPipe ${configs.exists(_.flushPipe)}, " + 835 s"replayInst ${configs.exists(_.replayInst)}") 836 } 837 838 val fflags_wb = fflagsPorts.map(_._2) 839 val fflagsDataModule = Module(new SyncDataModuleTemplate( 840 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 841 ) 842 for(i <- fflags_wb.indices){ 843 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 844 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 845 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 846 } 847 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 848 fflagsDataRead := fflagsDataModule.io.rdata 849 850 851 val instrCnt = RegInit(0.U(64.W)) 852 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 853 val trueCommitCnt = commitCnt +& fuseCommitCnt 854 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 855 instrCnt := instrCnt + retireCounter 856 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 857 io.robFull := !allowEnqueue 858 859 /** 860 * debug info 861 */ 862 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 863 XSDebug("") 864 for(i <- 0 until RobSize){ 865 XSDebug(false, !valid(i), "-") 866 XSDebug(false, valid(i) && writebacked(i), "w") 867 XSDebug(false, valid(i) && !writebacked(i), "v") 868 } 869 XSDebug(false, true.B, "\n") 870 871 for(i <- 0 until RobSize) { 872 if(i % 4 == 0) XSDebug("") 873 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 874 XSDebug(false, !valid(i), "- ") 875 XSDebug(false, valid(i) && writebacked(i), "w ") 876 XSDebug(false, valid(i) && !writebacked(i), "v ") 877 if(i % 4 == 3) XSDebug(false, true.B, "\n") 878 } 879 880 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 881 882 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 883 XSPerfAccumulate("clock_cycle", 1.U) 884 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 885 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 886 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 887 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 888 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 889 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 890 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 891 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 892 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 893 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 894 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 895 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 896 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 897 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 898 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 899 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 900 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 901 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 902 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 903 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 904 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 905 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 906 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 907 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 908 val deqUopCommitType = io.commits.info(0).commitType 909 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 910 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 911 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 912 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 913 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 914 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 915 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 916 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 917 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 918 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 919 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 920 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 921 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 922 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 923 } 924 for (fuType <- FuType.functionNameMap.keys) { 925 val fuName = FuType.functionNameMap(fuType) 926 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 927 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 928 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 929 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 930 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 931 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 932 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 933 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 934 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 935 if (fuType == FuType.fmac.litValue()) { 936 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 937 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 938 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 939 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 940 } 941 } 942 943 //difftest signals 944 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 945 946 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 947 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 948 949 for(i <- 0 until CommitWidth) { 950 val idx = deqPtrVec(i).value 951 wdata(i) := debug_exuData(idx) 952 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 953 } 954 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 955 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 956 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 957 958 if (env.EnableDifftest) { 959 for (i <- 0 until CommitWidth) { 960 val difftest = Module(new DifftestInstrCommit) 961 difftest.io.clock := clock 962 difftest.io.coreid := io.hartId 963 difftest.io.index := i.U 964 965 val ptr = deqPtrVec(i).value 966 val uop = commitDebugUop(i) 967 val exuOut = debug_exuDebug(ptr) 968 val exuData = debug_exuData(ptr) 969 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 970 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 971 difftest.io.instr := RegNext(uop.cf.instr) 972 difftest.io.special := RegNext(CommitType.isFused(io.commits.info(i).commitType)) 973 // when committing an eliminated move instruction, 974 // we must make sure that skip is properly set to false (output from EXU is random value) 975 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 976 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 977 difftest.io.wen := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U) 978 difftest.io.wpdest := RegNext(io.commits.info(i).pdest) 979 difftest.io.wdest := RegNext(io.commits.info(i).ldest) 980 981 // runahead commit hint 982 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 983 runahead_commit.io.clock := clock 984 runahead_commit.io.coreid := io.hartId 985 runahead_commit.io.index := i.U 986 runahead_commit.io.valid := difftest.io.valid && 987 (commitBranchValid(i) || commitIsStore(i)) 988 // TODO: is branch or store 989 runahead_commit.io.pc := difftest.io.pc 990 } 991 } 992 else if (env.AlwaysBasicDiff) { 993 // These are the structures used by difftest only and should be optimized after synthesis. 994 val dt_eliminatedMove = Mem(RobSize, Bool()) 995 val dt_isRVC = Mem(RobSize, Bool()) 996 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 997 for (i <- 0 until RenameWidth) { 998 when (canEnqueue(i)) { 999 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1000 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1001 } 1002 } 1003 for (wb <- exuWriteback) { 1004 when (wb.valid) { 1005 val wbIdx = wb.bits.uop.robIdx.value 1006 dt_exuDebug(wbIdx) := wb.bits.debug 1007 } 1008 } 1009 // Always instantiate basic difftest modules. 1010 for (i <- 0 until CommitWidth) { 1011 val commitInfo = io.commits.info(i) 1012 val ptr = deqPtrVec(i).value 1013 val exuOut = dt_exuDebug(ptr) 1014 val eliminatedMove = dt_eliminatedMove(ptr) 1015 val isRVC = dt_isRVC(ptr) 1016 1017 val difftest = Module(new DifftestBasicInstrCommit) 1018 difftest.io.clock := clock 1019 difftest.io.coreid := io.hartId 1020 difftest.io.index := i.U 1021 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1022 difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType)) 1023 difftest.io.skip := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 1024 difftest.io.isRVC := RegNext(isRVC) 1025 difftest.io.wen := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U) 1026 difftest.io.wpdest := RegNext(commitInfo.pdest) 1027 difftest.io.wdest := RegNext(commitInfo.ldest) 1028 } 1029 } 1030 1031 if (env.EnableDifftest) { 1032 for (i <- 0 until CommitWidth) { 1033 val difftest = Module(new DifftestLoadEvent) 1034 difftest.io.clock := clock 1035 difftest.io.coreid := io.hartId 1036 difftest.io.index := i.U 1037 1038 val ptr = deqPtrVec(i).value 1039 val uop = commitDebugUop(i) 1040 val exuOut = debug_exuDebug(ptr) 1041 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1042 difftest.io.paddr := RegNext(exuOut.paddr) 1043 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1044 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1045 } 1046 } 1047 1048 // Always instantiate basic difftest modules. 1049 if (env.EnableDifftest) { 1050 val dt_isXSTrap = Mem(RobSize, Bool()) 1051 for (i <- 0 until RenameWidth) { 1052 when (canEnqueue(i)) { 1053 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1054 } 1055 } 1056 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1057 val hitTrap = trapVec.reduce(_||_) 1058 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1059 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1060 val difftest = Module(new DifftestTrapEvent) 1061 difftest.io.clock := clock 1062 difftest.io.coreid := io.hartId 1063 difftest.io.valid := hitTrap 1064 difftest.io.code := trapCode 1065 difftest.io.pc := trapPC 1066 difftest.io.cycleCnt := timer 1067 difftest.io.instrCnt := instrCnt 1068 } 1069 else if (env.AlwaysBasicDiff) { 1070 val dt_isXSTrap = Mem(RobSize, Bool()) 1071 for (i <- 0 until RenameWidth) { 1072 when (canEnqueue(i)) { 1073 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1074 } 1075 } 1076 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1077 val hitTrap = trapVec.reduce(_||_) 1078 val difftest = Module(new DifftestBasicTrapEvent) 1079 difftest.io.clock := clock 1080 difftest.io.coreid := io.hartId 1081 difftest.io.valid := hitTrap 1082 difftest.io.cycleCnt := timer 1083 difftest.io.instrCnt := instrCnt 1084 } 1085 1086 val perfEvents = Seq( 1087 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1088 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1089 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1090 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1091 ("rob_commitUop ", ifCommit(commitCnt) ), 1092 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1093 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1094 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1095 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1096 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1097 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1098 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1099 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1100 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1101 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1102 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1103 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1104 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1105 ) 1106 generatePerfEvent() 1107} 1108