xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision b6900d94367091fbb4cb9feba8b6d31560bed207)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
63  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67}
68
69class RobEnqIO(implicit p: Parameters) extends XSBundle {
70  val canAccept = Output(Bool())
71  val isEmpty = Output(Bool())
72  // valid vector, for robIdx gen and walk
73  val needAlloc = Vec(RenameWidth, Input(Bool()))
74  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
75  val resp = Vec(RenameWidth, Output(new RobPtr))
76}
77
78class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
79
80class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
81  val io = IO(new Bundle {
82    // for commits/flush
83    val state = Input(UInt(2.W))
84    val deq_v = Vec(CommitWidth, Input(Bool()))
85    val deq_w = Vec(CommitWidth, Input(Bool()))
86    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
87    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
88    val intrBitSetReg = Input(Bool())
89    val hasNoSpecExec = Input(Bool())
90    val interrupt_safe = Input(Bool())
91    val misPredBlock = Input(Bool())
92    val isReplaying = Input(Bool())
93    val hasWFI = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && ((!io.hasNoSpecExec && io.interrupt_safe) || io.hasWFI)
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool() // TODO add frontend hit beneath
165  val crossPageIPFFix = Bool()
166  val trigger = new TriggerCf
167
168//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
169//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
170  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
171  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
172  // only exceptions are allowed to writeback when enqueue
173  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
174}
175
176class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
177  val io = IO(new Bundle {
178    val redirect = Input(Valid(new Redirect))
179    val flush = Input(Bool())
180    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
181    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
182    val out = ValidIO(new RobExceptionInfo)
183    val state = ValidIO(new RobExceptionInfo)
184  })
185
186  val current = Reg(Valid(new RobExceptionInfo))
187
188  // orR the exceptionVec
189  val lastCycleFlush = RegNext(io.flush)
190  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
191  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
192
193  // s0: compare wb(1),wb(2) and wb(3),wb(4)
194  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
195  val csr_wb_bits = io.wb(0).bits
196  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
197  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
198  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
199  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
200
201  // s1: compare last four and current flush
202  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
203  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
204  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
205  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
206  val s1_out_bits = RegNext(compare_bits)
207  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
208
209  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
210  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
211
212  // s2: compare the input exception with the current one
213  // priorities:
214  // (1) system reset
215  // (2) current is valid: flush, remain, merge, update
216  // (3) current is not valid: s1 or enq
217  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
218  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
219  when (reset.asBool) {
220    current.valid := false.B
221  }.elsewhen (current.valid) {
222    when (current_flush) {
223      current.valid := Mux(s1_flush, false.B, s1_out_valid)
224    }
225    when (s1_out_valid && !s1_flush) {
226      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
227        current.bits := s1_out_bits
228      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
229        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
230        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
231        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
232        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
233        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
234      }
235    }
236  }.elsewhen (s1_out_valid && !s1_flush) {
237    current.valid := true.B
238    current.bits := s1_out_bits
239  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
240    current.valid := true.B
241    current.bits := enq_bits
242  }
243
244  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
245  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
246  io.state := current
247
248}
249
250class RobFlushInfo(implicit p: Parameters) extends XSBundle {
251  val ftqIdx = new FtqPtr
252  val robIdx = new RobPtr
253  val ftqOffset = UInt(log2Up(PredictWidth).W)
254  val replayInst = Bool()
255}
256
257class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
258
259  lazy val module = new RobImp(this)
260
261  override def generateWritebackIO(
262    thisMod: Option[HasWritebackSource] = None,
263    thisModImp: Option[HasWritebackSourceImp] = None
264  ): Unit = {
265    val sources = writebackSinksImp(thisMod, thisModImp)
266    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
267  }
268}
269
270class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
271  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
272  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
273  val numWbPorts = wbExuConfigs.map(_.length)
274
275  val io = IO(new Bundle() {
276    val hartId = Input(UInt(8.W))
277    val redirect = Input(Valid(new Redirect))
278    val enq = new RobEnqIO
279    val flushOut = ValidIO(new Redirect)
280    val exception = ValidIO(new ExceptionInfo)
281    // exu + brq
282    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
283    val commits = new RobCommitIO
284    val lsq = new RobLsqIO
285    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
286    val robDeqPtr = Output(new RobPtr)
287    val csr = new RobCSRIO
288    val robFull = Output(Bool())
289    val cpu_halt = Output(Bool())
290  })
291
292  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
293    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
294  }
295  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
296  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
297  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
298  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
299  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
300  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
301  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
302  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
303  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
304  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
305  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
306
307
308  val exuWriteback = exuWbPorts.map(_._2)
309  val stdWriteback = stdWbPorts.map(_._2)
310
311  // instvalid field
312  val valid = Mem(RobSize, Bool())
313  // writeback status
314  val writebacked = Mem(RobSize, Bool())
315  val store_data_writebacked = Mem(RobSize, Bool())
316  // data for redirect, exception, etc.
317  val flagBkup = Mem(RobSize, Bool())
318  // some instructions are not allowed to trigger interrupts
319  // They have side effects on the states of the processor before they write back
320  val interrupt_safe = Mem(RobSize, Bool())
321
322  // data for debug
323  // Warn: debug_* prefix should not exist in generated verilog.
324  val debug_microOp = Mem(RobSize, new MicroOp)
325  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
326  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
327
328  // pointers
329  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
330  val enqPtr = Wire(new RobPtr)
331  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
332
333  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
334  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
335  val allowEnqueue = RegInit(true.B)
336
337  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
338  val deqPtr = deqPtrVec(0)
339  val walkPtr = walkPtrVec(0)
340
341  val isEmpty = enqPtr === deqPtr
342  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
343
344  /**
345    * states of Rob
346    */
347  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
348  val state = RegInit(s_idle)
349
350  /**
351    * Data Modules
352    *
353    * CommitDataModule: data from dispatch
354    * (1) read: commits/walk/exception
355    * (2) write: enqueue
356    *
357    * WritebackData: data from writeback
358    * (1) read: commits/walk/exception
359    * (2) write: write back from exe units
360    */
361  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
362  val dispatchDataRead = dispatchData.io.rdata
363
364  val exceptionGen = Module(new ExceptionGen)
365  val exceptionDataRead = exceptionGen.io.state
366  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
367
368  io.robDeqPtr := deqPtr
369
370  /**
371    * Enqueue (from dispatch)
372    */
373  // special cases
374  val hasBlockBackward = RegInit(false.B)
375  val hasNoSpecExec = RegInit(false.B)
376  val doingSvinval = RegInit(false.B)
377  val state_wfi = RegInit(0.U(2.W))
378  val hasWFI = state_wfi === 2.U
379  io.cpu_halt := hasWFI
380  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
381  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
382  when (isEmpty) { hasBlockBackward:= false.B }
383  // When any instruction commits, hasNoSpecExec should be set to false.B
384  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
385  when (io.exception.valid) {
386    state_wfi := 0.U
387  }
388  when (state_wfi === 1.U && io.commits.valid.asUInt.orR) {
389    state_wfi := 2.U
390  }
391
392  io.enq.canAccept := allowEnqueue && !hasBlockBackward
393  io.enq.resp      := enqPtrVec
394  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
395  val timer = GTimer()
396  for (i <- 0 until RenameWidth) {
397    // we don't check whether io.redirect is valid here since redirect has higher priority
398    when (canEnqueue(i)) {
399      val enqUop = io.enq.req(i).bits
400      // store uop in data module and debug_microOp Vec
401      debug_microOp(enqPtrVec(i).value) := enqUop
402      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
403      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
404      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
405      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
406      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
407      when (enqUop.ctrl.blockBackward) {
408        hasBlockBackward := true.B
409      }
410      when (enqUop.ctrl.noSpecExec) {
411        hasNoSpecExec := true.B
412      }
413      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
414      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
415      when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
416      {
417        doingSvinval := true.B
418      }
419      // the end instruction of Svinval enqs so clear doingSvinval
420      when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
421      {
422        doingSvinval := false.B
423      }
424      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
425      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
426        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
427      when (enqUop.ctrl.isWFI) {
428        state_wfi := 1.U
429      }
430    }
431  }
432  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
433  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
434
435  // debug info for enqueue (dispatch)
436  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
437  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
438
439
440  /**
441    * Writeback (from execution units)
442    */
443  for (wb <- exuWriteback) {
444    when (wb.valid) {
445      val wbIdx = wb.bits.uop.robIdx.value
446      debug_exuData(wbIdx) := wb.bits.data
447      debug_exuDebug(wbIdx) := wb.bits.debug
448      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
449      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
450      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
451      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
452
453      val debug_Uop = debug_microOp(wbIdx)
454      XSInfo(true.B,
455        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
456        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
457        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
458      )
459    }
460  }
461  val writebackNum = PopCount(exuWriteback.map(_.valid))
462  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
463
464
465  /**
466    * RedirectOut: Interrupt and Exceptions
467    */
468  val deqDispatchData = dispatchDataRead(0)
469  val debug_deqUop = debug_microOp(deqPtr.value)
470
471  val intrBitSetReg = RegNext(io.csr.intrBitSet)
472  val intrEnable = intrBitSetReg && ((!hasNoSpecExec && interrupt_safe(deqPtr.value)) || hasWFI)
473  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
474  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
475    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
476  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
477  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
478  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
479
480  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
481  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
482  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
483
484  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
485
486  // io.flushOut will trigger redirect at the next cycle.
487  // Block any redirect or commit at the next cycle.
488  val lastCycleFlush = RegNext(io.flushOut.valid)
489
490  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
491  io.flushOut.bits := DontCare
492  io.flushOut.bits.robIdx := deqPtr
493  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
494  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
495  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
496  io.flushOut.bits.interrupt := true.B
497  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
498  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
499  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
500  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
501
502  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
503  io.exception.valid := RegNext(exceptionHappen)
504  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
505  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
506  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
507  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
508  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
509  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
510  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
511
512  XSDebug(io.flushOut.valid,
513    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
514    p"excp $exceptionEnable flushPipe $isFlushPipe " +
515    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
516
517
518  /**
519    * Commits (and walk)
520    * They share the same width.
521    */
522  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
523  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
524  val walkFinished = walkCounter <= CommitWidth.U
525
526  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
527  require(RenameWidth <= CommitWidth)
528  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
529  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
530  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
531    usedSpaceForMPR := io.enq.needAlloc
532    extraSpaceForMPR := dispatchData.io.wdata
533    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
534  }
535
536  // wiring to csr
537  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
538    val v = io.commits.valid(i)
539    val info = io.commits.info(i)
540    (v & info.wflags, v & info.fpWen)
541  }).unzip
542  val fflags = Wire(Valid(UInt(5.W)))
543  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
544  fflags.bits := wflags.zip(fflagsDataRead).map({
545    case (w, f) => Mux(w, f, 0.U)
546  }).reduce(_|_)
547  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
548
549  // when mispredict branches writeback, stop commit in the next 2 cycles
550  // TODO: don't check all exu write back
551  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
552    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
553  ))).orR()
554  val misPredBlockCounter = Reg(UInt(3.W))
555  misPredBlockCounter := Mux(misPredWb,
556    "b111".U,
557    misPredBlockCounter >> 1.U
558  )
559  val misPredBlock = misPredBlockCounter(0)
560
561  io.commits.isWalk := state =/= s_idle
562  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
563  // store will be commited iff both sta & std have been writebacked
564  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
565  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
566  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
567  val allowOnlyOneCommit = commit_exception || intrBitSetReg
568  // for instructions that may block others, we don't allow them to commit
569  for (i <- 0 until CommitWidth) {
570    // defaults: state === s_idle and instructions commit
571    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
572    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
573    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI
574    io.commits.info(i)  := dispatchDataRead(i)
575
576    when (state === s_walk) {
577      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
578    }.elsewhen(state === s_extrawalk) {
579      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
580      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
581    }
582
583    XSInfo(state === s_idle && io.commits.valid(i),
584      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
585      debug_microOp(deqPtrVec(i).value).cf.pc,
586      io.commits.info(i).rfWen,
587      io.commits.info(i).ldest,
588      io.commits.info(i).pdest,
589      io.commits.info(i).old_pdest,
590      debug_exuData(deqPtrVec(i).value),
591      fflagsDataRead(i)
592    )
593    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
594      debug_microOp(walkPtrVec(i).value).cf.pc,
595      io.commits.info(i).rfWen,
596      io.commits.info(i).ldest,
597      debug_exuData(walkPtrVec(i).value)
598    )
599    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
600      io.commits.info(i).rfWen,
601      io.commits.info(i).ldest
602    )
603  }
604  if (env.EnableDifftest) {
605    io.commits.info.map(info => dontTouch(info.pc))
606  }
607
608  // sync fflags/dirty_fs to csr
609  io.csr.fflags := RegNext(fflags)
610  io.csr.dirty_fs := RegNext(dirty_fs)
611
612  // commit branch to brq
613  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
614  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
615
616  // commit load/store to lsq
617  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
618  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
619  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
620  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
621  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
622  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
623  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
624
625  /**
626    * state changes
627    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
628    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
629    * (3) walk: when walking comes to the end, switch to s_walk
630    * (4) s_extrawalk to s_walk
631    */
632  val state_next = Mux(io.redirect.valid,
633    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
634    Mux(state === s_walk && walkFinished,
635      s_idle,
636      Mux(state === s_extrawalk, s_walk, state)
637    )
638  )
639  state := state_next
640
641  /**
642    * pointers and counters
643    */
644  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
645  deqPtrGenModule.io.state := state
646  deqPtrGenModule.io.deq_v := commit_v
647  deqPtrGenModule.io.deq_w := commit_w
648  deqPtrGenModule.io.exception_state := exceptionDataRead
649  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
650  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
651  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
652  deqPtrGenModule.io.misPredBlock := misPredBlock
653  deqPtrGenModule.io.isReplaying := isReplaying
654  deqPtrGenModule.io.hasWFI := hasWFI
655  deqPtrVec := deqPtrGenModule.io.out
656  val deqPtrVec_next = deqPtrGenModule.io.next_out
657
658  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
659  enqPtrGenModule.io.redirect := io.redirect
660  enqPtrGenModule.io.allowEnqueue := allowEnqueue
661  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
662  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
663  enqPtr := enqPtrGenModule.io.out
664
665  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
666  // next walkPtrVec:
667  // (1) redirect occurs: update according to state
668  // (2) walk: move backwards
669  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
670    Mux(state === s_walk,
671      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
672      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
673    ),
674    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
675  )
676  walkPtrVec := walkPtrVec_next
677
678  val lastCycleRedirect = RegNext(io.redirect.valid)
679  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
680  val commitCnt = PopCount(io.commits.valid)
681  validCounter := Mux(state === s_idle,
682    (validCounter - commitCnt) + dispatchNum,
683    trueValidCounter
684  )
685
686  allowEnqueue := Mux(state === s_idle,
687    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
688    trueValidCounter <= (RobSize - RenameWidth).U
689  )
690
691  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
692  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
693  when (io.redirect.valid) {
694    walkCounter := Mux(state === s_walk,
695      // NOTE: +& is used here because:
696      // When rob is full and the head instruction causes an exception,
697      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
698      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
699      // Since exceptions flush the instruction itself, flushItSelf is true.B.
700      // Previously we use `+` to count the walk distance and it causes overflows
701      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
702      // The width of walkCounter also needs to be changed.
703      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
704      redirectWalkDistance +& io.redirect.bits.flushItself()
705    )
706  }.elsewhen (state === s_walk) {
707    walkCounter := walkCounter - commitCnt
708    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
709  }
710
711
712  /**
713    * States
714    * We put all the stage bits changes here.
715
716    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
717    * All states: (1) valid; (2) writebacked; (3) flagBkup
718    */
719  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
720
721  // enqueue logic writes 6 valid
722  for (i <- 0 until RenameWidth) {
723    when (canEnqueue(i) && !io.redirect.valid) {
724      valid(enqPtrVec(i).value) := true.B
725    }
726  }
727  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
728  for (i <- 0 until CommitWidth) {
729    when (io.commits.valid(i) && state =/= s_extrawalk) {
730      valid(commitReadAddr(i)) := false.B
731    }
732  }
733  // reset: when exception, reset all valid to false
734  when (reset.asBool) {
735    for (i <- 0 until RobSize) {
736      valid(i) := false.B
737    }
738  }
739
740  // status field: writebacked
741  // enqueue logic set 6 writebacked to false
742  for (i <- 0 until RenameWidth) {
743    when (canEnqueue(i)) {
744      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
745      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
746      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove || io.enq.req(i).bits.ctrl.isWFI
747      writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
748      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
749      store_data_writebacked(enqPtrVec(i).value) := !isStu
750    }
751  }
752  when (exceptionGen.io.out.valid) {
753    val wbIdx = exceptionGen.io.out.bits.robIdx.value
754    writebacked(wbIdx) := true.B
755    store_data_writebacked(wbIdx) := true.B
756  }
757  // writeback logic set numWbPorts writebacked to true
758  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
759    when (wb.valid) {
760      val wbIdx = wb.bits.uop.robIdx.value
761      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
762      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
763      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
764      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
765      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
766      writebacked(wbIdx) := !block_wb
767    }
768  }
769  // store data writeback logic mark store as data_writebacked
770  for (wb <- stdWriteback) {
771    when(RegNext(wb.valid)) {
772      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
773    }
774  }
775
776  // flagBkup
777  // enqueue logic set 6 flagBkup at most
778  for (i <- 0 until RenameWidth) {
779    when (canEnqueue(i)) {
780      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
781    }
782  }
783
784  // interrupt_safe
785  for (i <- 0 until RenameWidth) {
786    // We RegNext the updates for better timing.
787    // Note that instructions won't change the system's states in this cycle.
788    when (RegNext(canEnqueue(i))) {
789      // For now, we allow non-load-store instructions to trigger interrupts
790      // For MMIO instructions, they should not trigger interrupts since they may
791      // be sent to lower level before it writes back.
792      // However, we cannot determine whether a load/store instruction is MMIO.
793      // Thus, we don't allow load/store instructions to trigger an interrupt.
794      // TODO: support non-MMIO load-store instructions to trigger interrupts
795      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
796      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
797    }
798  }
799
800  /**
801    * read and write of data modules
802    */
803  val commitReadAddr_next = Mux(state_next === s_idle,
804    VecInit(deqPtrVec_next.map(_.value)),
805    VecInit(walkPtrVec_next.map(_.value))
806  )
807  dispatchData.io.wen := canEnqueue
808  dispatchData.io.waddr := enqPtrVec.map(_.value)
809  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
810    wdata.ldest := req.ctrl.ldest
811    wdata.rfWen := req.ctrl.rfWen
812    wdata.fpWen := req.ctrl.fpWen
813    wdata.wflags := req.ctrl.fpu.wflags
814    wdata.commitType := req.ctrl.commitType
815    wdata.pdest := req.pdest
816    wdata.old_pdest := req.old_pdest
817    wdata.ftqIdx := req.cf.ftqPtr
818    wdata.ftqOffset := req.cf.ftqOffset
819    wdata.pc := req.cf.pc
820  }
821  dispatchData.io.raddr := commitReadAddr_next
822
823  exceptionGen.io.redirect <> io.redirect
824  exceptionGen.io.flush := io.flushOut.valid
825  for (i <- 0 until RenameWidth) {
826    exceptionGen.io.enq(i).valid := canEnqueue(i)
827    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
828    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
829    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
830    exceptionGen.io.enq(i).bits.replayInst := false.B
831    assert(io.enq.req(i).bits.ctrl.replayInst === false.B)
832    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
833    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
834    exceptionGen.io.enq(i).bits.trigger.clear()
835    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
836  }
837
838  println(s"ExceptionGen:")
839  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
840  require(exceptionCases.length == exceptionGen.io.wb.length)
841  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
842    exc_wb.valid                := wb.valid
843    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
844    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
845    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
846    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
847    exc_wb.bits.singleStep      := false.B
848    exc_wb.bits.crossPageIPFFix := false.B
849    // TODO: make trigger configurable
850    exc_wb.bits.trigger.clear()
851    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
852    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
853      s"flushPipe ${configs.exists(_.flushPipe)}, " +
854      s"replayInst ${configs.exists(_.replayInst)}")
855  }
856
857  val fflags_wb = fflagsPorts.map(_._2)
858  val fflagsDataModule = Module(new SyncDataModuleTemplate(
859    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
860  )
861  for(i <- fflags_wb.indices){
862    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
863    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
864    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
865  }
866  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
867  fflagsDataRead := fflagsDataModule.io.rdata
868
869
870  val instrCnt = RegInit(0.U(64.W))
871  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
872  val trueCommitCnt = commitCnt +& fuseCommitCnt
873  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
874  instrCnt := instrCnt + retireCounter
875  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
876  io.robFull := !allowEnqueue
877
878  /**
879    * debug info
880    */
881  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
882  XSDebug("")
883  for(i <- 0 until RobSize){
884    XSDebug(false, !valid(i), "-")
885    XSDebug(false, valid(i) && writebacked(i), "w")
886    XSDebug(false, valid(i) && !writebacked(i), "v")
887  }
888  XSDebug(false, true.B, "\n")
889
890  for(i <- 0 until RobSize) {
891    if(i % 4 == 0) XSDebug("")
892    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
893    XSDebug(false, !valid(i), "- ")
894    XSDebug(false, valid(i) && writebacked(i), "w ")
895    XSDebug(false, valid(i) && !writebacked(i), "v ")
896    if(i % 4 == 3) XSDebug(false, true.B, "\n")
897  }
898
899  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
900
901  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
902  XSPerfAccumulate("clock_cycle", 1.U)
903  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
904  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
905  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
906  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
907  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
908  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
909  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
910  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
911  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
912  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
913  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
914  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
915  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
916  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
917  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
918  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
919  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
920  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
921  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
922  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
923  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
924  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
925  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
926  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
927  val deqUopCommitType = io.commits.info(0).commitType
928  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
929  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
930  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
931  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
932  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
933  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
934  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
935  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
936  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
937  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
938  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
939  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
940  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
941    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
942  }
943  for (fuType <- FuType.functionNameMap.keys) {
944    val fuName = FuType.functionNameMap(fuType)
945    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
946    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
947    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
948    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
949    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
950    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
951    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
952    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
953    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
954    if (fuType == FuType.fmac.litValue()) {
955      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
956      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
957      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
958      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
959    }
960  }
961
962  //difftest signals
963  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
964
965  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
966  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
967
968  for(i <- 0 until CommitWidth) {
969    val idx = deqPtrVec(i).value
970    wdata(i) := debug_exuData(idx)
971    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
972  }
973  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
974  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
975  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
976
977  if (env.EnableDifftest) {
978    for (i <- 0 until CommitWidth) {
979      val difftest = Module(new DifftestInstrCommit)
980      difftest.io.clock    := clock
981      difftest.io.coreid   := io.hartId
982      difftest.io.index    := i.U
983
984      val ptr = deqPtrVec(i).value
985      val uop = commitDebugUop(i)
986      val exuOut = debug_exuDebug(ptr)
987      val exuData = debug_exuData(ptr)
988      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
989      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
990      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
991      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
992      // when committing an eliminated move instruction,
993      // we must make sure that skip is properly set to false (output from EXU is random value)
994      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
995      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
996      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
997      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen)))
998      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
999      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1000
1001      // runahead commit hint
1002      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1003      runahead_commit.io.clock := clock
1004      runahead_commit.io.coreid := io.hartId
1005      runahead_commit.io.index := i.U
1006      runahead_commit.io.valid := difftest.io.valid &&
1007        (commitBranchValid(i) || commitIsStore(i))
1008      // TODO: is branch or store
1009      runahead_commit.io.pc    := difftest.io.pc
1010    }
1011  }
1012  else if (env.AlwaysBasicDiff) {
1013    // These are the structures used by difftest only and should be optimized after synthesis.
1014    val dt_eliminatedMove = Mem(RobSize, Bool())
1015    val dt_isRVC = Mem(RobSize, Bool())
1016    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1017    for (i <- 0 until RenameWidth) {
1018      when (canEnqueue(i)) {
1019        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1020        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1021      }
1022    }
1023    for (wb <- exuWriteback) {
1024      when (wb.valid) {
1025        val wbIdx = wb.bits.uop.robIdx.value
1026        dt_exuDebug(wbIdx) := wb.bits.debug
1027      }
1028    }
1029    // Always instantiate basic difftest modules.
1030    for (i <- 0 until CommitWidth) {
1031      val commitInfo = io.commits.info(i)
1032      val ptr = deqPtrVec(i).value
1033      val exuOut = dt_exuDebug(ptr)
1034      val eliminatedMove = dt_eliminatedMove(ptr)
1035      val isRVC = dt_isRVC(ptr)
1036
1037      val difftest = Module(new DifftestBasicInstrCommit)
1038      difftest.io.clock   := clock
1039      difftest.io.coreid  := io.hartId
1040      difftest.io.index   := i.U
1041      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1042      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1043      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1044      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1045      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1046      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen)))
1047      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1048      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1049    }
1050  }
1051
1052  if (env.EnableDifftest) {
1053    for (i <- 0 until CommitWidth) {
1054      val difftest = Module(new DifftestLoadEvent)
1055      difftest.io.clock  := clock
1056      difftest.io.coreid := io.hartId
1057      difftest.io.index  := i.U
1058
1059      val ptr = deqPtrVec(i).value
1060      val uop = commitDebugUop(i)
1061      val exuOut = debug_exuDebug(ptr)
1062      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1063      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1064      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1065      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1066    }
1067  }
1068
1069  // Always instantiate basic difftest modules.
1070  if (env.EnableDifftest) {
1071    val dt_isXSTrap = Mem(RobSize, Bool())
1072    for (i <- 0 until RenameWidth) {
1073      when (canEnqueue(i)) {
1074        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1075      }
1076    }
1077    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1078    val hitTrap = trapVec.reduce(_||_)
1079    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1080    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1081    val difftest = Module(new DifftestTrapEvent)
1082    difftest.io.clock    := clock
1083    difftest.io.coreid   := io.hartId
1084    difftest.io.valid    := hitTrap
1085    difftest.io.code     := trapCode
1086    difftest.io.pc       := trapPC
1087    difftest.io.cycleCnt := timer
1088    difftest.io.instrCnt := instrCnt
1089  }
1090  else if (env.AlwaysBasicDiff) {
1091    val dt_isXSTrap = Mem(RobSize, Bool())
1092    for (i <- 0 until RenameWidth) {
1093      when (canEnqueue(i)) {
1094        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1095      }
1096    }
1097    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1098    val hitTrap = trapVec.reduce(_||_)
1099    val difftest = Module(new DifftestBasicTrapEvent)
1100    difftest.io.clock    := clock
1101    difftest.io.coreid   := io.hartId
1102    difftest.io.valid    := hitTrap
1103    difftest.io.cycleCnt := timer
1104    difftest.io.instrCnt := instrCnt
1105  }
1106
1107  val perfEvents = Seq(
1108    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1109    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1110    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1111    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1112    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1113    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1114    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1115    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1116    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1117    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1118    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1119    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1120    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1121    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1122    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1123    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1124    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1125    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1126  )
1127  generatePerfEvent()
1128}
1129