1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(3.W)) 63 val scommit = Output(UInt(3.W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val commitType = Input(CommitType()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() 165 val crossPageIPFFix = Bool() 166 167 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst 168 // only exceptions are allowed to writeback when enqueue 169 def can_writeback = exceptionVec.asUInt.orR || singleStep 170} 171 172class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 173 val io = IO(new Bundle { 174 val redirect = Input(Valid(new Redirect)) 175 val flush = Input(Bool()) 176 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 177 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 178 val out = ValidIO(new RobExceptionInfo) 179 val state = ValidIO(new RobExceptionInfo) 180 }) 181 182 val current = Reg(Valid(new RobExceptionInfo)) 183 184 // orR the exceptionVec 185 val lastCycleFlush = RegNext(io.flush) 186 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 187 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 188 189 // s0: compare wb(1),wb(2) and wb(3),wb(4) 190 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 191 val csr_wb_bits = io.wb(0).bits 192 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 193 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 194 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 195 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 196 197 // s1: compare last four and current flush 198 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 199 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 200 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 201 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 202 val s1_out_bits = RegNext(compare_bits) 203 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 204 205 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 206 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 207 208 // s2: compare the input exception with the current one 209 // priorities: 210 // (1) system reset 211 // (2) current is valid: flush, remain, merge, update 212 // (3) current is not valid: s1 or enq 213 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 214 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 215 when (reset.asBool) { 216 current.valid := false.B 217 }.elsewhen (current.valid) { 218 when (current_flush) { 219 current.valid := Mux(s1_flush, false.B, s1_out_valid) 220 } 221 when (s1_out_valid && !s1_flush) { 222 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 223 current.bits := s1_out_bits 224 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 225 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 226 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 227 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 228 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 229 } 230 } 231 }.elsewhen (s1_out_valid && !s1_flush) { 232 current.valid := true.B 233 current.bits := s1_out_bits 234 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 235 current.valid := true.B 236 current.bits := enq_bits 237 } 238 239 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 240 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 241 io.state := current 242 243} 244 245class RobFlushInfo(implicit p: Parameters) extends XSBundle { 246 val ftqIdx = new FtqPtr 247 val robIdx = new RobPtr 248 val ftqOffset = UInt(log2Up(PredictWidth).W) 249 val replayInst = Bool() 250} 251 252class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 253 val io = IO(new Bundle() { 254 val redirect = Input(Valid(new Redirect)) 255 val enq = new RobEnqIO 256 val flushOut = ValidIO(new Redirect) 257 val exception = ValidIO(new ExceptionInfo) 258 // exu + brq 259 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 260 val commits = new RobCommitIO 261 val lsq = new RobLsqIO 262 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 263 val robDeqPtr = Output(new RobPtr) 264 val csr = new RobCSRIO 265 val robFull = Output(Bool()) 266 }) 267 268 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 269 270 // instvalid field 271 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 272 val valid = Mem(RobSize, Bool()) 273 // writeback status 274 // val writebacked = Reg(Vec(RobSize, Bool())) 275 val writebacked = Mem(RobSize, Bool()) 276 val store_data_writebacked = Mem(RobSize, Bool()) 277 // data for redirect, exception, etc. 278 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 279 val flagBkup = Mem(RobSize, Bool()) 280 // record move elimination info for each instruction 281 val eliminatedMove = Mem(RobSize, Bool()) 282 283 // data for debug 284 // Warn: debug_* prefix should not exist in generated verilog. 285 val debug_microOp = Mem(RobSize, new MicroOp) 286 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 287 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 288 289 // pointers 290 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 291 val enqPtr = Wire(new RobPtr) 292 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 293 294 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 295 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 296 val allowEnqueue = RegInit(true.B) 297 298 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 299 val deqPtr = deqPtrVec(0) 300 val walkPtr = walkPtrVec(0) 301 302 val isEmpty = enqPtr === deqPtr 303 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 304 305 /** 306 * states of Rob 307 */ 308 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 309 val state = RegInit(s_idle) 310 311 /** 312 * Data Modules 313 * 314 * CommitDataModule: data from dispatch 315 * (1) read: commits/walk/exception 316 * (2) write: enqueue 317 * 318 * WritebackData: data from writeback 319 * (1) read: commits/walk/exception 320 * (2) write: write back from exe units 321 */ 322 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 323 val dispatchDataRead = dispatchData.io.rdata 324 325 val exceptionGen = Module(new ExceptionGen) 326 val exceptionDataRead = exceptionGen.io.state 327 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 328 329 io.robDeqPtr := deqPtr 330 331 /** 332 * Enqueue (from dispatch) 333 */ 334 // special cases 335 val hasBlockBackward = RegInit(false.B) 336 val hasNoSpecExec = RegInit(false.B) 337 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 338 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 339 when (isEmpty) { hasBlockBackward:= false.B } 340 // When any instruction commits, hasNoSpecExec should be set to false.B 341 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 342 343 io.enq.canAccept := allowEnqueue && !hasBlockBackward 344 io.enq.resp := enqPtrVec 345 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 346 val timer = GTimer() 347 for (i <- 0 until RenameWidth) { 348 // we don't check whether io.redirect is valid here since redirect has higher priority 349 when (canEnqueue(i)) { 350 // store uop in data module and debug_microOp Vec 351 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 352 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 353 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 354 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 355 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 356 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 357 when (io.enq.req(i).bits.ctrl.blockBackward) { 358 hasBlockBackward := true.B 359 } 360 when (io.enq.req(i).bits.ctrl.noSpecExec) { 361 hasNoSpecExec := true.B 362 } 363 } 364 } 365 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 366 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 367 368 // debug info for enqueue (dispatch) 369 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 370 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 371 372 373 /** 374 * Writeback (from execution units) 375 */ 376 for (i <- 0 until numWbPorts) { 377 when (io.exeWbResults(i).valid) { 378 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 379 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 380 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 381 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 382 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 383 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 384 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 385 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 386 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 387 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 388 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 389 390 val debug_Uop = debug_microOp(wbIdx) 391 XSInfo(true.B, 392 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 393 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 394 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 395 ) 396 } 397 } 398 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 399 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 400 401 402 /** 403 * RedirectOut: Interrupt and Exceptions 404 */ 405 val deqDispatchData = dispatchDataRead(0) 406 val debug_deqUop = debug_microOp(deqPtr.value) 407 408 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 409 // However, we cannot determine whether a load/store instruction is MMIO. 410 // Thus, we don't allow load/store instructions to trigger an interrupt. 411 val intrBitSetReg = RegNext(io.csr.intrBitSet) 412 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 413 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 414 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 415 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 416 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 417 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 418 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 419 420 // io.flushOut will trigger redirect at the next cycle. 421 // Block any redirect or commit at the next cycle. 422 val lastCycleFlush = RegNext(io.flushOut.valid) 423 424 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 425 io.flushOut.bits := DontCare 426 io.flushOut.bits.robIdx := deqPtr 427 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 428 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 429 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 430 io.flushOut.bits.interrupt := true.B 431 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 432 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 433 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 434 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 435 436 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 437 io.exception.valid := RegNext(exceptionHappen) 438 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 439 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 440 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 441 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 442 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 443 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 444 445 XSDebug(io.flushOut.valid, 446 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 447 p"excp $exceptionEnable flushPipe $isFlushPipe " + 448 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 449 450 451 /** 452 * Commits (and walk) 453 * They share the same width. 454 */ 455 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 456 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 457 val walkFinished = walkCounter <= CommitWidth.U 458 459 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 460 require(RenameWidth <= CommitWidth) 461 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 462 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 463 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 464 usedSpaceForMPR := io.enq.needAlloc 465 extraSpaceForMPR := dispatchData.io.wdata 466 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 467 } 468 469 // wiring to csr 470 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 471 val v = io.commits.valid(i) 472 val info = io.commits.info(i) 473 (v & info.wflags, v & info.fpWen) 474 }).unzip 475 val fflags = Wire(Valid(UInt(5.W))) 476 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 477 fflags.bits := wflags.zip(fflagsDataRead).map({ 478 case (w, f) => Mux(w, f, 0.U) 479 }).reduce(_|_) 480 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 481 482 // when mispredict branches writeback, stop commit in the next 2 cycles 483 // TODO: don't check all exu write back 484 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 485 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 486 ))).orR() 487 val misPredBlockCounter = Reg(UInt(3.W)) 488 misPredBlockCounter := Mux(misPredWb, 489 "b111".U, 490 misPredBlockCounter >> 1.U 491 ) 492 val misPredBlock = misPredBlockCounter(0) 493 494 io.commits.isWalk := state =/= s_idle 495 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 496 // store will be commited iff both sta & std have been writebacked 497 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 498 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 499 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 500 val allowOnlyOneCommit = commit_exception || intrBitSetReg 501 // for instructions that may block others, we don't allow them to commit 502 for (i <- 0 until CommitWidth) { 503 // defaults: state === s_idle and instructions commit 504 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 505 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 506 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 507 io.commits.info(i) := dispatchDataRead(i) 508 509 when (state === s_walk) { 510 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 511 }.elsewhen(state === s_extrawalk) { 512 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 513 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 514 } 515 516 XSInfo(state === s_idle && io.commits.valid(i), 517 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 518 debug_microOp(deqPtrVec(i).value).cf.pc, 519 io.commits.info(i).rfWen, 520 io.commits.info(i).ldest, 521 io.commits.info(i).pdest, 522 io.commits.info(i).old_pdest, 523 debug_exuData(deqPtrVec(i).value), 524 fflagsDataRead(i) 525 ) 526 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 527 debug_microOp(walkPtrVec(i).value).cf.pc, 528 io.commits.info(i).rfWen, 529 io.commits.info(i).ldest, 530 debug_exuData(walkPtrVec(i).value) 531 ) 532 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 533 io.commits.info(i).rfWen, 534 io.commits.info(i).ldest 535 ) 536 } 537 if (!env.FPGAPlatform) { 538 io.commits.info.map(info => dontTouch(info.pc)) 539 } 540 541 // sync fflags/dirty_fs to csr 542 io.csr.fflags := fflags 543 io.csr.dirty_fs := dirty_fs 544 545 // commit branch to brq 546 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 547 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 548 549 // commit load/store to lsq 550 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 551 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 552 io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)) 553 io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)) 554 io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) 555 io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) 556 io.lsq.commit := !io.commits.isWalk && io.commits.valid(0) 557 558 /** 559 * state changes 560 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 561 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 562 * (3) walk: when walking comes to the end, switch to s_walk 563 * (4) s_extrawalk to s_walk 564 */ 565 val state_next = Mux(io.redirect.valid, 566 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 567 Mux(state === s_walk && walkFinished, 568 s_idle, 569 Mux(state === s_extrawalk, s_walk, state) 570 ) 571 ) 572 state := state_next 573 574 /** 575 * pointers and counters 576 */ 577 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 578 deqPtrGenModule.io.state := state 579 deqPtrGenModule.io.deq_v := commit_v 580 deqPtrGenModule.io.deq_w := commit_w 581 deqPtrGenModule.io.exception_state := exceptionDataRead 582 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 583 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 584 deqPtrGenModule.io.commitType := deqDispatchData.commitType 585 586 deqPtrGenModule.io.misPredBlock := misPredBlock 587 deqPtrGenModule.io.isReplaying := isReplaying 588 deqPtrVec := deqPtrGenModule.io.out 589 val deqPtrVec_next = deqPtrGenModule.io.next_out 590 591 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 592 enqPtrGenModule.io.redirect := io.redirect 593 enqPtrGenModule.io.allowEnqueue := allowEnqueue 594 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 595 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 596 enqPtr := enqPtrGenModule.io.out 597 598 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 599 // next walkPtrVec: 600 // (1) redirect occurs: update according to state 601 // (2) walk: move backwards 602 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 603 Mux(state === s_walk, 604 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 605 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 606 ), 607 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 608 ) 609 walkPtrVec := walkPtrVec_next 610 611 val lastCycleRedirect = RegNext(io.redirect.valid) 612 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 613 val commitCnt = PopCount(io.commits.valid) 614 validCounter := Mux(state === s_idle, 615 (validCounter - commitCnt) + dispatchNum, 616 trueValidCounter 617 ) 618 619 allowEnqueue := Mux(state === s_idle, 620 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 621 trueValidCounter <= (RobSize - RenameWidth).U 622 ) 623 624 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 625 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 626 when (io.redirect.valid) { 627 walkCounter := Mux(state === s_walk, 628 // NOTE: +& is used here because: 629 // When rob is full and the head instruction causes an exception, 630 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 631 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 632 // Since exceptions flush the instruction itself, flushItSelf is true.B. 633 // Previously we use `+` to count the walk distance and it causes overflows 634 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 635 // The width of walkCounter also needs to be changed. 636 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 637 redirectWalkDistance +& io.redirect.bits.flushItself() 638 ) 639 }.elsewhen (state === s_walk) { 640 walkCounter := walkCounter - commitCnt 641 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 642 } 643 644 645 /** 646 * States 647 * We put all the stage bits changes here. 648 649 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 650 * All states: (1) valid; (2) writebacked; (3) flagBkup 651 */ 652 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 653 654 // enqueue logic writes 6 valid 655 for (i <- 0 until RenameWidth) { 656 when (canEnqueue(i) && !io.redirect.valid) { 657 valid(enqPtrVec(i).value) := true.B 658 } 659 } 660 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 661 for (i <- 0 until CommitWidth) { 662 when (io.commits.valid(i) && state =/= s_extrawalk) { 663 valid(commitReadAddr(i)) := false.B 664 } 665 } 666 // reset: when exception, reset all valid to false 667 when (reset.asBool) { 668 for (i <- 0 until RobSize) { 669 valid(i) := false.B 670 } 671 } 672 673 // status field: writebacked 674 // enqueue logic set 6 writebacked to false 675 for (i <- 0 until RenameWidth) { 676 when (canEnqueue(i)) { 677 eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 678 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 679 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 680 store_data_writebacked(enqPtrVec(i).value) := !isStu 681 } 682 } 683 when (exceptionGen.io.out.valid) { 684 val wbIdx = exceptionGen.io.out.bits.robIdx.value 685 writebacked(wbIdx) := true.B 686 store_data_writebacked(wbIdx) := true.B 687 } 688 // writeback logic set numWbPorts writebacked to true 689 for (i <- 0 until numWbPorts) { 690 when (io.exeWbResults(i).valid) { 691 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 692 val block_wb = 693 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 694 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 695 io.exeWbResults(i).bits.uop.ctrl.replayInst 696 writebacked(wbIdx) := !block_wb 697 } 698 } 699 // store data writeback logic mark store as data_writebacked 700 for (i <- 0 until StorePipelineWidth) { 701 when(io.lsq.storeDataRobWb(i).valid) { 702 store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B 703 } 704 } 705 706 // flagBkup 707 // enqueue logic set 6 flagBkup at most 708 for (i <- 0 until RenameWidth) { 709 when (canEnqueue(i)) { 710 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 711 } 712 } 713 714 715 /** 716 * read and write of data modules 717 */ 718 val commitReadAddr_next = Mux(state_next === s_idle, 719 VecInit(deqPtrVec_next.map(_.value)), 720 VecInit(walkPtrVec_next.map(_.value)) 721 ) 722 dispatchData.io.wen := canEnqueue 723 dispatchData.io.waddr := enqPtrVec.map(_.value) 724 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 725 wdata.ldest := req.ctrl.ldest 726 wdata.rfWen := req.ctrl.rfWen 727 wdata.fpWen := req.ctrl.fpWen 728 wdata.wflags := req.ctrl.fpu.wflags 729 wdata.commitType := req.ctrl.commitType 730 wdata.eliminatedMove := req.eliminatedMove 731 wdata.pdest := req.pdest 732 wdata.old_pdest := req.old_pdest 733 wdata.ftqIdx := req.cf.ftqPtr 734 wdata.ftqOffset := req.cf.ftqOffset 735 wdata.pc := req.cf.pc 736 } 737 dispatchData.io.raddr := commitReadAddr_next 738 739 exceptionGen.io.redirect <> io.redirect 740 exceptionGen.io.flush := io.flushOut.valid 741 for (i <- 0 until RenameWidth) { 742 exceptionGen.io.enq(i).valid := canEnqueue(i) 743 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 744 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 745 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 746 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 747 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 748 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 749 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 750 } 751 752 // TODO: don't hard code these idxes 753 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 754 // CSR is after Alu and Load 755 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 756 def atomic_wb_idx = exuParameters.AluCnt // first port for load 757 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 758 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 759 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 760 all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) } 761 def connect_exception(index: Int, wb_index: Int) = { 762 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 763 // A temporary fix for float load writeback 764 // TODO: let int/fp load use the same two wb ports 765 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 766 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 767 exceptionGen.io.wb(index).valid := true.B 768 } 769 } 770 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 771 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 772 else if (wb_index == atomic_wb_idx) selectAtomics _ 773 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 774 else { 775 assert(store_wb_idxes.contains(wb_index)) 776 selectStore _ 777 } 778 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 779 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 780 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 781 exceptionGen.io.wb(index).bits.singleStep := false.B 782 exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B 783 } 784 785 // 4 fmac + 2 fmisc + 1 i2f 786 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 787 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 788 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 789 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 790 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 791 }).map(_._1) 792 val fflagsDataModule = Module(new SyncDataModuleTemplate( 793 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 794 ) 795 for(i <- fflags_wb.indices){ 796 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 797 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 798 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 799 } 800 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 801 fflagsDataRead := fflagsDataModule.io.rdata 802 803 804 val instrCnt = RegInit(0.U(64.W)) 805 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 806 val trueCommitCnt = commitCnt +& fuseCommitCnt 807 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 808 instrCnt := instrCnt + retireCounter 809 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 810 io.robFull := !allowEnqueue 811 812 /** 813 * debug info 814 */ 815 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 816 XSDebug("") 817 for(i <- 0 until RobSize){ 818 XSDebug(false, !valid(i), "-") 819 XSDebug(false, valid(i) && writebacked(i), "w") 820 XSDebug(false, valid(i) && !writebacked(i), "v") 821 } 822 XSDebug(false, true.B, "\n") 823 824 for(i <- 0 until RobSize) { 825 if(i % 4 == 0) XSDebug("") 826 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 827 XSDebug(false, !valid(i), "- ") 828 XSDebug(false, valid(i) && writebacked(i), "w ") 829 XSDebug(false, valid(i) && !writebacked(i), "v ") 830 if(i % 4 == 3) XSDebug(false, true.B, "\n") 831 } 832 833 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 834 835 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 836 XSPerfAccumulate("clock_cycle", 1.U) 837 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 838 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 839 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 840 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 841 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 842 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 843 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 844 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 845 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 846 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 847 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 848 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 849 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 850 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 851 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 852 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 853 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 854 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 855 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 856 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 857 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 858 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 859 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 860 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 861 val deqUopCommitType = io.commits.info(0).commitType 862 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 863 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 864 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 865 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 866 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 867 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 868 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 869 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 870 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 871 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 872 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 873 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 874 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 875 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 876 } 877 for (fuType <- FuType.functionNameMap.keys) { 878 val fuName = FuType.functionNameMap(fuType) 879 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 880 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 881 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 882 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 883 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 884 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 885 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 886 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 887 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 888 if (fuType == FuType.fmac.litValue()) { 889 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 890 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 891 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 892 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 893 } 894 } 895 896 897 //difftest signals 898 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 899 900 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 901 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 902 val trapVec = Wire(Vec(CommitWidth, Bool())) 903 for(i <- 0 until CommitWidth) { 904 val idx = deqPtrVec(i).value 905 wdata(i) := debug_exuData(idx) 906 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 907 trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap 908 } 909 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 910 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 911 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 912 913 val hitTrap = trapVec.reduce(_||_) 914 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 915 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 916 917 if (!env.FPGAPlatform) { 918 for (i <- 0 until CommitWidth) { 919 val difftest = Module(new DifftestInstrCommit) 920 difftest.io.clock := clock 921 difftest.io.coreid := hardId.U 922 difftest.io.index := i.U 923 924 val ptr = deqPtrVec(i).value 925 val uop = commitDebugUop(i) 926 val exuOut = debug_exuDebug(ptr) 927 val exuData = debug_exuData(ptr) 928 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 929 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 930 difftest.io.instr := RegNext(uop.cf.instr) 931 difftest.io.special := RegNext(CommitType.isFused(uop.ctrl.commitType)) 932 // when committing an eliminated move instruction, 933 // we must make sure that skip is properly set to false (output from EXU is random value) 934 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 935 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 936 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 937 uop.ctrl.fuType === FuType.mou && 938 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 939 difftest.io.wen := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U) 940 difftest.io.wdata := RegNext(exuData) 941 difftest.io.wdest := RegNext(uop.ctrl.ldest) 942 943 // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n") 944 945 // runahead commit hint 946 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 947 runahead_commit.io.clock := clock 948 runahead_commit.io.coreid := hardId.U 949 runahead_commit.io.index := i.U 950 runahead_commit.io.valid := difftest.io.valid && 951 (commitBranchValid(i) || commitIsStore(i)) 952 // TODO: is branch or store 953 runahead_commit.io.pc := difftest.io.pc 954 } 955 } 956 957 if (!env.FPGAPlatform) { 958 for (i <- 0 until CommitWidth) { 959 val difftest = Module(new DifftestLoadEvent) 960 difftest.io.clock := clock 961 difftest.io.coreid := hardId.U 962 difftest.io.index := i.U 963 964 val ptr = deqPtrVec(i).value 965 val uop = commitDebugUop(i) 966 val exuOut = debug_exuDebug(ptr) 967 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 968 difftest.io.paddr := RegNext(exuOut.paddr) 969 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 970 difftest.io.fuType := RegNext(uop.ctrl.fuType) 971 } 972 } 973 974 if (!env.FPGAPlatform) { 975 val difftest = Module(new DifftestTrapEvent) 976 difftest.io.clock := clock 977 difftest.io.coreid := hardId.U 978 difftest.io.valid := hitTrap 979 difftest.io.code := trapCode 980 difftest.io.pc := trapPC 981 difftest.io.cycleCnt := timer 982 difftest.io.instrCnt := instrCnt 983 } 984} 985