1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 63 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67} 68 69class RobEnqIO(implicit p: Parameters) extends XSBundle { 70 val canAccept = Output(Bool()) 71 val isEmpty = Output(Bool()) 72 // valid vector, for robIdx gen and walk 73 val needAlloc = Vec(RenameWidth, Input(Bool())) 74 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 75 val resp = Vec(RenameWidth, Output(new RobPtr)) 76} 77 78class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 79 80class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 81 val io = IO(new Bundle { 82 // for commits/flush 83 val state = Input(UInt(2.W)) 84 val deq_v = Vec(CommitWidth, Input(Bool())) 85 val deq_w = Vec(CommitWidth, Input(Bool())) 86 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 87 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 88 val intrBitSetReg = Input(Bool()) 89 val hasNoSpecExec = Input(Bool()) 90 val interrupt_safe = Input(Bool()) 91 val misPredBlock = Input(Bool()) 92 val isReplaying = Input(Bool()) 93 val hasWFI = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && ((!io.hasNoSpecExec && io.interrupt_safe) || io.hasWFI) 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() // TODO add frontend hit beneath 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 169// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 170 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 171 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 172 // only exceptions are allowed to writeback when enqueue 173 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 174} 175 176class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 177 val io = IO(new Bundle { 178 val redirect = Input(Valid(new Redirect)) 179 val flush = Input(Bool()) 180 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 181 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 182 val out = ValidIO(new RobExceptionInfo) 183 val state = ValidIO(new RobExceptionInfo) 184 }) 185 186 val current = Reg(Valid(new RobExceptionInfo)) 187 188 // orR the exceptionVec 189 val lastCycleFlush = RegNext(io.flush) 190 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 191 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 192 193 // s0: compare wb(1),wb(2) and wb(3),wb(4) 194 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 195 val csr_wb_bits = io.wb(0).bits 196 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 197 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 198 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 199 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 200 201 // s1: compare last four and current flush 202 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 203 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 204 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 205 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 206 val s1_out_bits = RegNext(compare_bits) 207 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 208 209 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 210 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 211 212 // s2: compare the input exception with the current one 213 // priorities: 214 // (1) system reset 215 // (2) current is valid: flush, remain, merge, update 216 // (3) current is not valid: s1 or enq 217 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 218 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 219 when (reset.asBool) { 220 current.valid := false.B 221 }.elsewhen (current.valid) { 222 when (current_flush) { 223 current.valid := Mux(s1_flush, false.B, s1_out_valid) 224 } 225 when (s1_out_valid && !s1_flush) { 226 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 227 current.bits := s1_out_bits 228 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 229 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 230 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 231 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 232 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 233 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 234 } 235 } 236 }.elsewhen (s1_out_valid && !s1_flush) { 237 current.valid := true.B 238 current.bits := s1_out_bits 239 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 240 current.valid := true.B 241 current.bits := enq_bits 242 } 243 244 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 245 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 246 io.state := current 247 248} 249 250class RobFlushInfo(implicit p: Parameters) extends XSBundle { 251 val ftqIdx = new FtqPtr 252 val robIdx = new RobPtr 253 val ftqOffset = UInt(log2Up(PredictWidth).W) 254 val replayInst = Bool() 255} 256 257class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 258 259 lazy val module = new RobImp(this) 260 261 override def generateWritebackIO( 262 thisMod: Option[HasWritebackSource] = None, 263 thisModImp: Option[HasWritebackSourceImp] = None 264 ): Unit = { 265 val sources = writebackSinksImp(thisMod, thisModImp) 266 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 267 } 268} 269 270class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 271 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 272 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 273 val numWbPorts = wbExuConfigs.map(_.length) 274 275 val io = IO(new Bundle() { 276 val hartId = Input(UInt(8.W)) 277 val redirect = Input(Valid(new Redirect)) 278 val enq = new RobEnqIO 279 val flushOut = ValidIO(new Redirect) 280 val exception = ValidIO(new ExceptionInfo) 281 // exu + brq 282 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 283 val commits = new RobCommitIO 284 val lsq = new RobLsqIO 285 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 286 val robDeqPtr = Output(new RobPtr) 287 val csr = new RobCSRIO 288 val robFull = Output(Bool()) 289 val cpu_halt = Output(Bool()) 290 }) 291 292 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 293 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 294 } 295 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 296 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 297 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 298 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 299 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 300 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 301 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 302 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 303 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 304 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 305 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 306 307 308 val exuWriteback = exuWbPorts.map(_._2) 309 val stdWriteback = stdWbPorts.map(_._2) 310 311 // instvalid field 312 val valid = Mem(RobSize, Bool()) 313 // writeback status 314 val writebacked = Mem(RobSize, Bool()) 315 val store_data_writebacked = Mem(RobSize, Bool()) 316 // data for redirect, exception, etc. 317 val flagBkup = Mem(RobSize, Bool()) 318 // some instructions are not allowed to trigger interrupts 319 // They have side effects on the states of the processor before they write back 320 val interrupt_safe = Mem(RobSize, Bool()) 321 322 // data for debug 323 // Warn: debug_* prefix should not exist in generated verilog. 324 val debug_microOp = Mem(RobSize, new MicroOp) 325 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 326 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 327 328 // pointers 329 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 330 val enqPtr = Wire(new RobPtr) 331 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 332 333 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 334 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 335 val allowEnqueue = RegInit(true.B) 336 337 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 338 val deqPtr = deqPtrVec(0) 339 val walkPtr = walkPtrVec(0) 340 341 val isEmpty = enqPtr === deqPtr 342 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 343 344 /** 345 * states of Rob 346 */ 347 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 348 val state = RegInit(s_idle) 349 350 /** 351 * Data Modules 352 * 353 * CommitDataModule: data from dispatch 354 * (1) read: commits/walk/exception 355 * (2) write: enqueue 356 * 357 * WritebackData: data from writeback 358 * (1) read: commits/walk/exception 359 * (2) write: write back from exe units 360 */ 361 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 362 val dispatchDataRead = dispatchData.io.rdata 363 364 val exceptionGen = Module(new ExceptionGen) 365 val exceptionDataRead = exceptionGen.io.state 366 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 367 368 io.robDeqPtr := deqPtr 369 370 /** 371 * Enqueue (from dispatch) 372 */ 373 // special cases 374 val hasBlockBackward = RegInit(false.B) 375 val hasNoSpecExec = RegInit(false.B) 376 val doingSvinval = RegInit(false.B) 377 val state_wfi = RegInit(0.U(2.W)) 378 val hasWFI = state_wfi === 2.U 379 io.cpu_halt := hasWFI 380 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 381 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 382 when (isEmpty) { hasBlockBackward:= false.B } 383 // When any instruction commits, hasNoSpecExec should be set to false.B 384 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 385 when (io.exception.valid) { 386 state_wfi := 0.U 387 } 388 when (state_wfi === 1.U && io.commits.valid.asUInt.orR) { 389 state_wfi := 2.U 390 } 391 392 io.enq.canAccept := allowEnqueue && !hasBlockBackward 393 io.enq.resp := enqPtrVec 394 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 395 val timer = GTimer() 396 for (i <- 0 until RenameWidth) { 397 // we don't check whether io.redirect is valid here since redirect has higher priority 398 when (canEnqueue(i)) { 399 val enqUop = io.enq.req(i).bits 400 // store uop in data module and debug_microOp Vec 401 debug_microOp(enqPtrVec(i).value) := enqUop 402 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 403 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 404 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 405 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 406 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 407 when (enqUop.ctrl.blockBackward) { 408 hasBlockBackward := true.B 409 } 410 when (enqUop.ctrl.noSpecExec) { 411 hasNoSpecExec := true.B 412 } 413 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 414 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 415 when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 416 { 417 doingSvinval := true.B 418 } 419 // the end instruction of Svinval enqs so clear doingSvinval 420 when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 421 { 422 doingSvinval := false.B 423 } 424 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 425 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 426 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 427 when (enqUop.ctrl.isWFI) { 428 state_wfi := 1.U 429 } 430 } 431 } 432 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 433 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 434 435 // debug info for enqueue (dispatch) 436 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 437 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 438 439 440 /** 441 * Writeback (from execution units) 442 */ 443 for (wb <- exuWriteback) { 444 when (wb.valid) { 445 val wbIdx = wb.bits.uop.robIdx.value 446 debug_exuData(wbIdx) := wb.bits.data 447 debug_exuDebug(wbIdx) := wb.bits.debug 448 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 449 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 450 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 451 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 452 453 val debug_Uop = debug_microOp(wbIdx) 454 XSInfo(true.B, 455 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 456 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 457 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 458 ) 459 } 460 } 461 val writebackNum = PopCount(exuWriteback.map(_.valid)) 462 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 463 464 465 /** 466 * RedirectOut: Interrupt and Exceptions 467 */ 468 val deqDispatchData = dispatchDataRead(0) 469 val debug_deqUop = debug_microOp(deqPtr.value) 470 471 val intrBitSetReg = RegNext(io.csr.intrBitSet) 472 val intrEnable = intrBitSetReg && ((!hasNoSpecExec && interrupt_safe(deqPtr.value)) || hasWFI) 473 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 474 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 475 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 476 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 477 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 478 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 479 480 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 481 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 482 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 483 484 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 485 486 // io.flushOut will trigger redirect at the next cycle. 487 // Block any redirect or commit at the next cycle. 488 val lastCycleFlush = RegNext(io.flushOut.valid) 489 490 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 491 io.flushOut.bits := DontCare 492 io.flushOut.bits.robIdx := deqPtr 493 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 494 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 495 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 496 io.flushOut.bits.interrupt := true.B 497 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 498 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 499 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 500 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 501 502 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 503 io.exception.valid := RegNext(exceptionHappen) 504 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 505 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 506 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 507 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 508 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 509 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 510 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 511 512 XSDebug(io.flushOut.valid, 513 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 514 p"excp $exceptionEnable flushPipe $isFlushPipe " + 515 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 516 517 518 /** 519 * Commits (and walk) 520 * They share the same width. 521 */ 522 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 523 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 524 val walkFinished = walkCounter <= CommitWidth.U 525 526 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 527 require(RenameWidth <= CommitWidth) 528 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 529 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 530 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 531 usedSpaceForMPR := io.enq.needAlloc 532 extraSpaceForMPR := dispatchData.io.wdata 533 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 534 } 535 536 // wiring to csr 537 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 538 val v = io.commits.valid(i) 539 val info = io.commits.info(i) 540 (v & info.wflags, v & info.fpWen) 541 }).unzip 542 val fflags = Wire(Valid(UInt(5.W))) 543 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 544 fflags.bits := wflags.zip(fflagsDataRead).map({ 545 case (w, f) => Mux(w, f, 0.U) 546 }).reduce(_|_) 547 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 548 549 // when mispredict branches writeback, stop commit in the next 2 cycles 550 // TODO: don't check all exu write back 551 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 552 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 553 ))).orR() 554 val misPredBlockCounter = Reg(UInt(3.W)) 555 misPredBlockCounter := Mux(misPredWb, 556 "b111".U, 557 misPredBlockCounter >> 1.U 558 ) 559 val misPredBlock = misPredBlockCounter(0) 560 561 io.commits.isWalk := state =/= s_idle 562 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 563 // store will be commited iff both sta & std have been writebacked 564 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 565 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 566 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 567 val allowOnlyOneCommit = commit_exception || intrBitSetReg 568 // for instructions that may block others, we don't allow them to commit 569 for (i <- 0 until CommitWidth) { 570 // defaults: state === s_idle and instructions commit 571 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 572 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 573 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI 574 io.commits.info(i) := dispatchDataRead(i) 575 576 when (state === s_walk) { 577 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 578 }.elsewhen(state === s_extrawalk) { 579 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 580 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 581 } 582 583 XSInfo(state === s_idle && io.commits.valid(i), 584 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 585 debug_microOp(deqPtrVec(i).value).cf.pc, 586 io.commits.info(i).rfWen, 587 io.commits.info(i).ldest, 588 io.commits.info(i).pdest, 589 io.commits.info(i).old_pdest, 590 debug_exuData(deqPtrVec(i).value), 591 fflagsDataRead(i) 592 ) 593 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 594 debug_microOp(walkPtrVec(i).value).cf.pc, 595 io.commits.info(i).rfWen, 596 io.commits.info(i).ldest, 597 debug_exuData(walkPtrVec(i).value) 598 ) 599 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 600 io.commits.info(i).rfWen, 601 io.commits.info(i).ldest 602 ) 603 } 604 if (env.EnableDifftest) { 605 io.commits.info.map(info => dontTouch(info.pc)) 606 } 607 608 // sync fflags/dirty_fs to csr 609 io.csr.fflags := RegNext(fflags) 610 io.csr.dirty_fs := RegNext(dirty_fs) 611 612 // commit branch to brq 613 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 614 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 615 616 // commit load/store to lsq 617 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 618 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 619 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 620 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 621 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 622 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 623 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 624 625 /** 626 * state changes 627 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 628 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 629 * (3) walk: when walking comes to the end, switch to s_walk 630 * (4) s_extrawalk to s_walk 631 */ 632 val state_next = Mux(io.redirect.valid, 633 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 634 Mux(state === s_walk && walkFinished, 635 s_idle, 636 Mux(state === s_extrawalk, s_walk, state) 637 ) 638 ) 639 state := state_next 640 641 /** 642 * pointers and counters 643 */ 644 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 645 deqPtrGenModule.io.state := state 646 deqPtrGenModule.io.deq_v := commit_v 647 deqPtrGenModule.io.deq_w := commit_w 648 deqPtrGenModule.io.exception_state := exceptionDataRead 649 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 650 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 651 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 652 deqPtrGenModule.io.misPredBlock := misPredBlock 653 deqPtrGenModule.io.isReplaying := isReplaying 654 deqPtrGenModule.io.hasWFI := hasWFI 655 deqPtrVec := deqPtrGenModule.io.out 656 val deqPtrVec_next = deqPtrGenModule.io.next_out 657 658 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 659 enqPtrGenModule.io.redirect := io.redirect 660 enqPtrGenModule.io.allowEnqueue := allowEnqueue 661 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 662 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 663 enqPtr := enqPtrGenModule.io.out 664 665 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 666 // next walkPtrVec: 667 // (1) redirect occurs: update according to state 668 // (2) walk: move backwards 669 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 670 Mux(state === s_walk, 671 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 672 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 673 ), 674 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 675 ) 676 walkPtrVec := walkPtrVec_next 677 678 val lastCycleRedirect = RegNext(io.redirect.valid) 679 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 680 val commitCnt = PopCount(io.commits.valid) 681 validCounter := Mux(state === s_idle, 682 (validCounter - commitCnt) + dispatchNum, 683 trueValidCounter 684 ) 685 686 allowEnqueue := Mux(state === s_idle, 687 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 688 trueValidCounter <= (RobSize - RenameWidth).U 689 ) 690 691 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 692 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 693 when (io.redirect.valid) { 694 walkCounter := Mux(state === s_walk, 695 // NOTE: +& is used here because: 696 // When rob is full and the head instruction causes an exception, 697 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 698 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 699 // Since exceptions flush the instruction itself, flushItSelf is true.B. 700 // Previously we use `+` to count the walk distance and it causes overflows 701 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 702 // The width of walkCounter also needs to be changed. 703 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 704 redirectWalkDistance +& io.redirect.bits.flushItself() 705 ) 706 }.elsewhen (state === s_walk) { 707 walkCounter := walkCounter - commitCnt 708 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 709 } 710 711 712 /** 713 * States 714 * We put all the stage bits changes here. 715 716 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 717 * All states: (1) valid; (2) writebacked; (3) flagBkup 718 */ 719 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 720 721 // enqueue logic writes 6 valid 722 for (i <- 0 until RenameWidth) { 723 when (canEnqueue(i) && !io.redirect.valid) { 724 valid(enqPtrVec(i).value) := true.B 725 } 726 } 727 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 728 for (i <- 0 until CommitWidth) { 729 when (io.commits.valid(i) && state =/= s_extrawalk) { 730 valid(commitReadAddr(i)) := false.B 731 } 732 } 733 // reset: when exception, reset all valid to false 734 when (reset.asBool) { 735 for (i <- 0 until RobSize) { 736 valid(i) := false.B 737 } 738 } 739 740 // status field: writebacked 741 // enqueue logic set 6 writebacked to false 742 for (i <- 0 until RenameWidth) { 743 when (canEnqueue(i)) { 744 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 745 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 746 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove || io.enq.req(i).bits.ctrl.isWFI 747 writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 748 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 749 store_data_writebacked(enqPtrVec(i).value) := !isStu 750 } 751 } 752 when (exceptionGen.io.out.valid) { 753 val wbIdx = exceptionGen.io.out.bits.robIdx.value 754 writebacked(wbIdx) := true.B 755 store_data_writebacked(wbIdx) := true.B 756 } 757 // writeback logic set numWbPorts writebacked to true 758 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 759 when (wb.valid) { 760 val wbIdx = wb.bits.uop.robIdx.value 761 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 762 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 763 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 764 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 765 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 766 writebacked(wbIdx) := !block_wb 767 } 768 } 769 // store data writeback logic mark store as data_writebacked 770 for (wb <- stdWriteback) { 771 when(RegNext(wb.valid)) { 772 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 773 } 774 } 775 776 // flagBkup 777 // enqueue logic set 6 flagBkup at most 778 for (i <- 0 until RenameWidth) { 779 when (canEnqueue(i)) { 780 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 781 } 782 } 783 784 // interrupt_safe 785 for (i <- 0 until RenameWidth) { 786 // We RegNext the updates for better timing. 787 // Note that instructions won't change the system's states in this cycle. 788 when (RegNext(canEnqueue(i))) { 789 // For now, we allow non-load-store instructions to trigger interrupts 790 // For MMIO instructions, they should not trigger interrupts since they may 791 // be sent to lower level before it writes back. 792 // However, we cannot determine whether a load/store instruction is MMIO. 793 // Thus, we don't allow load/store instructions to trigger an interrupt. 794 // TODO: support non-MMIO load-store instructions to trigger interrupts 795 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 796 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 797 } 798 } 799 800 /** 801 * read and write of data modules 802 */ 803 val commitReadAddr_next = Mux(state_next === s_idle, 804 VecInit(deqPtrVec_next.map(_.value)), 805 VecInit(walkPtrVec_next.map(_.value)) 806 ) 807 dispatchData.io.wen := canEnqueue 808 dispatchData.io.waddr := enqPtrVec.map(_.value) 809 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 810 wdata.ldest := req.ctrl.ldest 811 wdata.rfWen := req.ctrl.rfWen 812 wdata.fpWen := req.ctrl.fpWen 813 wdata.wflags := req.ctrl.fpu.wflags 814 wdata.commitType := req.ctrl.commitType 815 wdata.pdest := req.pdest 816 wdata.old_pdest := req.old_pdest 817 wdata.ftqIdx := req.cf.ftqPtr 818 wdata.ftqOffset := req.cf.ftqOffset 819 wdata.pc := req.cf.pc 820 } 821 dispatchData.io.raddr := commitReadAddr_next 822 823 exceptionGen.io.redirect <> io.redirect 824 exceptionGen.io.flush := io.flushOut.valid 825 for (i <- 0 until RenameWidth) { 826 exceptionGen.io.enq(i).valid := canEnqueue(i) 827 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 828 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 829 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 830 exceptionGen.io.enq(i).bits.replayInst := false.B 831 assert(io.enq.req(i).bits.ctrl.replayInst === false.B) 832 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 833 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 834 exceptionGen.io.enq(i).bits.trigger.clear() 835 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 836 } 837 838 println(s"ExceptionGen:") 839 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 840 require(exceptionCases.length == exceptionGen.io.wb.length) 841 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 842 exc_wb.valid := wb.valid 843 exc_wb.bits.robIdx := wb.bits.uop.robIdx 844 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 845 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 846 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 847 exc_wb.bits.singleStep := false.B 848 exc_wb.bits.crossPageIPFFix := false.B 849 // TODO: make trigger configurable 850 exc_wb.bits.trigger.clear() 851 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 852 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 853 s"flushPipe ${configs.exists(_.flushPipe)}, " + 854 s"replayInst ${configs.exists(_.replayInst)}") 855 } 856 857 val fflags_wb = fflagsPorts.map(_._2) 858 val fflagsDataModule = Module(new SyncDataModuleTemplate( 859 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 860 ) 861 for(i <- fflags_wb.indices){ 862 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 863 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 864 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 865 } 866 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 867 fflagsDataRead := fflagsDataModule.io.rdata 868 869 870 val instrCnt = RegInit(0.U(64.W)) 871 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 872 val trueCommitCnt = commitCnt +& fuseCommitCnt 873 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 874 instrCnt := instrCnt + retireCounter 875 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 876 io.robFull := !allowEnqueue 877 878 /** 879 * debug info 880 */ 881 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 882 XSDebug("") 883 for(i <- 0 until RobSize){ 884 XSDebug(false, !valid(i), "-") 885 XSDebug(false, valid(i) && writebacked(i), "w") 886 XSDebug(false, valid(i) && !writebacked(i), "v") 887 } 888 XSDebug(false, true.B, "\n") 889 890 for(i <- 0 until RobSize) { 891 if(i % 4 == 0) XSDebug("") 892 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 893 XSDebug(false, !valid(i), "- ") 894 XSDebug(false, valid(i) && writebacked(i), "w ") 895 XSDebug(false, valid(i) && !writebacked(i), "v ") 896 if(i % 4 == 3) XSDebug(false, true.B, "\n") 897 } 898 899 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 900 901 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 902 XSPerfAccumulate("clock_cycle", 1.U) 903 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 904 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 905 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 906 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 907 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 908 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 909 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 910 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 911 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 912 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 913 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 914 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 915 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 916 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 917 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 918 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 919 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 920 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 921 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 922 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 923 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 924 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 925 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 926 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 927 val deqUopCommitType = io.commits.info(0).commitType 928 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 929 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 930 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 931 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 932 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 933 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 934 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 935 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 936 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 937 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 938 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 939 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 940 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 941 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 942 } 943 for (fuType <- FuType.functionNameMap.keys) { 944 val fuName = FuType.functionNameMap(fuType) 945 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 946 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 947 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 948 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 949 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 950 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 951 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 952 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 953 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 954 if (fuType == FuType.fmac.litValue()) { 955 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 956 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 957 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 958 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 959 } 960 } 961 962 //difftest signals 963 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 964 965 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 966 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 967 968 for(i <- 0 until CommitWidth) { 969 val idx = deqPtrVec(i).value 970 wdata(i) := debug_exuData(idx) 971 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 972 } 973 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 974 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 975 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 976 977 if (env.EnableDifftest) { 978 for (i <- 0 until CommitWidth) { 979 val difftest = Module(new DifftestInstrCommit) 980 difftest.io.clock := clock 981 difftest.io.coreid := io.hartId 982 difftest.io.index := i.U 983 984 val ptr = deqPtrVec(i).value 985 val uop = commitDebugUop(i) 986 val exuOut = debug_exuDebug(ptr) 987 val exuData = debug_exuData(ptr) 988 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 989 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 990 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 991 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 992 // when committing an eliminated move instruction, 993 // we must make sure that skip is properly set to false (output from EXU is random value) 994 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 995 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 996 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 997 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen))) 998 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 999 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1000 1001 // runahead commit hint 1002 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1003 runahead_commit.io.clock := clock 1004 runahead_commit.io.coreid := io.hartId 1005 runahead_commit.io.index := i.U 1006 runahead_commit.io.valid := difftest.io.valid && 1007 (commitBranchValid(i) || commitIsStore(i)) 1008 // TODO: is branch or store 1009 runahead_commit.io.pc := difftest.io.pc 1010 } 1011 } 1012 else if (env.AlwaysBasicDiff) { 1013 // These are the structures used by difftest only and should be optimized after synthesis. 1014 val dt_eliminatedMove = Mem(RobSize, Bool()) 1015 val dt_isRVC = Mem(RobSize, Bool()) 1016 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1017 for (i <- 0 until RenameWidth) { 1018 when (canEnqueue(i)) { 1019 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1020 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1021 } 1022 } 1023 for (wb <- exuWriteback) { 1024 when (wb.valid) { 1025 val wbIdx = wb.bits.uop.robIdx.value 1026 dt_exuDebug(wbIdx) := wb.bits.debug 1027 } 1028 } 1029 // Always instantiate basic difftest modules. 1030 for (i <- 0 until CommitWidth) { 1031 val commitInfo = io.commits.info(i) 1032 val ptr = deqPtrVec(i).value 1033 val exuOut = dt_exuDebug(ptr) 1034 val eliminatedMove = dt_eliminatedMove(ptr) 1035 val isRVC = dt_isRVC(ptr) 1036 1037 val difftest = Module(new DifftestBasicInstrCommit) 1038 difftest.io.clock := clock 1039 difftest.io.coreid := io.hartId 1040 difftest.io.index := i.U 1041 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1042 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1043 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1044 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1045 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1046 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen))) 1047 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1048 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1049 } 1050 } 1051 1052 if (env.EnableDifftest) { 1053 for (i <- 0 until CommitWidth) { 1054 val difftest = Module(new DifftestLoadEvent) 1055 difftest.io.clock := clock 1056 difftest.io.coreid := io.hartId 1057 difftest.io.index := i.U 1058 1059 val ptr = deqPtrVec(i).value 1060 val uop = commitDebugUop(i) 1061 val exuOut = debug_exuDebug(ptr) 1062 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1063 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1064 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1065 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1066 } 1067 } 1068 1069 // Always instantiate basic difftest modules. 1070 if (env.EnableDifftest) { 1071 val dt_isXSTrap = Mem(RobSize, Bool()) 1072 for (i <- 0 until RenameWidth) { 1073 when (canEnqueue(i)) { 1074 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1075 } 1076 } 1077 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1078 val hitTrap = trapVec.reduce(_||_) 1079 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1080 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1081 val difftest = Module(new DifftestTrapEvent) 1082 difftest.io.clock := clock 1083 difftest.io.coreid := io.hartId 1084 difftest.io.valid := hitTrap 1085 difftest.io.code := trapCode 1086 difftest.io.pc := trapPC 1087 difftest.io.cycleCnt := timer 1088 difftest.io.instrCnt := instrCnt 1089 } 1090 else if (env.AlwaysBasicDiff) { 1091 val dt_isXSTrap = Mem(RobSize, Bool()) 1092 for (i <- 0 until RenameWidth) { 1093 when (canEnqueue(i)) { 1094 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1095 } 1096 } 1097 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1098 val hitTrap = trapVec.reduce(_||_) 1099 val difftest = Module(new DifftestBasicTrapEvent) 1100 difftest.io.clock := clock 1101 difftest.io.coreid := io.hartId 1102 difftest.io.valid := hitTrap 1103 difftest.io.cycleCnt := timer 1104 difftest.io.instrCnt := instrCnt 1105 } 1106 1107 val perfEvents = Seq( 1108 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1109 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1110 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1111 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1112 ("rob_commitUop ", ifCommit(commitCnt) ), 1113 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1114 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1115 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1116 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1117 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1118 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1119 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1120 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1121 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1122 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1123 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1124 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1125 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1126 ) 1127 generatePerfEvent() 1128} 1129