xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision c3abb8b6b92c14ec0f3dbbac60a8caa531994a95)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect]): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(3.W))
63  val scommit = Output(UInt(3.W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val commitType = Input(CommitType())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool()
165  val crossPageIPFFix = Bool()
166
167  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst
168  // only exceptions are allowed to writeback when enqueue
169  def can_writeback = exceptionVec.asUInt.orR || singleStep
170}
171
172class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
173  val io = IO(new Bundle {
174    val redirect = Input(Valid(new Redirect))
175    val flush = Input(Bool())
176    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
177    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
178    val out = ValidIO(new RobExceptionInfo)
179    val state = ValidIO(new RobExceptionInfo)
180  })
181
182  val current = Reg(Valid(new RobExceptionInfo))
183
184  // orR the exceptionVec
185  val lastCycleFlush = RegNext(io.flush)
186  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
187  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
188
189  // s0: compare wb(1),wb(2) and wb(3),wb(4)
190  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
191  val csr_wb_bits = io.wb(0).bits
192  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
193  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
194  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
195  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
196
197  // s1: compare last four and current flush
198  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
199  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
200  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
201  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
202  val s1_out_bits = RegNext(compare_bits)
203  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
204
205  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
206  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
207
208  // s2: compare the input exception with the current one
209  // priorities:
210  // (1) system reset
211  // (2) current is valid: flush, remain, merge, update
212  // (3) current is not valid: s1 or enq
213  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
214  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
215  when (reset.asBool) {
216    current.valid := false.B
217  }.elsewhen (current.valid) {
218    when (current_flush) {
219      current.valid := Mux(s1_flush, false.B, s1_out_valid)
220    }
221    when (s1_out_valid && !s1_flush) {
222      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
223        current.bits := s1_out_bits
224      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
225        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
226        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
227        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
228        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
229      }
230    }
231  }.elsewhen (s1_out_valid && !s1_flush) {
232    current.valid := true.B
233    current.bits := s1_out_bits
234  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
235    current.valid := true.B
236    current.bits := enq_bits
237  }
238
239  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
240  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
241  io.state := current
242
243}
244
245class RobFlushInfo(implicit p: Parameters) extends XSBundle {
246  val ftqIdx = new FtqPtr
247  val robIdx = new RobPtr
248  val ftqOffset = UInt(log2Up(PredictWidth).W)
249  val replayInst = Bool()
250}
251
252class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
253  val io = IO(new Bundle() {
254    val redirect = Input(Valid(new Redirect))
255    val enq = new RobEnqIO
256    val flushOut = ValidIO(new Redirect)
257    val exception = ValidIO(new ExceptionInfo)
258    // exu + brq
259    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
260    val commits = new RobCommitIO
261    val lsq = new RobLsqIO
262    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
263    val robDeqPtr = Output(new RobPtr)
264    val csr = new RobCSRIO
265    val robFull = Output(Bool())
266  })
267
268  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
269
270  // instvalid field
271  // val valid = RegInit(VecInit(List.fill(RobSize)(false.B)))
272  val valid = Mem(RobSize, Bool())
273  // writeback status
274  // val writebacked = Reg(Vec(RobSize, Bool()))
275  val writebacked = Mem(RobSize, Bool())
276  val store_data_writebacked = Mem(RobSize, Bool())
277  // data for redirect, exception, etc.
278  // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B)))
279  val flagBkup = Mem(RobSize, Bool())
280  // record move elimination info for each instruction
281  val eliminatedMove = Mem(RobSize, Bool())
282
283  // data for debug
284  // Warn: debug_* prefix should not exist in generated verilog.
285  val debug_microOp = Mem(RobSize, new MicroOp)
286  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
287  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
288
289  // pointers
290  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
291  val enqPtr = Wire(new RobPtr)
292  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
293
294  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
295  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
296  val allowEnqueue = RegInit(true.B)
297
298  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
299  val deqPtr = deqPtrVec(0)
300  val walkPtr = walkPtrVec(0)
301
302  val isEmpty = enqPtr === deqPtr
303  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
304
305  /**
306    * states of Rob
307    */
308  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
309  val state = RegInit(s_idle)
310
311  /**
312    * Data Modules
313    *
314    * CommitDataModule: data from dispatch
315    * (1) read: commits/walk/exception
316    * (2) write: enqueue
317    *
318    * WritebackData: data from writeback
319    * (1) read: commits/walk/exception
320    * (2) write: write back from exe units
321    */
322  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
323  val dispatchDataRead = dispatchData.io.rdata
324
325  val exceptionGen = Module(new ExceptionGen)
326  val exceptionDataRead = exceptionGen.io.state
327  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
328
329  io.robDeqPtr := deqPtr
330
331  /**
332    * Enqueue (from dispatch)
333    */
334  // special cases
335  val hasBlockBackward = RegInit(false.B)
336  val hasNoSpecExec = RegInit(false.B)
337  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
338  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
339  when (isEmpty) { hasBlockBackward:= false.B }
340  // When any instruction commits, hasNoSpecExec should be set to false.B
341  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
342
343  io.enq.canAccept := allowEnqueue && !hasBlockBackward
344  io.enq.resp      := enqPtrVec
345  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
346  val timer = GTimer()
347  for (i <- 0 until RenameWidth) {
348    // we don't check whether io.redirect is valid here since redirect has higher priority
349    when (canEnqueue(i)) {
350      // store uop in data module and debug_microOp Vec
351      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
352      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
353      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
354      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
355      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
356      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
357      when (io.enq.req(i).bits.ctrl.blockBackward) {
358        hasBlockBackward := true.B
359      }
360      when (io.enq.req(i).bits.ctrl.noSpecExec) {
361        hasNoSpecExec := true.B
362      }
363    }
364  }
365  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
366  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
367
368  // debug info for enqueue (dispatch)
369  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
370  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
371
372
373  /**
374    * Writeback (from execution units)
375    */
376  for (i <- 0 until numWbPorts) {
377    when (io.exeWbResults(i).valid) {
378      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
379      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
380      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
381      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
382      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
383      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
384      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
385      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
386      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
387      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
388      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
389
390      val debug_Uop = debug_microOp(wbIdx)
391      XSInfo(true.B,
392        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
393        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
394        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
395      )
396    }
397  }
398  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
399  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
400
401
402  /**
403    * RedirectOut: Interrupt and Exceptions
404    */
405  val deqDispatchData = dispatchDataRead(0)
406  val debug_deqUop = debug_microOp(deqPtr.value)
407
408  // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back.
409  // However, we cannot determine whether a load/store instruction is MMIO.
410  // Thus, we don't allow load/store instructions to trigger an interrupt.
411  val intrBitSetReg = RegNext(io.csr.intrBitSet)
412  val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType)
413  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
414  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
415  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
416  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
417  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
418  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
419
420  // io.flushOut will trigger redirect at the next cycle.
421  // Block any redirect or commit at the next cycle.
422  val lastCycleFlush = RegNext(io.flushOut.valid)
423
424  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
425  io.flushOut.bits := DontCare
426  io.flushOut.bits.robIdx := deqPtr
427  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
428  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
429  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter)
430  io.flushOut.bits.interrupt := true.B
431  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
432  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
433  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
434  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
435
436  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
437  io.exception.valid := RegNext(exceptionHappen)
438  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
439  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
440  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
441  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
442  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
443  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
444
445  XSDebug(io.flushOut.valid,
446    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
447    p"excp $exceptionEnable flushPipe $isFlushPipe " +
448    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
449
450
451  /**
452    * Commits (and walk)
453    * They share the same width.
454    */
455  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
456  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
457  val walkFinished = walkCounter <= CommitWidth.U
458
459  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
460  require(RenameWidth <= CommitWidth)
461  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
462  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
463  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
464    usedSpaceForMPR := io.enq.needAlloc
465    extraSpaceForMPR := dispatchData.io.wdata
466    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
467  }
468
469  // wiring to csr
470  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
471    val v = io.commits.valid(i)
472    val info = io.commits.info(i)
473    (v & info.wflags, v & info.fpWen)
474  }).unzip
475  val fflags = Wire(Valid(UInt(5.W)))
476  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
477  fflags.bits := wflags.zip(fflagsDataRead).map({
478    case (w, f) => Mux(w, f, 0.U)
479  }).reduce(_|_)
480  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
481
482  // when mispredict branches writeback, stop commit in the next 2 cycles
483  // TODO: don't check all exu write back
484  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
485    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
486  ))).orR()
487  val misPredBlockCounter = Reg(UInt(3.W))
488  misPredBlockCounter := Mux(misPredWb,
489    "b111".U,
490    misPredBlockCounter >> 1.U
491  )
492  val misPredBlock = misPredBlockCounter(0)
493
494  io.commits.isWalk := state =/= s_idle
495  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
496  // store will be commited iff both sta & std have been writebacked
497  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
498  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
499  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
500  val allowOnlyOneCommit = commit_exception || intrBitSetReg
501  // for instructions that may block others, we don't allow them to commit
502  for (i <- 0 until CommitWidth) {
503    // defaults: state === s_idle and instructions commit
504    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
505    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
506    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
507    io.commits.info(i)  := dispatchDataRead(i)
508
509    when (state === s_walk) {
510      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
511    }.elsewhen(state === s_extrawalk) {
512      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
513      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
514    }
515
516    XSInfo(state === s_idle && io.commits.valid(i),
517      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
518      debug_microOp(deqPtrVec(i).value).cf.pc,
519      io.commits.info(i).rfWen,
520      io.commits.info(i).ldest,
521      io.commits.info(i).pdest,
522      io.commits.info(i).old_pdest,
523      debug_exuData(deqPtrVec(i).value),
524      fflagsDataRead(i)
525    )
526    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
527      debug_microOp(walkPtrVec(i).value).cf.pc,
528      io.commits.info(i).rfWen,
529      io.commits.info(i).ldest,
530      debug_exuData(walkPtrVec(i).value)
531    )
532    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
533      io.commits.info(i).rfWen,
534      io.commits.info(i).ldest
535    )
536  }
537  if (!env.FPGAPlatform) {
538    io.commits.info.map(info => dontTouch(info.pc))
539  }
540
541  // sync fflags/dirty_fs to csr
542  io.csr.fflags := fflags
543  io.csr.dirty_fs := dirty_fs
544
545  // commit branch to brq
546  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
547  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
548
549  // commit load/store to lsq
550  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
551  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
552  io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))
553  io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))
554  io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)
555  io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)
556  io.lsq.commit := !io.commits.isWalk && io.commits.valid(0)
557
558  /**
559    * state changes
560    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
561    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
562    * (3) walk: when walking comes to the end, switch to s_walk
563    * (4) s_extrawalk to s_walk
564    */
565  val state_next = Mux(io.redirect.valid,
566    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
567    Mux(state === s_walk && walkFinished,
568      s_idle,
569      Mux(state === s_extrawalk, s_walk, state)
570    )
571  )
572  state := state_next
573
574  /**
575    * pointers and counters
576    */
577  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
578  deqPtrGenModule.io.state := state
579  deqPtrGenModule.io.deq_v := commit_v
580  deqPtrGenModule.io.deq_w := commit_w
581  deqPtrGenModule.io.exception_state := exceptionDataRead
582  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
583  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
584  deqPtrGenModule.io.commitType := deqDispatchData.commitType
585
586  deqPtrGenModule.io.misPredBlock := misPredBlock
587  deqPtrGenModule.io.isReplaying := isReplaying
588  deqPtrVec := deqPtrGenModule.io.out
589  val deqPtrVec_next = deqPtrGenModule.io.next_out
590
591  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
592  enqPtrGenModule.io.redirect := io.redirect
593  enqPtrGenModule.io.allowEnqueue := allowEnqueue
594  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
595  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
596  enqPtr := enqPtrGenModule.io.out
597
598  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
599  // next walkPtrVec:
600  // (1) redirect occurs: update according to state
601  // (2) walk: move backwards
602  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
603    Mux(state === s_walk,
604      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
605      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
606    ),
607    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
608  )
609  walkPtrVec := walkPtrVec_next
610
611  val lastCycleRedirect = RegNext(io.redirect.valid)
612  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
613  val commitCnt = PopCount(io.commits.valid)
614  validCounter := Mux(state === s_idle,
615    (validCounter - commitCnt) + dispatchNum,
616    trueValidCounter
617  )
618
619  allowEnqueue := Mux(state === s_idle,
620    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
621    trueValidCounter <= (RobSize - RenameWidth).U
622  )
623
624  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
625  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
626  when (io.redirect.valid) {
627    walkCounter := Mux(state === s_walk,
628      // NOTE: +& is used here because:
629      // When rob is full and the head instruction causes an exception,
630      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
631      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
632      // Since exceptions flush the instruction itself, flushItSelf is true.B.
633      // Previously we use `+` to count the walk distance and it causes overflows
634      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
635      // The width of walkCounter also needs to be changed.
636      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
637      redirectWalkDistance +& io.redirect.bits.flushItself()
638    )
639  }.elsewhen (state === s_walk) {
640    walkCounter := walkCounter - commitCnt
641    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
642  }
643
644
645  /**
646    * States
647    * We put all the stage bits changes here.
648
649    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
650    * All states: (1) valid; (2) writebacked; (3) flagBkup
651    */
652  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
653
654  // enqueue logic writes 6 valid
655  for (i <- 0 until RenameWidth) {
656    when (canEnqueue(i) && !io.redirect.valid) {
657      valid(enqPtrVec(i).value) := true.B
658    }
659  }
660  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
661  for (i <- 0 until CommitWidth) {
662    when (io.commits.valid(i) && state =/= s_extrawalk) {
663      valid(commitReadAddr(i)) := false.B
664    }
665  }
666  // reset: when exception, reset all valid to false
667  when (reset.asBool) {
668    for (i <- 0 until RobSize) {
669      valid(i) := false.B
670    }
671  }
672
673  // status field: writebacked
674  // enqueue logic set 6 writebacked to false
675  for (i <- 0 until RenameWidth) {
676    when (canEnqueue(i)) {
677      eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
678      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR
679      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
680      store_data_writebacked(enqPtrVec(i).value) := !isStu
681    }
682  }
683  when (exceptionGen.io.out.valid) {
684    val wbIdx = exceptionGen.io.out.bits.robIdx.value
685    writebacked(wbIdx) := true.B
686    store_data_writebacked(wbIdx) := true.B
687  }
688  // writeback logic set numWbPorts writebacked to true
689  for (i <- 0 until numWbPorts) {
690    when (io.exeWbResults(i).valid) {
691      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
692      val block_wb =
693        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
694        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
695        io.exeWbResults(i).bits.uop.ctrl.replayInst
696      writebacked(wbIdx) := !block_wb
697    }
698  }
699  // store data writeback logic mark store as data_writebacked
700  for (i <- 0 until StorePipelineWidth) {
701    when(io.lsq.storeDataRobWb(i).valid) {
702      store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B
703    }
704  }
705
706  // flagBkup
707  // enqueue logic set 6 flagBkup at most
708  for (i <- 0 until RenameWidth) {
709    when (canEnqueue(i)) {
710      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
711    }
712  }
713
714
715  /**
716    * read and write of data modules
717    */
718  val commitReadAddr_next = Mux(state_next === s_idle,
719    VecInit(deqPtrVec_next.map(_.value)),
720    VecInit(walkPtrVec_next.map(_.value))
721  )
722  dispatchData.io.wen := canEnqueue
723  dispatchData.io.waddr := enqPtrVec.map(_.value)
724  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
725    wdata.ldest := req.ctrl.ldest
726    wdata.rfWen := req.ctrl.rfWen
727    wdata.fpWen := req.ctrl.fpWen
728    wdata.wflags := req.ctrl.fpu.wflags
729    wdata.commitType := req.ctrl.commitType
730    wdata.eliminatedMove := req.eliminatedMove
731    wdata.pdest := req.pdest
732    wdata.old_pdest := req.old_pdest
733    wdata.ftqIdx := req.cf.ftqPtr
734    wdata.ftqOffset := req.cf.ftqOffset
735    wdata.pc := req.cf.pc
736  }
737  dispatchData.io.raddr := commitReadAddr_next
738
739  exceptionGen.io.redirect <> io.redirect
740  exceptionGen.io.flush := io.flushOut.valid
741  for (i <- 0 until RenameWidth) {
742    exceptionGen.io.enq(i).valid := canEnqueue(i)
743    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
744    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
745    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
746    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
747    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
748    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
749    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
750  }
751
752  // TODO: don't hard code these idxes
753  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
754  // CSR is after Alu and Load
755  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
756  def atomic_wb_idx = exuParameters.AluCnt // first port for load
757  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
758  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
759  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
760  all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) }
761  def connect_exception(index: Int, wb_index: Int) = {
762    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
763    // A temporary fix for float load writeback
764    // TODO: let int/fp load use the same two wb ports
765    if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) {
766      when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) {
767        exceptionGen.io.wb(index).valid := true.B
768      }
769    }
770    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
771    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
772    else if (wb_index == atomic_wb_idx) selectAtomics _
773    else if (load_wb_idxes.contains(wb_index)) selectLoad _
774    else {
775      assert(store_wb_idxes.contains(wb_index))
776      selectStore _
777    }
778    exceptionGen.io.wb(index).bits.exceptionVec    := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
779    exceptionGen.io.wb(index).bits.flushPipe       := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
780    exceptionGen.io.wb(index).bits.replayInst      := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
781    exceptionGen.io.wb(index).bits.singleStep      := false.B
782    exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B
783  }
784
785  // 4 fmac + 2 fmisc + 1 i2f
786  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
787  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2)
788  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
789  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
790    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
791  }).map(_._1)
792  val fflagsDataModule = Module(new SyncDataModuleTemplate(
793    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
794  )
795  for(i <- fflags_wb.indices){
796    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
797    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
798    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
799  }
800  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
801  fflagsDataRead := fflagsDataModule.io.rdata
802
803
804  val instrCnt = RegInit(0.U(64.W))
805  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
806  val trueCommitCnt = commitCnt +& fuseCommitCnt
807  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
808  instrCnt := instrCnt + retireCounter
809  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
810  io.robFull := !allowEnqueue
811
812  /**
813    * debug info
814    */
815  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
816  XSDebug("")
817  for(i <- 0 until RobSize){
818    XSDebug(false, !valid(i), "-")
819    XSDebug(false, valid(i) && writebacked(i), "w")
820    XSDebug(false, valid(i) && !writebacked(i), "v")
821  }
822  XSDebug(false, true.B, "\n")
823
824  for(i <- 0 until RobSize) {
825    if(i % 4 == 0) XSDebug("")
826    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
827    XSDebug(false, !valid(i), "- ")
828    XSDebug(false, valid(i) && writebacked(i), "w ")
829    XSDebug(false, valid(i) && !writebacked(i), "v ")
830    if(i % 4 == 3) XSDebug(false, true.B, "\n")
831  }
832
833  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
834
835  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
836  XSPerfAccumulate("clock_cycle", 1.U)
837  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
838  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
839  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
840  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
841  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
842  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
843  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
844  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
845  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
846  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
847  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
848  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
849  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
850  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
851  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
852  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
853  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
854  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
855  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
856  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
857  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
858  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
859  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
860  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
861  val deqUopCommitType = io.commits.info(0).commitType
862  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
863  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
864  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
865  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
866  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
867  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
868  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
869  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
870  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
871  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
872  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
873  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
874  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
875    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
876  }
877  for (fuType <- FuType.functionNameMap.keys) {
878    val fuName = FuType.functionNameMap(fuType)
879    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
880    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
881    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
882    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
883    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
884    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
885    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
886    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
887    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
888    if (fuType == FuType.fmac.litValue()) {
889      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
890      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
891      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
892      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
893    }
894  }
895
896
897  //difftest signals
898  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
899
900  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
901  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
902  val trapVec = Wire(Vec(CommitWidth, Bool()))
903  for(i <- 0 until CommitWidth) {
904    val idx = deqPtrVec(i).value
905    wdata(i) := debug_exuData(idx)
906    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
907    trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap
908  }
909  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
910  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
911  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
912
913  val hitTrap = trapVec.reduce(_||_)
914  val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
915  val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
916
917  if (!env.FPGAPlatform) {
918    for (i <- 0 until CommitWidth) {
919      val difftest = Module(new DifftestInstrCommit)
920      difftest.io.clock    := clock
921      difftest.io.coreid   := hardId.U
922      difftest.io.index    := i.U
923
924      val ptr = deqPtrVec(i).value
925      val uop = commitDebugUop(i)
926      val exuOut = debug_exuDebug(ptr)
927      val exuData = debug_exuData(ptr)
928      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
929      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
930      difftest.io.instr    := RegNext(uop.cf.instr)
931      difftest.io.special  := RegNext(CommitType.isFused(uop.ctrl.commitType))
932      // when committing an eliminated move instruction,
933      // we must make sure that skip is properly set to false (output from EXU is random value)
934      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
935      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
936      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
937        uop.ctrl.fuType === FuType.mou &&
938        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
939      difftest.io.wen      := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U)
940      difftest.io.wdata    := RegNext(exuData)
941      difftest.io.wdest    := RegNext(uop.ctrl.ldest)
942
943      // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n")
944
945      // runahead commit hint
946      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
947      runahead_commit.io.clock := clock
948      runahead_commit.io.coreid := hardId.U
949      runahead_commit.io.index := i.U
950      runahead_commit.io.valid := difftest.io.valid &&
951        (commitBranchValid(i) || commitIsStore(i))
952      // TODO: is branch or store
953      runahead_commit.io.pc    := difftest.io.pc
954    }
955  }
956
957  if (!env.FPGAPlatform) {
958    for (i <- 0 until CommitWidth) {
959      val difftest = Module(new DifftestLoadEvent)
960      difftest.io.clock  := clock
961      difftest.io.coreid := hardId.U
962      difftest.io.index  := i.U
963
964      val ptr = deqPtrVec(i).value
965      val uop = commitDebugUop(i)
966      val exuOut = debug_exuDebug(ptr)
967      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
968      difftest.io.paddr  := RegNext(exuOut.paddr)
969      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
970      difftest.io.fuType := RegNext(uop.ctrl.fuType)
971    }
972  }
973
974  if (!env.FPGAPlatform) {
975    val difftest = Module(new DifftestTrapEvent)
976    difftest.io.clock    := clock
977    difftest.io.coreid   := hardId.U
978    difftest.io.valid    := hitTrap
979    difftest.io.code     := trapCode
980    difftest.io.pc       := trapPC
981    difftest.io.cycleCnt := timer
982    difftest.io.instrCnt := instrCnt
983  }
984}
985