1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.FuType 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33 34class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 35 entries 36) with HasCircularQueuePtrHelper { 37 38 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 39 40 def needFlush(redirect: Valid[Redirect]): Bool = { 41 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 42 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 43 } 44 45 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 46} 47 48object RobPtr { 49 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 50 val ptr = Wire(new RobPtr) 51 ptr.flag := f 52 ptr.value := v 53 ptr 54 } 55} 56 57class RobCSRIO(implicit p: Parameters) extends XSBundle { 58 val intrBitSet = Input(Bool()) 59 val trapTarget = Input(UInt(VAddrBits.W)) 60 val isXRet = Input(Bool()) 61 val wfiEvent = Input(Bool()) 62 63 val fflags = Output(Valid(UInt(5.W))) 64 val vxsat = Output(Valid(Bool())) 65 val dirty_fs = Output(Bool()) 66 val perfinfo = new Bundle { 67 val retiredInstr = Output(UInt(3.W)) 68 } 69 70 val vcsrFlag = Output(Bool()) 71} 72 73class RobLsqIO(implicit p: Parameters) extends XSBundle { 74 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 75 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 76 val pendingld = Output(Bool()) 77 val pendingst = Output(Bool()) 78 val commit = Output(Bool()) 79 val pendingPtr = Output(new RobPtr) 80 81 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 82 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 83} 84 85class RobEnqIO(implicit p: Parameters) extends XSBundle { 86 val canAccept = Output(Bool()) 87 val isEmpty = Output(Bool()) 88 // valid vector, for robIdx gen and walk 89 val needAlloc = Vec(RenameWidth, Input(Bool())) 90 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 91 val resp = Vec(RenameWidth, Output(new RobPtr)) 92} 93 94class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 95 96class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 97 val io = IO(new Bundle { 98 // for commits/flush 99 val state = Input(UInt(2.W)) 100 val deq_v = Vec(CommitWidth, Input(Bool())) 101 val deq_w = Vec(CommitWidth, Input(Bool())) 102 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 103 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 104 val intrBitSetReg = Input(Bool()) 105 val hasNoSpecExec = Input(Bool()) 106 val interrupt_safe = Input(Bool()) 107 val blockCommit = Input(Bool()) 108 // output: the CommitWidth deqPtr 109 val out = Vec(CommitWidth, Output(new RobPtr)) 110 val next_out = Vec(CommitWidth, Output(new RobPtr)) 111 }) 112 113 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 114 115 // for exceptions (flushPipe included) and interrupts: 116 // only consider the first instruction 117 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 118 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 119 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 120 121 // for normal commits: only to consider when there're no exceptions 122 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 123 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 124 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 125 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 126 // when io.intrBitSetReg or there're possible exceptions in these instructions, 127 // only one instruction is allowed to commit 128 val allowOnlyOne = commit_exception || io.intrBitSetReg 129 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 130 131 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 132 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 133 134 deqPtrVec := deqPtrVec_next 135 136 io.next_out := deqPtrVec_next 137 io.out := deqPtrVec 138 139 when (io.state === 0.U) { 140 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 141 } 142 143} 144 145class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 146 val io = IO(new Bundle { 147 // for input redirect 148 val redirect = Input(Valid(new Redirect)) 149 // for enqueue 150 val allowEnqueue = Input(Bool()) 151 val hasBlockBackward = Input(Bool()) 152 val enq = Vec(RenameWidth, Input(Bool())) 153 val out = Output(Vec(RenameWidth, new RobPtr)) 154 }) 155 156 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 157 158 // enqueue 159 val canAccept = io.allowEnqueue && !io.hasBlockBackward 160 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 161 162 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 163 when(io.redirect.valid) { 164 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 165 }.otherwise { 166 ptr := ptr + dispatchNum 167 } 168 } 169 170 io.out := enqPtrVec 171 172} 173 174class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 175 // val valid = Bool() 176 val robIdx = new RobPtr 177 val exceptionVec = ExceptionVec() 178 val flushPipe = Bool() 179 val isVset = Bool() 180 val replayInst = Bool() // redirect to that inst itself 181 val singleStep = Bool() // TODO add frontend hit beneath 182 val crossPageIPFFix = Bool() 183 val trigger = new TriggerCf 184 185// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 186// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 187 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 188 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 189 // only exceptions are allowed to writeback when enqueue 190 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 191} 192 193class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 194 val io = IO(new Bundle { 195 val redirect = Input(Valid(new Redirect)) 196 val flush = Input(Bool()) 197 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 198 // csr + load + store 199 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 200 val out = ValidIO(new RobExceptionInfo) 201 val state = ValidIO(new RobExceptionInfo) 202 }) 203 204 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 205 assert(valid.length == bits.length) 206 assert(isPow2(valid.length)) 207 if (valid.length == 1) { 208 (valid, bits) 209 } else if (valid.length == 2) { 210 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 211 for (i <- res.indices) { 212 res(i).valid := valid(i) 213 res(i).bits := bits(i) 214 } 215 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 216 (Seq(oldest.valid), Seq(oldest.bits)) 217 } else { 218 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 219 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 220 getOldest(left._1 ++ right._1, left._2 ++ right._2) 221 } 222 } 223 224 val currentValid = RegInit(false.B) 225 val current = Reg(new RobExceptionInfo) 226 227 // orR the exceptionVec 228 val lastCycleFlush = RegNext(io.flush) 229 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 230 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 231 232 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 233 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 234 val csr_wb_bits = io.wb(0).bits 235 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 236 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 237 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 238 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 239 240 // s1: compare last four and current flush 241 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 242 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 243 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 244 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 245 val s1_out_bits = RegNext(compare_bits) 246 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 247 248 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 249 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 250 251 // s2: compare the input exception with the current one 252 // priorities: 253 // (1) system reset 254 // (2) current is valid: flush, remain, merge, update 255 // (3) current is not valid: s1 or enq 256 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 257 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 258 when (currentValid) { 259 when (current_flush) { 260 currentValid := Mux(s1_flush, false.B, s1_out_valid) 261 } 262 when (s1_out_valid && !s1_flush) { 263 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 264 current := s1_out_bits 265 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 266 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 267 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 268 current.replayInst := s1_out_bits.replayInst || current.replayInst 269 current.singleStep := s1_out_bits.singleStep || current.singleStep 270 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 271 } 272 } 273 }.elsewhen (s1_out_valid && !s1_flush) { 274 currentValid := true.B 275 current := s1_out_bits 276 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 277 currentValid := true.B 278 current := enq_bits 279 } 280 281 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 282 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 283 io.state.valid := currentValid 284 io.state.bits := current 285 286} 287 288class RobFlushInfo(implicit p: Parameters) extends XSBundle { 289 val ftqIdx = new FtqPtr 290 val robIdx = new RobPtr 291 val ftqOffset = UInt(log2Up(PredictWidth).W) 292 val replayInst = Bool() 293} 294 295class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 296 297 lazy val module = new RobImp(this)(p, params) 298} 299 300class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 301 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 302 303 val io = IO(new Bundle() { 304 val hartId = Input(UInt(8.W)) 305 val redirect = Input(Valid(new Redirect)) 306 val enq = new RobEnqIO 307 val flushOut = ValidIO(new Redirect) 308 val exception = ValidIO(new ExceptionInfo) 309 // exu + brq 310 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 311 val commits = Output(new RobCommitIO) 312 val rabCommits = Output(new RobCommitIO) 313 val diffCommits = Output(new DiffCommitIO) 314 val isVsetFlushPipe = Output(Bool()) 315 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 316 val lsq = new RobLsqIO 317 val robDeqPtr = Output(new RobPtr) 318 val csr = new RobCSRIO 319 val snpt = Input(new SnapshotPort) 320 val robFull = Output(Bool()) 321 val headNotReady = Output(Bool()) 322 val cpu_halt = Output(Bool()) 323 val wfi_enable = Input(Bool()) 324 val debug_ls = Flipped(new DebugLSIO) 325 val debugRobHead = Output(new MicroOp) 326 val debugEnqLsq = Input(new LsqEnqIO) 327 val debugHeadLsIssue = Input(Bool()) 328 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 329 }) 330 331 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 332 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 333 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 334 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 335 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 336 337 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 338 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 339 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 340 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 341 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 342 val numExuWbPorts = exuWBs.length 343 val numStdWbPorts = stdWBs.length 344 345 346 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 347// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 348// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 349// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 350 351 352 // instvalid field 353 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 354 // writeback status 355 356 val stdWritebacked = Reg(Vec(RobSize, Bool())) 357 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 358 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 359 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 360 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 361 362 def isWritebacked(ptr: UInt): Bool = { 363 !uopNumVec(ptr).orR && stdWritebacked(ptr) 364 } 365 366 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 367 368 // data for redirect, exception, etc. 369 val flagBkup = Mem(RobSize, Bool()) 370 // some instructions are not allowed to trigger interrupts 371 // They have side effects on the states of the processor before they write back 372 val interrupt_safe = Mem(RobSize, Bool()) 373 374 // data for debug 375 // Warn: debug_* prefix should not exist in generated verilog. 376 val debug_microOp = Mem(RobSize, new DynInst) 377 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 378 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 379 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 380 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 381 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 382 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 383 384 // pointers 385 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 386 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 387 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 388 389 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 390 val lastWalkPtr = Reg(new RobPtr) 391 val allowEnqueue = RegInit(true.B) 392 393 val enqPtr = enqPtrVec.head 394 val deqPtr = deqPtrVec(0) 395 val walkPtr = walkPtrVec(0) 396 397 val isEmpty = enqPtr === deqPtr 398 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 399 400 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 401 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 402 403 val debug_lsIssue = WireDefault(debug_lsIssued) 404 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 405 406 /** 407 * states of Rob 408 */ 409 val s_idle :: s_walk :: Nil = Enum(2) 410 val state = RegInit(s_idle) 411 412 /** 413 * Data Modules 414 * 415 * CommitDataModule: data from dispatch 416 * (1) read: commits/walk/exception 417 * (2) write: enqueue 418 * 419 * WritebackData: data from writeback 420 * (1) read: commits/walk/exception 421 * (2) write: write back from exe units 422 */ 423 val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth)) 424 val dispatchDataRead = dispatchData.io.rdata 425 426 val exceptionGen = Module(new ExceptionGen(params)) 427 val exceptionDataRead = exceptionGen.io.state 428 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 429 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 430 431 io.robDeqPtr := deqPtr 432 io.debugRobHead := debug_microOp(deqPtr.value) 433 434 val rab = Module(new RenameBuffer(RabSize)) 435 rab.io.redirectValid := io.redirect.valid 436 rab.io.req.zip(io.enq.req).map { case (dest, src) => 437 dest.bits := src.bits 438 dest.valid := src.valid && io.enq.canAccept 439 } 440 441 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 442 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) => 443 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 444 } 445 val wbSizeSum = wbSizeSeq.reduce(_ + _) 446 rab.io.commitSize := wbSizeSum 447 rab.io.walkSize := wbSizeSum 448 449 io.rabCommits := rab.io.commits 450 io.diffCommits := rab.io.diffCommits 451 452 /** 453 * Enqueue (from dispatch) 454 */ 455 // special cases 456 val hasBlockBackward = RegInit(false.B) 457 val hasWaitForward = RegInit(false.B) 458 val doingSvinval = RegInit(false.B) 459 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 460 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 461 when (isEmpty) { hasBlockBackward:= false.B } 462 // When any instruction commits, hasNoSpecExec should be set to false.B 463 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 464 465 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 466 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 467 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 468 val hasWFI = RegInit(false.B) 469 io.cpu_halt := hasWFI 470 // WFI Timeout: 2^20 = 1M cycles 471 val wfi_cycles = RegInit(0.U(20.W)) 472 when (hasWFI) { 473 wfi_cycles := wfi_cycles + 1.U 474 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 475 wfi_cycles := 0.U 476 } 477 val wfi_timeout = wfi_cycles.andR 478 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 479 hasWFI := false.B 480 } 481 482 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 483 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 484 io.enq.resp := allocatePtrVec 485 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 486 val timer = GTimer() 487 for (i <- 0 until RenameWidth) { 488 // we don't check whether io.redirect is valid here since redirect has higher priority 489 when (canEnqueue(i)) { 490 val enqUop = io.enq.req(i).bits 491 val enqIndex = allocatePtrVec(i).value 492 // store uop in data module and debug_microOp Vec 493 debug_microOp(enqIndex) := enqUop 494 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 495 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 496 debug_microOp(enqIndex).debugInfo.selectTime := timer 497 debug_microOp(enqIndex).debugInfo.issueTime := timer 498 debug_microOp(enqIndex).debugInfo.writebackTime := timer 499 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 500 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 501 debug_lsInfo(enqIndex) := DebugLsInfo.init 502 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 503 debug_lqIdxValid(enqIndex) := false.B 504 debug_lsIssued(enqIndex) := false.B 505 506 when (enqUop.blockBackward) { 507 hasBlockBackward := true.B 508 } 509 when (enqUop.waitForward) { 510 hasWaitForward := true.B 511 } 512 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 513 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 514 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 515 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 516 { 517 doingSvinval := true.B 518 } 519 // the end instruction of Svinval enqs so clear doingSvinval 520 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 521 { 522 doingSvinval := false.B 523 } 524 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 525 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 526 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 527 hasWFI := true.B 528 } 529 530 mmio(enqIndex) := false.B 531 } 532 } 533 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 534 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 535 536 when (!io.wfi_enable) { 537 hasWFI := false.B 538 } 539 // sel vsetvl's flush position 540 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 541 val vsetvlState = RegInit(vs_idle) 542 543 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 544 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 545 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 546 547 val enq0 = io.enq.req(0) 548 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 549 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 550 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 551 // for vs_idle 552 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 553 // for vs_waitVinstr 554 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 555 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 556 when(vsetvlState === vs_idle){ 557 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 558 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 559 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 560 }.elsewhen(vsetvlState === vs_waitVinstr){ 561 when(Cat(enqIsVInstrOrVset).orR){ 562 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 563 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 564 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 565 } 566 } 567 568 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 569 when(vsetvlState === vs_idle && !io.redirect.valid){ 570 when(enq0IsVsetFlush){ 571 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 572 } 573 }.elsewhen(vsetvlState === vs_waitVinstr){ 574 when(io.redirect.valid){ 575 vsetvlState := vs_idle 576 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 577 vsetvlState := vs_waitFlush 578 } 579 }.elsewhen(vsetvlState === vs_waitFlush){ 580 when(io.redirect.valid){ 581 vsetvlState := vs_idle 582 } 583 } 584 585 // lqEnq 586 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 587 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 588 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 589 debug_lqIdxValid(req.bits.robIdx.value) := true.B 590 } 591 } 592 593 // lsIssue 594 when(io.debugHeadLsIssue) { 595 debug_lsIssued(deqPtr.value) := true.B 596 } 597 598 /** 599 * Writeback (from execution units) 600 */ 601 for (wb <- exuWBs) { 602 when (wb.valid) { 603 val wbIdx = wb.bits.robIdx.value 604 debug_exuData(wbIdx) := wb.bits.data 605 debug_exuDebug(wbIdx) := wb.bits.debug 606 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 607 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 608 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 609 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 610 611 // debug for lqidx and sqidx 612 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 613 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 614 615 val debug_Uop = debug_microOp(wbIdx) 616 XSInfo(true.B, 617 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 618 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 619 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 620 ) 621 } 622 } 623 624 val writebackNum = PopCount(exuWBs.map(_.valid)) 625 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 626 627 for (i <- 0 until LoadPipelineWidth) { 628 when (RegNext(io.lsq.mmio(i))) { 629 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 630 } 631 } 632 633 /** 634 * RedirectOut: Interrupt and Exceptions 635 */ 636 val deqDispatchData = dispatchDataRead(0) 637 val debug_deqUop = debug_microOp(deqPtr.value) 638 639 val intrBitSetReg = RegNext(io.csr.intrBitSet) 640 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 641 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 642 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 643 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 644 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 645 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 646 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 647 648 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 649 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 650 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 651 652 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 653 654 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 655// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 656 val needModifyFtqIdxOffset = false.B 657 io.isVsetFlushPipe := isVsetFlushPipe 658 io.vconfigPdest := rab.io.vconfigPdest 659 // io.flushOut will trigger redirect at the next cycle. 660 // Block any redirect or commit at the next cycle. 661 val lastCycleFlush = RegNext(io.flushOut.valid) 662 663 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 664 io.flushOut.bits := DontCare 665 io.flushOut.bits.isRVC := deqDispatchData.isRVC 666 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 667 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 668 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 669 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 670 io.flushOut.bits.interrupt := true.B 671 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 672 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 673 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 674 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 675 676 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 677 io.exception.valid := RegNext(exceptionHappen) 678 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 679 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 680 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 681 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 682 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 683 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 684 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 685// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 686 687 XSDebug(io.flushOut.valid, 688 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 689 p"excp $exceptionEnable flushPipe $isFlushPipe " + 690 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 691 692 693 /** 694 * Commits (and walk) 695 * They share the same width. 696 */ 697 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 698 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 699 rab.io.robWalkEnd := state === s_walk && walkFinished 700 701 require(RenameWidth <= CommitWidth) 702 703 // wiring to csr 704 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 705 val v = io.commits.commitValid(i) 706 val info = io.commits.info(i) 707 (v & info.wflags, v & info.fpWen) 708 }).unzip 709 val fflags = Wire(Valid(UInt(5.W))) 710 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 711 fflags.bits := wflags.zip(fflagsDataRead).map({ 712 case (w, f) => Mux(w, f, 0.U) 713 }).reduce(_|_) 714 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 715 716 val vxsat = Wire(Valid(Bool())) 717 vxsat.valid := io.commits.isCommit && vxsat.bits 718 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 719 case (valid, vxsat) => valid & vxsat 720 }.reduce(_ | _) 721 722 // when mispredict branches writeback, stop commit in the next 2 cycles 723 // TODO: don't check all exu write back 724 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 725 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 726 ))).orR 727 val misPredBlockCounter = Reg(UInt(3.W)) 728 misPredBlockCounter := Mux(misPredWb, 729 "b111".U, 730 misPredBlockCounter >> 1.U 731 ) 732 val misPredBlock = misPredBlockCounter(0) 733 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 734 val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 735 736 io.commits.isWalk := state === s_walk 737 io.commits.isCommit := state === s_idle && !blockCommit 738 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 739 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 740 // store will be commited iff both sta & std have been writebacked 741 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 742 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 743 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 744 val allowOnlyOneCommit = commit_exception || intrBitSetReg 745 // for instructions that may block others, we don't allow them to commit 746 for (i <- 0 until CommitWidth) { 747 // defaults: state === s_idle and instructions commit 748 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 749 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 750 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 751 io.commits.info(i) := dispatchDataRead(i) 752 io.commits.robIdx(i) := deqPtrVec(i) 753 754 when (state === s_walk) { 755 io.commits.walkValid(i) := shouldWalkVec(i) 756 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 757 XSError(!walk_v(i), s"why not $i???\n") 758 } 759 } 760 761 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 762 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 763 debug_microOp(deqPtrVec(i).value).pc, 764 io.commits.info(i).rfWen, 765 io.commits.info(i).ldest, 766 io.commits.info(i).pdest, 767 debug_exuData(deqPtrVec(i).value), 768 fflagsDataRead(i), 769 vxsatDataRead(i) 770 ) 771 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 772 debug_microOp(walkPtrVec(i).value).pc, 773 io.commits.info(i).rfWen, 774 io.commits.info(i).ldest, 775 debug_exuData(walkPtrVec(i).value) 776 ) 777 } 778 if (env.EnableDifftest) { 779 io.commits.info.map(info => dontTouch(info.pc)) 780 } 781 782 // sync fflags/dirty_fs/vxsat to csr 783 io.csr.fflags := RegNext(fflags) 784 io.csr.dirty_fs := RegNext(dirty_fs) 785 io.csr.vxsat := RegNext(vxsat) 786 787 // sync v csr to csr 788 // for difftest 789 if(env.AlwaysBasicDiff || env.EnableDifftest) { 790 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 791 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 792 } 793 else{ 794 io.csr.vcsrFlag := false.B 795 } 796 797 // commit load/store to lsq 798 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 799 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 800 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 801 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 802 // indicate a pending load or store 803 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 804 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 805 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 806 io.lsq.pendingPtr := RegNext(deqPtr) 807 808 /** 809 * state changes 810 * (1) redirect: switch to s_walk 811 * (2) walk: when walking comes to the end, switch to s_idle 812 */ 813 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 814 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 815 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 816 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 817 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 818 state := state_next 819 820 /** 821 * pointers and counters 822 */ 823 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 824 deqPtrGenModule.io.state := state 825 deqPtrGenModule.io.deq_v := commit_v 826 deqPtrGenModule.io.deq_w := commit_w 827 deqPtrGenModule.io.exception_state := exceptionDataRead 828 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 829 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 830 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 831 deqPtrGenModule.io.blockCommit := blockCommit 832 deqPtrVec := deqPtrGenModule.io.out 833 val deqPtrVec_next = deqPtrGenModule.io.next_out 834 835 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 836 enqPtrGenModule.io.redirect := io.redirect 837 enqPtrGenModule.io.allowEnqueue := allowEnqueue 838 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 839 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 840 enqPtrVec := enqPtrGenModule.io.out 841 842 // next walkPtrVec: 843 // (1) redirect occurs: update according to state 844 // (2) walk: move forwards 845 val walkPtrVec_next = Mux(io.redirect.valid, 846 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 847 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 848 ) 849 walkPtrVec := walkPtrVec_next 850 851 val numValidEntries = distanceBetween(enqPtr, deqPtr) 852 val commitCnt = PopCount(io.commits.commitValid) 853 854 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 855 856 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 857 when (io.redirect.valid) { 858 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 859 } 860 861 862 /** 863 * States 864 * We put all the stage bits changes here. 865 866 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 867 * All states: (1) valid; (2) writebacked; (3) flagBkup 868 */ 869 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 870 871 // redirect logic writes 6 valid 872 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 873 val redirectTail = Reg(new RobPtr) 874 val redirectIdle :: redirectBusy :: Nil = Enum(2) 875 val redirectState = RegInit(redirectIdle) 876 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 877 when(redirectState === redirectBusy) { 878 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 879 redirectHeadVec zip invMask foreach { 880 case (redirectHead, inv) => when(inv) { 881 valid(redirectHead.value) := false.B 882 } 883 } 884 when(!invMask.last) { 885 redirectState := redirectIdle 886 } 887 } 888 when(io.redirect.valid) { 889 redirectState := redirectBusy 890 when(redirectState === redirectIdle) { 891 redirectTail := enqPtr 892 } 893 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 894 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 895 } 896 } 897 // enqueue logic writes 6 valid 898 for (i <- 0 until RenameWidth) { 899 when (canEnqueue(i) && !io.redirect.valid) { 900 valid(allocatePtrVec(i).value) := true.B 901 } 902 } 903 // dequeue logic writes 6 valid 904 for (i <- 0 until CommitWidth) { 905 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 906 when (commitValid) { 907 valid(commitReadAddr(i)) := false.B 908 } 909 } 910 911 // debug_inst update 912 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 913 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 914 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 915 } 916 for (i <- 0 until exuParameters.LduCnt) { 917 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 918 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 919 } 920 921 // status field: writebacked 922 // enqueue logic set 6 writebacked to false 923 for (i <- 0 until RenameWidth) { 924 when (canEnqueue(i)) { 925 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 926 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 927 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 928 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 929 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 930 store_data_writebacked(allocatePtrVec(i).value) := !isStu 931 } 932 } 933 when (exceptionGen.io.out.valid) { 934 val wbIdx = exceptionGen.io.out.bits.robIdx.value 935 writebacked(wbIdx) := true.B 936 store_data_writebacked(wbIdx) := true.B 937 } 938 // writeback logic set numWbPorts writebacked to true 939 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 940 blockWbSeq.map(_ := false.B) 941 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 942 when(wb.valid) { 943 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 944 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 945 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 946 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 947 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 948 } 949 } 950 951 // if the first uop of an instruction is valid , write writebackedCounter 952 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 953 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 954 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 955 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 956 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 957 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 958 959 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 960 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 961 }) 962 val enqWbSizeSeq = io.enq.req.map { req => 963 val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR 964 val enqHasTriggerHit = req.bits.trigger.getHitFrontend 965 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 966 Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U)) 967 } 968 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 969 val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) } 970 addend.reduce(_ +& _) 971 } 972 val fflags_wb = fflagsPorts 973 val vxsat_wb = vxsatPorts 974 for(i <- 0 until RobSize){ 975 976 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 977 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 978 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 979 val instCanEnqFlag = Cat(instCanEnqSeq).orR 980 981 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 982 983 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 984 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 985 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 986 987 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 988 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 989 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 990 val wbCnt = PopCount(canWbNoBlockSeq) 991 when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) { 992 // exception flush 993 uopNumVec(i) := 0.U 994 stdWritebacked(i) := true.B 995 }.elsewhen(!valid(i) && instCanEnqFlag) { 996 // enq set num of uops 997 uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum) 998 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 999 }.elsewhen(valid(i)) { 1000 // update by writing back 1001 uopNumVec(i) := uopNumVec(i) - wbCnt 1002 when (canStdWbSeq.asUInt.orR) { 1003 stdWritebacked(i) := true.B 1004 } 1005 }.otherwise { 1006 uopNumVec(i) := 0.U 1007 } 1008 1009 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1010 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1011 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1012 1013 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1014 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1015 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1016 } 1017 1018 // flagBkup 1019 // enqueue logic set 6 flagBkup at most 1020 for (i <- 0 until RenameWidth) { 1021 when (canEnqueue(i)) { 1022 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1023 } 1024 } 1025 1026 // interrupt_safe 1027 for (i <- 0 until RenameWidth) { 1028 // We RegNext the updates for better timing. 1029 // Note that instructions won't change the system's states in this cycle. 1030 when (RegNext(canEnqueue(i))) { 1031 // For now, we allow non-load-store instructions to trigger interrupts 1032 // For MMIO instructions, they should not trigger interrupts since they may 1033 // be sent to lower level before it writes back. 1034 // However, we cannot determine whether a load/store instruction is MMIO. 1035 // Thus, we don't allow load/store instructions to trigger an interrupt. 1036 // TODO: support non-MMIO load-store instructions to trigger interrupts 1037 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1038 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1039 } 1040 } 1041 1042 /** 1043 * read and write of data modules 1044 */ 1045 val commitReadAddr_next = Mux(state_next === s_idle, 1046 VecInit(deqPtrVec_next.map(_.value)), 1047 VecInit(walkPtrVec_next.map(_.value)) 1048 ) 1049 dispatchData.io.wen := canEnqueue 1050 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1051 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1052 wdata.ldest := req.ldest 1053 wdata.rfWen := req.rfWen 1054 wdata.fpWen := req.fpWen 1055 wdata.vecWen := req.vecWen 1056 wdata.wflags := req.fpu.wflags 1057 wdata.commitType := req.commitType 1058 wdata.pdest := req.pdest 1059 wdata.ftqIdx := req.ftqPtr 1060 wdata.ftqOffset := req.ftqOffset 1061 wdata.isMove := req.eliminatedMove 1062 wdata.isRVC := req.cf.pd.isRVC 1063 wdata.pc := req.pc 1064 wdata.vtype := req.vpu.vtype 1065 wdata.isVset := req.isVset 1066 } 1067 dispatchData.io.raddr := commitReadAddr_next 1068 1069 exceptionGen.io.redirect <> io.redirect 1070 exceptionGen.io.flush := io.flushOut.valid 1071 1072 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1073 for (i <- 0 until RenameWidth) { 1074 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1075 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1076 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1077 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1078 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1079 exceptionGen.io.enq(i).bits.replayInst := false.B 1080 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1081 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1082 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1083 exceptionGen.io.enq(i).bits.trigger.clear() 1084 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1085 } 1086 1087 println(s"ExceptionGen:") 1088 println(s"num of exceptions: ${params.numException}") 1089 require(exceptionWBs.length == exceptionGen.io.wb.length, 1090 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1091 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1092 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1093 exc_wb.valid := wb.valid 1094 exc_wb.bits.robIdx := wb.bits.robIdx 1095 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1096 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1097 exc_wb.bits.isVset := false.B 1098 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1099 exc_wb.bits.singleStep := false.B 1100 exc_wb.bits.crossPageIPFFix := false.B 1101 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1102// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1103// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1104// s"replayInst ${configs.exists(_.replayInst)}") 1105 } 1106 1107 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1108 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1109 1110 val instrCntReg = RegInit(0.U(64.W)) 1111 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1112 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1113 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1114 val instrCnt = instrCntReg + retireCounter 1115 instrCntReg := instrCnt 1116 io.csr.perfinfo.retiredInstr := retireCounter 1117 io.robFull := !allowEnqueue 1118 io.headNotReady := commit_v.head && !commit_w.head 1119 1120 /** 1121 * debug info 1122 */ 1123 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1124 XSDebug("") 1125 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1126 for(i <- 0 until RobSize){ 1127 XSDebug(false, !valid(i), "-") 1128 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1129 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1130 } 1131 XSDebug(false, true.B, "\n") 1132 1133 for(i <- 0 until RobSize) { 1134 if(i % 4 == 0) XSDebug("") 1135 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1136 XSDebug(false, !valid(i), "- ") 1137 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1138 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1139 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1140 } 1141 1142 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1143 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1144 1145 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1146 XSPerfAccumulate("clock_cycle", 1.U) 1147 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1148 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1149 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1150 val commitIsMove = commitDebugUop.map(_.isMove) 1151 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1152 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1153 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1154 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1155 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1156 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1157 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1158 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1159 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1160 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1161 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1162 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1163 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1164 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1165 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1166 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1167 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1168 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1169 XSPerfAccumulate("walkCycle", state === s_walk) 1170 val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1171 val deqUopCommitType = io.commits.info(0).commitType 1172 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1173 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1174 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1175 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1176 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1177 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1178 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1179 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1180 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1181 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1182 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1183 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1184 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1185 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1186 } 1187 for (fuType <- FuType.functionNameMap.keys) { 1188 val fuName = FuType.functionNameMap(fuType) 1189 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1190 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1191 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1192 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1193 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1194 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1195 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1196 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1197 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1198 if (fuType == FuType.fmac) { 1199 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1200 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1201 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1202 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1203 } 1204 } 1205 1206 val sourceVaddr = Wire(Valid(UInt(VAddrBits.W))) 1207 sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1208 sourceVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1209 val sourcePaddr = Wire(Valid(UInt(PAddrBits.W))) 1210 sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1211 sourcePaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1212 val sourceLqIdx = Wire(Valid(new LqPtr)) 1213 sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1214 sourceLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1215 val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value)) 1216 ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1217 ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1218 ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true) 1219 ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true) 1220 // dummy sink 1221 ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf) 1222 1223 /** 1224 * DataBase info: 1225 * log trigger is at writeback valid 1226 * */ 1227 if(!env.FPGAPlatform){ 1228 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1229 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1230 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1231 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1232 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1233 for (wb <- exuWriteback) { 1234 when(wb.valid) { 1235 val debug_instData = Wire(new InstInfoEntry) 1236 val idx = wb.bits.uop.robIdx.value 1237 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1238 debug_instData.robIdx := idx 1239 debug_instData.instType := wb.bits.uop.ctrl.fuType 1240 debug_instData.ivaddr := wb.bits.uop.cf.pc 1241 debug_instData.dvaddr := wb.bits.debug.vaddr 1242 debug_instData.dpaddr := wb.bits.debug.paddr 1243 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1244 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1245 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1246 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1247 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1248 debug_instData.lsInfo := debug_lsInfo(idx) 1249 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1250 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1251 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1252 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1253 debug_instTable.log( 1254 data = debug_instData, 1255 en = wb.valid, 1256 site = instSiteName, 1257 clock = clock, 1258 reset = reset 1259 ) 1260 } 1261 } 1262 } 1263 1264 1265 //difftest signals 1266 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1267 1268 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1269 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1270 1271 for(i <- 0 until CommitWidth) { 1272 val idx = deqPtrVec(i).value 1273 wdata(i) := debug_exuData(idx) 1274 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1275 } 1276 1277 if (env.EnableDifftest) { 1278 for (i <- 0 until CommitWidth) { 1279 val difftest = Module(new DifftestInstrCommit) 1280 // assgin default value 1281 difftest.io := DontCare 1282 1283 difftest.io.clock := clock 1284 difftest.io.coreid := io.hartId 1285 difftest.io.index := i.U 1286 1287 val ptr = deqPtrVec(i).value 1288 val uop = commitDebugUop(i) 1289 val exuOut = debug_exuDebug(ptr) 1290 val exuData = debug_exuData(ptr) 1291 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1292 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1293 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1294 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1295 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1296 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1297 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1298 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1299 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1300 // when committing an eliminated move instruction, 1301 // we must make sure that skip is properly set to false (output from EXU is random value) 1302 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1303 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1304 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1305 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1306 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1307 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1308 // // runahead commit hint 1309 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1310 // runahead_commit.io.clock := clock 1311 // runahead_commit.io.coreid := io.hartId 1312 // runahead_commit.io.index := i.U 1313 // runahead_commit.io.valid := difftest.io.valid && 1314 // (commitBranchValid(i) || commitIsStore(i)) 1315 // // TODO: is branch or store 1316 // runahead_commit.io.pc := difftest.io.pc 1317 } 1318 } 1319 else if (env.AlwaysBasicDiff) { 1320 // These are the structures used by difftest only and should be optimized after synthesis. 1321 val dt_eliminatedMove = Mem(RobSize, Bool()) 1322 val dt_isRVC = Mem(RobSize, Bool()) 1323 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1324 for (i <- 0 until RenameWidth) { 1325 when (canEnqueue(i)) { 1326 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1327 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1328 } 1329 } 1330 for (wb <- exuWBs) { 1331 when (wb.valid) { 1332 val wbIdx = wb.bits.robIdx.value 1333 dt_exuDebug(wbIdx) := wb.bits.debug 1334 } 1335 } 1336 // Always instantiate basic difftest modules. 1337 for (i <- 0 until CommitWidth) { 1338 val commitInfo = io.commits.info(i) 1339 val ptr = deqPtrVec(i).value 1340 val exuOut = dt_exuDebug(ptr) 1341 val eliminatedMove = dt_eliminatedMove(ptr) 1342 val isRVC = dt_isRVC(ptr) 1343 1344 val difftest = Module(new DifftestBasicInstrCommit) 1345 difftest.io.clock := clock 1346 difftest.io.coreid := io.hartId 1347 difftest.io.index := i.U 1348 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1349 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1350 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1351 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1352 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1353 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1354 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1355 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1356 } 1357 } 1358 1359 if (env.EnableDifftest) { 1360 for (i <- 0 until CommitWidth) { 1361 val difftest = Module(new DifftestLoadEvent) 1362 difftest.io.clock := clock 1363 difftest.io.coreid := io.hartId 1364 difftest.io.index := i.U 1365 1366 val ptr = deqPtrVec(i).value 1367 val uop = commitDebugUop(i) 1368 val exuOut = debug_exuDebug(ptr) 1369 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1370 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1371 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1372 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1373 } 1374 } 1375 1376 // Always instantiate basic difftest modules. 1377 if (env.EnableDifftest) { 1378 val dt_isXSTrap = Mem(RobSize, Bool()) 1379 for (i <- 0 until RenameWidth) { 1380 when (canEnqueue(i)) { 1381 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1382 } 1383 } 1384 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1385 val hitTrap = trapVec.reduce(_||_) 1386 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1387 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1388 val difftest = Module(new DifftestTrapEvent) 1389 difftest.io.clock := clock 1390 difftest.io.coreid := io.hartId 1391 difftest.io.valid := hitTrap 1392 difftest.io.code := trapCode 1393 difftest.io.pc := trapPC 1394 difftest.io.cycleCnt := timer 1395 difftest.io.instrCnt := instrCnt 1396 difftest.io.hasWFI := hasWFI 1397 } 1398 else if (env.AlwaysBasicDiff) { 1399 val dt_isXSTrap = Mem(RobSize, Bool()) 1400 for (i <- 0 until RenameWidth) { 1401 when (canEnqueue(i)) { 1402 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1403 } 1404 } 1405 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1406 val hitTrap = trapVec.reduce(_||_) 1407 val difftest = Module(new DifftestBasicTrapEvent) 1408 difftest.io.clock := clock 1409 difftest.io.coreid := io.hartId 1410 difftest.io.valid := hitTrap 1411 difftest.io.cycleCnt := timer 1412 difftest.io.instrCnt := instrCnt 1413 } 1414 1415 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1416 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1417 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1418 val commitLoadVec = VecInit(commitLoadValid) 1419 val commitBranchVec = VecInit(commitBranchValid) 1420 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1421 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1422 val perfEvents = Seq( 1423 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1424 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1425 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1426 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1427 ("rob_commitUop ", ifCommit(commitCnt) ), 1428 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1429 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1430 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1431 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1432 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1433 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1434 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1435 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1436 ("rob_walkCycle ", (state === s_walk) ), 1437 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1438 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1439 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1440 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1441 ) 1442 generatePerfEvent() 1443} 1444