xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision c61abc0c251b288ded38101b3c7ca47a9357e2ef)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33
34class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
35  entries
36) with HasCircularQueuePtrHelper {
37
38  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
39
40  def needFlush(redirect: Valid[Redirect]): Bool = {
41    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
42    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
43  }
44
45  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
46}
47
48object RobPtr {
49  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
50    val ptr = Wire(new RobPtr)
51    ptr.flag := f
52    ptr.value := v
53    ptr
54  }
55}
56
57class RobCSRIO(implicit p: Parameters) extends XSBundle {
58  val intrBitSet = Input(Bool())
59  val trapTarget = Input(UInt(VAddrBits.W))
60  val isXRet     = Input(Bool())
61  val wfiEvent   = Input(Bool())
62
63  val fflags     = Output(Valid(UInt(5.W)))
64  val vxsat      = Output(Valid(Bool()))
65  val dirty_fs   = Output(Bool())
66  val perfinfo   = new Bundle {
67    val retiredInstr = Output(UInt(3.W))
68  }
69
70  val vcsrFlag   = Output(Bool())
71}
72
73class RobLsqIO(implicit p: Parameters) extends XSBundle {
74  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
75  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
76  val pendingld = Output(Bool())
77  val pendingst = Output(Bool())
78  val commit = Output(Bool())
79  val pendingPtr = Output(new RobPtr)
80
81  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
82  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
83}
84
85class RobEnqIO(implicit p: Parameters) extends XSBundle {
86  val canAccept = Output(Bool())
87  val isEmpty = Output(Bool())
88  // valid vector, for robIdx gen and walk
89  val needAlloc = Vec(RenameWidth, Input(Bool()))
90  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
91  val resp = Vec(RenameWidth, Output(new RobPtr))
92}
93
94class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
95
96class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
97  val io = IO(new Bundle {
98    // for commits/flush
99    val state = Input(UInt(2.W))
100    val deq_v = Vec(CommitWidth, Input(Bool()))
101    val deq_w = Vec(CommitWidth, Input(Bool()))
102    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
103    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
104    val intrBitSetReg = Input(Bool())
105    val hasNoSpecExec = Input(Bool())
106    val interrupt_safe = Input(Bool())
107    val blockCommit = Input(Bool())
108    // output: the CommitWidth deqPtr
109    val out = Vec(CommitWidth, Output(new RobPtr))
110    val next_out = Vec(CommitWidth, Output(new RobPtr))
111  })
112
113  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
114
115  // for exceptions (flushPipe included) and interrupts:
116  // only consider the first instruction
117  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
118  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
119  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
120
121  // for normal commits: only to consider when there're no exceptions
122  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
123  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
124  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
125  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
126  // when io.intrBitSetReg or there're possible exceptions in these instructions,
127  // only one instruction is allowed to commit
128  val allowOnlyOne = commit_exception || io.intrBitSetReg
129  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
130
131  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
132  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
133
134  deqPtrVec := deqPtrVec_next
135
136  io.next_out := deqPtrVec_next
137  io.out      := deqPtrVec
138
139  when (io.state === 0.U) {
140    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
141  }
142
143}
144
145class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
146  val io = IO(new Bundle {
147    // for input redirect
148    val redirect = Input(Valid(new Redirect))
149    // for enqueue
150    val allowEnqueue = Input(Bool())
151    val hasBlockBackward = Input(Bool())
152    val enq = Vec(RenameWidth, Input(Bool()))
153    val out = Output(Vec(RenameWidth, new RobPtr))
154  })
155
156  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
157
158  // enqueue
159  val canAccept = io.allowEnqueue && !io.hasBlockBackward
160  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
161
162  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
163    when(io.redirect.valid) {
164      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
165    }.otherwise {
166      ptr := ptr + dispatchNum
167    }
168  }
169
170  io.out := enqPtrVec
171
172}
173
174class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
175  // val valid = Bool()
176  val robIdx = new RobPtr
177  val exceptionVec = ExceptionVec()
178  val flushPipe = Bool()
179  val isVset = Bool()
180  val replayInst = Bool() // redirect to that inst itself
181  val singleStep = Bool() // TODO add frontend hit beneath
182  val crossPageIPFFix = Bool()
183  val trigger = new TriggerCf
184
185//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
186//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
187  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
188  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
189  // only exceptions are allowed to writeback when enqueue
190  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
191}
192
193class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
194  val io = IO(new Bundle {
195    val redirect = Input(Valid(new Redirect))
196    val flush = Input(Bool())
197    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
198    // csr + load + store
199    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
200    val out = ValidIO(new RobExceptionInfo)
201    val state = ValidIO(new RobExceptionInfo)
202  })
203
204  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
205    assert(valid.length == bits.length)
206    assert(isPow2(valid.length))
207    if (valid.length == 1) {
208      (valid, bits)
209    } else if (valid.length == 2) {
210      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
211      for (i <- res.indices) {
212        res(i).valid := valid(i)
213        res(i).bits := bits(i)
214      }
215      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
216      (Seq(oldest.valid), Seq(oldest.bits))
217    } else {
218      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
219      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
220      getOldest(left._1 ++ right._1, left._2 ++ right._2)
221    }
222  }
223
224  val currentValid = RegInit(false.B)
225  val current = Reg(new RobExceptionInfo)
226
227  // orR the exceptionVec
228  val lastCycleFlush = RegNext(io.flush)
229  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
230  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
231
232  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
233  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
234  val csr_wb_bits = io.wb(0).bits
235  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
236  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
237  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
238  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
239
240  // s1: compare last four and current flush
241  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
242  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
243  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
244  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
245  val s1_out_bits = RegNext(compare_bits)
246  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
247
248  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
249  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
250
251  // s2: compare the input exception with the current one
252  // priorities:
253  // (1) system reset
254  // (2) current is valid: flush, remain, merge, update
255  // (3) current is not valid: s1 or enq
256  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
257  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
258  when (currentValid) {
259    when (current_flush) {
260      currentValid := Mux(s1_flush, false.B, s1_out_valid)
261    }
262    when (s1_out_valid && !s1_flush) {
263      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
264        current := s1_out_bits
265      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
266        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
267        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
268        current.replayInst := s1_out_bits.replayInst || current.replayInst
269        current.singleStep := s1_out_bits.singleStep || current.singleStep
270        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
271      }
272    }
273  }.elsewhen (s1_out_valid && !s1_flush) {
274    currentValid := true.B
275    current := s1_out_bits
276  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
277    currentValid := true.B
278    current := enq_bits
279  }
280
281  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
282  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
283  io.state.valid := currentValid
284  io.state.bits  := current
285
286}
287
288class RobFlushInfo(implicit p: Parameters) extends XSBundle {
289  val ftqIdx = new FtqPtr
290  val robIdx = new RobPtr
291  val ftqOffset = UInt(log2Up(PredictWidth).W)
292  val replayInst = Bool()
293}
294
295class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
296
297  lazy val module = new RobImp(this)(p, params)
298}
299
300class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
301  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
302
303  val io = IO(new Bundle() {
304    val hartId = Input(UInt(8.W))
305    val redirect = Input(Valid(new Redirect))
306    val enq = new RobEnqIO
307    val flushOut = ValidIO(new Redirect)
308    val exception = ValidIO(new ExceptionInfo)
309    // exu + brq
310    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
311    val commits = Output(new RobCommitIO)
312    val rabCommits = Output(new RobCommitIO)
313    val diffCommits = Output(new DiffCommitIO)
314    val isVsetFlushPipe = Output(Bool())
315    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
316    val lsq = new RobLsqIO
317    val robDeqPtr = Output(new RobPtr)
318    val csr = new RobCSRIO
319    val snpt = Input(new SnapshotPort)
320    val robFull = Output(Bool())
321    val headNotReady = Output(Bool())
322    val cpu_halt = Output(Bool())
323    val wfi_enable = Input(Bool())
324    val debug_ls = Flipped(new DebugLSIO)
325    val debugRobHead = Output(new MicroOp)
326    val debugEnqLsq = Input(new LsqEnqIO)
327    val debugHeadLsIssue = Input(Bool())
328    val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo))
329  })
330
331  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
332  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
333  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
334  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
335  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
336
337  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
338  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
339  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
340  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
341  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
342  val numExuWbPorts = exuWBs.length
343  val numStdWbPorts = stdWBs.length
344
345
346  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
347//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
348//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
349//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
350
351
352  // instvalid field
353  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
354  // writeback status
355
356  val stdWritebacked = Reg(Vec(RobSize, Bool()))
357  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
358  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
359  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
360  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
361
362  def isWritebacked(ptr: UInt): Bool = {
363    !uopNumVec(ptr).orR && stdWritebacked(ptr)
364  }
365
366  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
367
368  // data for redirect, exception, etc.
369  val flagBkup = Mem(RobSize, Bool())
370  // some instructions are not allowed to trigger interrupts
371  // They have side effects on the states of the processor before they write back
372  val interrupt_safe = Mem(RobSize, Bool())
373
374  // data for debug
375  // Warn: debug_* prefix should not exist in generated verilog.
376  val debug_microOp = Mem(RobSize, new DynInst)
377  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
378  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
379  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
380  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
381  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
382  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
383
384  // pointers
385  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
386  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
387  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
388
389  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
390  val lastWalkPtr = Reg(new RobPtr)
391  val allowEnqueue = RegInit(true.B)
392
393  val enqPtr = enqPtrVec.head
394  val deqPtr = deqPtrVec(0)
395  val walkPtr = walkPtrVec(0)
396
397  val isEmpty = enqPtr === deqPtr
398  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
399
400  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
401  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid)
402
403  val debug_lsIssue = WireDefault(debug_lsIssued)
404  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
405
406  /**
407    * states of Rob
408    */
409  val s_idle :: s_walk :: Nil = Enum(2)
410  val state = RegInit(s_idle)
411
412  /**
413    * Data Modules
414    *
415    * CommitDataModule: data from dispatch
416    * (1) read: commits/walk/exception
417    * (2) write: enqueue
418    *
419    * WritebackData: data from writeback
420    * (1) read: commits/walk/exception
421    * (2) write: write back from exe units
422    */
423  val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth))
424  val dispatchDataRead = dispatchData.io.rdata
425
426  val exceptionGen = Module(new ExceptionGen(params))
427  val exceptionDataRead = exceptionGen.io.state
428  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
429  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
430
431  io.robDeqPtr := deqPtr
432  io.debugRobHead := debug_microOp(deqPtr.value)
433
434  val rab = Module(new RenameBuffer(RabSize))
435  rab.io.redirectValid := io.redirect.valid
436  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
437    dest.bits := src.bits
438    dest.valid := src.valid && io.enq.canAccept
439  }
440
441  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
442  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) =>
443    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
444  }
445  val wbSizeSum = wbSizeSeq.reduce(_ + _)
446  rab.io.commitSize := wbSizeSum
447  rab.io.walkSize := wbSizeSum
448
449  io.rabCommits := rab.io.commits
450  io.diffCommits := rab.io.diffCommits
451
452  /**
453    * Enqueue (from dispatch)
454    */
455  // special cases
456  val hasBlockBackward = RegInit(false.B)
457  val hasWaitForward = RegInit(false.B)
458  val doingSvinval = RegInit(false.B)
459  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
460  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
461  when (isEmpty) { hasBlockBackward:= false.B }
462  // When any instruction commits, hasNoSpecExec should be set to false.B
463  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
464
465  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
466  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
467  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
468  val hasWFI = RegInit(false.B)
469  io.cpu_halt := hasWFI
470  // WFI Timeout: 2^20 = 1M cycles
471  val wfi_cycles = RegInit(0.U(20.W))
472  when (hasWFI) {
473    wfi_cycles := wfi_cycles + 1.U
474  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
475    wfi_cycles := 0.U
476  }
477  val wfi_timeout = wfi_cycles.andR
478  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
479    hasWFI := false.B
480  }
481
482  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
483  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
484  io.enq.resp      := allocatePtrVec
485  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
486  val timer = GTimer()
487  for (i <- 0 until RenameWidth) {
488    // we don't check whether io.redirect is valid here since redirect has higher priority
489    when (canEnqueue(i)) {
490      val enqUop = io.enq.req(i).bits
491      val enqIndex = allocatePtrVec(i).value
492      // store uop in data module and debug_microOp Vec
493      debug_microOp(enqIndex) := enqUop
494      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
495      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
496      debug_microOp(enqIndex).debugInfo.selectTime := timer
497      debug_microOp(enqIndex).debugInfo.issueTime := timer
498      debug_microOp(enqIndex).debugInfo.writebackTime := timer
499      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
500      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
501      debug_lsInfo(enqIndex) := DebugLsInfo.init
502      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
503      debug_lqIdxValid(enqIndex) := false.B
504      debug_lsIssued(enqIndex) := false.B
505
506      when (enqUop.blockBackward) {
507        hasBlockBackward := true.B
508      }
509      when (enqUop.waitForward) {
510        hasWaitForward := true.B
511      }
512      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
513      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
514      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
515      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
516      {
517        doingSvinval := true.B
518      }
519      // the end instruction of Svinval enqs so clear doingSvinval
520      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
521      {
522        doingSvinval := false.B
523      }
524      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
525      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
526      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
527        hasWFI := true.B
528      }
529
530      mmio(enqIndex) := false.B
531    }
532  }
533  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
534  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
535
536  when (!io.wfi_enable) {
537    hasWFI := false.B
538  }
539  // sel vsetvl's flush position
540  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
541  val vsetvlState = RegInit(vs_idle)
542
543  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
544  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
545  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
546
547  val enq0            = io.enq.req(0)
548  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
549  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
550  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
551  // for vs_idle
552  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
553  // for vs_waitVinstr
554  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
555  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
556  when(vsetvlState === vs_idle){
557    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
558    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
559    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
560  }.elsewhen(vsetvlState === vs_waitVinstr){
561    when(Cat(enqIsVInstrOrVset).orR){
562      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
563      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
564      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
565    }
566  }
567
568  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
569  when(vsetvlState === vs_idle && !io.redirect.valid){
570    when(enq0IsVsetFlush){
571      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
572    }
573  }.elsewhen(vsetvlState === vs_waitVinstr){
574    when(io.redirect.valid){
575      vsetvlState := vs_idle
576    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
577      vsetvlState := vs_waitFlush
578    }
579  }.elsewhen(vsetvlState === vs_waitFlush){
580    when(io.redirect.valid){
581      vsetvlState := vs_idle
582    }
583  }
584
585  // lqEnq
586  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
587    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
588      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
589      debug_lqIdxValid(req.bits.robIdx.value) := true.B
590    }
591  }
592
593  // lsIssue
594  when(io.debugHeadLsIssue) {
595    debug_lsIssued(deqPtr.value) := true.B
596  }
597
598  /**
599    * Writeback (from execution units)
600    */
601  for (wb <- exuWBs) {
602    when (wb.valid) {
603      val wbIdx = wb.bits.robIdx.value
604      debug_exuData(wbIdx) := wb.bits.data
605      debug_exuDebug(wbIdx) := wb.bits.debug
606      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
607      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
608      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
609      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
610
611      // debug for lqidx and sqidx
612      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
613      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
614
615      val debug_Uop = debug_microOp(wbIdx)
616      XSInfo(true.B,
617        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
618        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
619        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
620      )
621    }
622  }
623
624  val writebackNum = PopCount(exuWBs.map(_.valid))
625  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
626
627  for (i <- 0 until LoadPipelineWidth) {
628    when (RegNext(io.lsq.mmio(i))) {
629      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
630    }
631  }
632
633  /**
634    * RedirectOut: Interrupt and Exceptions
635    */
636  val deqDispatchData = dispatchDataRead(0)
637  val debug_deqUop = debug_microOp(deqPtr.value)
638
639  val intrBitSetReg = RegNext(io.csr.intrBitSet)
640  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
641  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
642  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
643    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
644  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
645  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
646  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
647
648  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
649  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
650  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
651
652  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
653
654  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
655//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
656  val needModifyFtqIdxOffset = false.B
657  io.isVsetFlushPipe := isVsetFlushPipe
658  io.vconfigPdest := rab.io.vconfigPdest
659  // io.flushOut will trigger redirect at the next cycle.
660  // Block any redirect or commit at the next cycle.
661  val lastCycleFlush = RegNext(io.flushOut.valid)
662
663  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
664  io.flushOut.bits := DontCare
665  io.flushOut.bits.isRVC := deqDispatchData.isRVC
666  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
667  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
668  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
669  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
670  io.flushOut.bits.interrupt := true.B
671  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
672  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
673  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
674  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
675
676  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
677  io.exception.valid                := RegNext(exceptionHappen)
678  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
679  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
680  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
681  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
682  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
683  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
684  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
685//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
686
687  XSDebug(io.flushOut.valid,
688    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
689    p"excp $exceptionEnable flushPipe $isFlushPipe " +
690    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
691
692
693  /**
694    * Commits (and walk)
695    * They share the same width.
696    */
697  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
698  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
699  rab.io.robWalkEnd := state === s_walk && walkFinished
700
701  require(RenameWidth <= CommitWidth)
702
703  // wiring to csr
704  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
705    val v = io.commits.commitValid(i)
706    val info = io.commits.info(i)
707    (v & info.wflags, v & info.fpWen)
708  }).unzip
709  val fflags = Wire(Valid(UInt(5.W)))
710  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
711  fflags.bits := wflags.zip(fflagsDataRead).map({
712    case (w, f) => Mux(w, f, 0.U)
713  }).reduce(_|_)
714  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
715
716  val vxsat = Wire(Valid(Bool()))
717  vxsat.valid := io.commits.isCommit && vxsat.bits
718  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
719    case (valid, vxsat) => valid & vxsat
720  }.reduce(_ | _)
721
722  // when mispredict branches writeback, stop commit in the next 2 cycles
723  // TODO: don't check all exu write back
724  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
725    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
726  ))).orR
727  val misPredBlockCounter = Reg(UInt(3.W))
728  misPredBlockCounter := Mux(misPredWb,
729    "b111".U,
730    misPredBlockCounter >> 1.U
731  )
732  val misPredBlock = misPredBlockCounter(0)
733  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
734  val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
735
736  io.commits.isWalk := state === s_walk
737  io.commits.isCommit := state === s_idle && !blockCommit
738  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
739  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
740  // store will be commited iff both sta & std have been writebacked
741  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
742  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
743  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
744  val allowOnlyOneCommit = commit_exception || intrBitSetReg
745  // for instructions that may block others, we don't allow them to commit
746  for (i <- 0 until CommitWidth) {
747    // defaults: state === s_idle and instructions commit
748    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
749    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
750    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
751    io.commits.info(i) := dispatchDataRead(i)
752    io.commits.robIdx(i) := deqPtrVec(i)
753
754    when (state === s_walk) {
755      io.commits.walkValid(i) := shouldWalkVec(i)
756      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
757        XSError(!walk_v(i), s"why not $i???\n")
758      }
759    }
760
761    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
762      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
763      debug_microOp(deqPtrVec(i).value).pc,
764      io.commits.info(i).rfWen,
765      io.commits.info(i).ldest,
766      io.commits.info(i).pdest,
767      debug_exuData(deqPtrVec(i).value),
768      fflagsDataRead(i),
769      vxsatDataRead(i)
770    )
771    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
772      debug_microOp(walkPtrVec(i).value).pc,
773      io.commits.info(i).rfWen,
774      io.commits.info(i).ldest,
775      debug_exuData(walkPtrVec(i).value)
776    )
777  }
778  if (env.EnableDifftest) {
779    io.commits.info.map(info => dontTouch(info.pc))
780  }
781
782  // sync fflags/dirty_fs/vxsat to csr
783  io.csr.fflags := RegNext(fflags)
784  io.csr.dirty_fs := RegNext(dirty_fs)
785  io.csr.vxsat := RegNext(vxsat)
786
787  // sync v csr to csr
788  // for difftest
789  if(env.AlwaysBasicDiff || env.EnableDifftest) {
790    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
791    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
792  }
793  else{
794    io.csr.vcsrFlag := false.B
795  }
796
797  // commit load/store to lsq
798  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
799  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
800  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
801  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
802  // indicate a pending load or store
803  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
804  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
805  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
806  io.lsq.pendingPtr := RegNext(deqPtr)
807
808  /**
809    * state changes
810    * (1) redirect: switch to s_walk
811    * (2) walk: when walking comes to the end, switch to s_idle
812    */
813  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
814  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
815  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
816  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
817  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
818  state := state_next
819
820  /**
821    * pointers and counters
822    */
823  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
824  deqPtrGenModule.io.state := state
825  deqPtrGenModule.io.deq_v := commit_v
826  deqPtrGenModule.io.deq_w := commit_w
827  deqPtrGenModule.io.exception_state := exceptionDataRead
828  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
829  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
830  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
831  deqPtrGenModule.io.blockCommit := blockCommit
832  deqPtrVec := deqPtrGenModule.io.out
833  val deqPtrVec_next = deqPtrGenModule.io.next_out
834
835  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
836  enqPtrGenModule.io.redirect := io.redirect
837  enqPtrGenModule.io.allowEnqueue := allowEnqueue
838  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
839  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
840  enqPtrVec := enqPtrGenModule.io.out
841
842  // next walkPtrVec:
843  // (1) redirect occurs: update according to state
844  // (2) walk: move forwards
845  val walkPtrVec_next = Mux(io.redirect.valid,
846    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
847    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
848  )
849  walkPtrVec := walkPtrVec_next
850
851  val numValidEntries = distanceBetween(enqPtr, deqPtr)
852  val commitCnt = PopCount(io.commits.commitValid)
853
854  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
855
856  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
857  when (io.redirect.valid) {
858    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
859  }
860
861
862  /**
863    * States
864    * We put all the stage bits changes here.
865
866    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
867    * All states: (1) valid; (2) writebacked; (3) flagBkup
868    */
869  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
870
871  // redirect logic writes 6 valid
872  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
873  val redirectTail = Reg(new RobPtr)
874  val redirectIdle :: redirectBusy :: Nil = Enum(2)
875  val redirectState = RegInit(redirectIdle)
876  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
877  when(redirectState === redirectBusy) {
878    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
879    redirectHeadVec zip invMask foreach {
880      case (redirectHead, inv) => when(inv) {
881        valid(redirectHead.value) := false.B
882      }
883    }
884    when(!invMask.last) {
885      redirectState := redirectIdle
886    }
887  }
888  when(io.redirect.valid) {
889    redirectState := redirectBusy
890    when(redirectState === redirectIdle) {
891      redirectTail := enqPtr
892    }
893    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
894      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
895    }
896  }
897  // enqueue logic writes 6 valid
898  for (i <- 0 until RenameWidth) {
899    when (canEnqueue(i) && !io.redirect.valid) {
900      valid(allocatePtrVec(i).value) := true.B
901    }
902  }
903  // dequeue logic writes 6 valid
904  for (i <- 0 until CommitWidth) {
905    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
906    when (commitValid) {
907      valid(commitReadAddr(i)) := false.B
908    }
909  }
910
911  // debug_inst update
912  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
913    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
914    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
915  }
916  for (i <- 0 until exuParameters.LduCnt) {
917    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
918    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
919  }
920
921  // status field: writebacked
922  // enqueue logic set 6 writebacked to false
923  for (i <- 0 until RenameWidth) {
924    when (canEnqueue(i)) {
925      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
926      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
927      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
928      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
929      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
930      store_data_writebacked(allocatePtrVec(i).value) := !isStu
931    }
932  }
933  when (exceptionGen.io.out.valid) {
934    val wbIdx = exceptionGen.io.out.bits.robIdx.value
935    writebacked(wbIdx) := true.B
936    store_data_writebacked(wbIdx) := true.B
937  }
938  // writeback logic set numWbPorts writebacked to true
939  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
940  blockWbSeq.map(_ := false.B)
941  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
942    when(wb.valid) {
943      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
944      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
945      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
946      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
947      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
948    }
949  }
950
951  // if the first uop of an instruction is valid , write writebackedCounter
952  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
953  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
954  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
955  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
956  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
957  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
958
959  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
960    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
961  })
962  val enqWbSizeSeq = io.enq.req.map { req =>
963    val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR
964    val enqHasTriggerHit = req.bits.trigger.getHitFrontend
965    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
966      Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U))
967  }
968  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
969    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
970    addend.reduce(_ +& _)
971  }
972  val fflags_wb = fflagsPorts
973  val vxsat_wb = vxsatPorts
974  for(i <- 0 until RobSize){
975
976    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
977    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
978    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
979    val instCanEnqFlag = Cat(instCanEnqSeq).orR
980
981    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
982
983    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
984    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
985    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
986
987    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
988    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
989    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
990    val wbCnt = PopCount(canWbNoBlockSeq)
991    when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) {
992      // exception flush
993      uopNumVec(i) := 0.U
994      stdWritebacked(i) := true.B
995    }.elsewhen(!valid(i) && instCanEnqFlag) {
996      // enq set num of uops
997      uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum)
998      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
999    }.elsewhen(valid(i)) {
1000      // update by writing back
1001      uopNumVec(i) := uopNumVec(i) - wbCnt
1002      when (canStdWbSeq.asUInt.orR) {
1003        stdWritebacked(i) := true.B
1004      }
1005    }.otherwise {
1006      uopNumVec(i) := 0.U
1007    }
1008
1009    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1010    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1011    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1012
1013    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1014    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1015    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1016  }
1017
1018  // flagBkup
1019  // enqueue logic set 6 flagBkup at most
1020  for (i <- 0 until RenameWidth) {
1021    when (canEnqueue(i)) {
1022      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1023    }
1024  }
1025
1026  // interrupt_safe
1027  for (i <- 0 until RenameWidth) {
1028    // We RegNext the updates for better timing.
1029    // Note that instructions won't change the system's states in this cycle.
1030    when (RegNext(canEnqueue(i))) {
1031      // For now, we allow non-load-store instructions to trigger interrupts
1032      // For MMIO instructions, they should not trigger interrupts since they may
1033      // be sent to lower level before it writes back.
1034      // However, we cannot determine whether a load/store instruction is MMIO.
1035      // Thus, we don't allow load/store instructions to trigger an interrupt.
1036      // TODO: support non-MMIO load-store instructions to trigger interrupts
1037      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1038      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1039    }
1040  }
1041
1042  /**
1043    * read and write of data modules
1044    */
1045  val commitReadAddr_next = Mux(state_next === s_idle,
1046    VecInit(deqPtrVec_next.map(_.value)),
1047    VecInit(walkPtrVec_next.map(_.value))
1048  )
1049  dispatchData.io.wen := canEnqueue
1050  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1051  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1052    wdata.ldest := req.ldest
1053    wdata.rfWen := req.rfWen
1054    wdata.fpWen := req.fpWen
1055    wdata.vecWen := req.vecWen
1056    wdata.wflags := req.fpu.wflags
1057    wdata.commitType := req.commitType
1058    wdata.pdest := req.pdest
1059    wdata.ftqIdx := req.ftqPtr
1060    wdata.ftqOffset := req.ftqOffset
1061    wdata.isMove := req.eliminatedMove
1062    wdata.isRVC := req.cf.pd.isRVC
1063    wdata.pc := req.pc
1064    wdata.vtype := req.vpu.vtype
1065    wdata.isVset := req.isVset
1066  }
1067  dispatchData.io.raddr := commitReadAddr_next
1068
1069  exceptionGen.io.redirect <> io.redirect
1070  exceptionGen.io.flush := io.flushOut.valid
1071
1072  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1073  for (i <- 0 until RenameWidth) {
1074    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1075    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1076    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1077    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1078    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1079    exceptionGen.io.enq(i).bits.replayInst := false.B
1080    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1081    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1082    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1083    exceptionGen.io.enq(i).bits.trigger.clear()
1084    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1085  }
1086
1087  println(s"ExceptionGen:")
1088  println(s"num of exceptions: ${params.numException}")
1089  require(exceptionWBs.length == exceptionGen.io.wb.length,
1090    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1091      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1092  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1093    exc_wb.valid                := wb.valid
1094    exc_wb.bits.robIdx          := wb.bits.robIdx
1095    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1096    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1097    exc_wb.bits.isVset          := false.B
1098    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1099    exc_wb.bits.singleStep      := false.B
1100    exc_wb.bits.crossPageIPFFix := false.B
1101    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1102//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1103//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1104//      s"replayInst ${configs.exists(_.replayInst)}")
1105  }
1106
1107  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1108  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1109
1110  val instrCntReg = RegInit(0.U(64.W))
1111  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1112  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1113  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1114  val instrCnt = instrCntReg + retireCounter
1115  instrCntReg := instrCnt
1116  io.csr.perfinfo.retiredInstr := retireCounter
1117  io.robFull := !allowEnqueue
1118  io.headNotReady := commit_v.head && !commit_w.head
1119
1120  /**
1121    * debug info
1122    */
1123  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1124  XSDebug("")
1125  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1126  for(i <- 0 until RobSize){
1127    XSDebug(false, !valid(i), "-")
1128    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1129    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1130  }
1131  XSDebug(false, true.B, "\n")
1132
1133  for(i <- 0 until RobSize) {
1134    if(i % 4 == 0) XSDebug("")
1135    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1136    XSDebug(false, !valid(i), "- ")
1137    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1138    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1139    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1140  }
1141
1142  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1143  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1144
1145  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1146  XSPerfAccumulate("clock_cycle", 1.U)
1147  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1148  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1149  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1150  val commitIsMove = commitDebugUop.map(_.isMove)
1151  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1152  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1153  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1154  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1155  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1156  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1157  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1158  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1159  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1160  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1161  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1162  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1163  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1164  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1165  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1166  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1167  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1168  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1169  XSPerfAccumulate("walkCycle", state === s_walk)
1170  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1171  val deqUopCommitType = io.commits.info(0).commitType
1172  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1173  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1174  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1175  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1176  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1177  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1178  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1179  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1180  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1181  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1182  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1183  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1184  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1185    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1186  }
1187  for (fuType <- FuType.functionNameMap.keys) {
1188    val fuName = FuType.functionNameMap(fuType)
1189    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1190    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1191    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1192    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1193    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1194    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1195    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1196    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1197    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1198    if (fuType == FuType.fmac) {
1199      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1200      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1201      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1202      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1203    }
1204  }
1205
1206  val sourceVaddr = Wire(Valid(UInt(VAddrBits.W)))
1207  sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1208  sourceVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1209  val sourcePaddr = Wire(Valid(UInt(PAddrBits.W)))
1210  sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1211  sourcePaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1212  val sourceLqIdx = Wire(Valid(new LqPtr))
1213  sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1214  sourceLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1215  val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value))
1216  ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1217  ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1218  ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true)
1219  ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true)
1220  // dummy sink
1221  ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf)
1222
1223  /**
1224    * DataBase info:
1225    * log trigger is at writeback valid
1226    * */
1227  if(!env.FPGAPlatform){
1228    val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString))
1229    val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString
1230    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1231    val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry)
1232    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1233    for (wb <- exuWriteback) {
1234      when(wb.valid) {
1235        val debug_instData = Wire(new InstInfoEntry)
1236        val idx = wb.bits.uop.robIdx.value
1237        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1238        debug_instData.robIdx := idx
1239        debug_instData.instType := wb.bits.uop.ctrl.fuType
1240        debug_instData.ivaddr := wb.bits.uop.cf.pc
1241        debug_instData.dvaddr := wb.bits.debug.vaddr
1242        debug_instData.dpaddr := wb.bits.debug.paddr
1243        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1244        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1245        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1246        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1247        debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec)
1248        debug_instData.lsInfo := debug_lsInfo(idx)
1249        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1250        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1251        debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime
1252        debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime
1253        debug_instTable.log(
1254          data = debug_instData,
1255          en = wb.valid,
1256          site = instSiteName,
1257          clock = clock,
1258          reset = reset
1259        )
1260      }
1261    }
1262  }
1263
1264
1265  //difftest signals
1266  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1267
1268  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1269  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1270
1271  for(i <- 0 until CommitWidth) {
1272    val idx = deqPtrVec(i).value
1273    wdata(i) := debug_exuData(idx)
1274    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1275  }
1276
1277  if (env.EnableDifftest) {
1278    for (i <- 0 until CommitWidth) {
1279      val difftest = Module(new DifftestInstrCommit)
1280      // assgin default value
1281      difftest.io := DontCare
1282
1283      difftest.io.clock    := clock
1284      difftest.io.coreid   := io.hartId
1285      difftest.io.index    := i.U
1286
1287      val ptr = deqPtrVec(i).value
1288      val uop = commitDebugUop(i)
1289      val exuOut = debug_exuDebug(ptr)
1290      val exuData = debug_exuData(ptr)
1291      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1292      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1293      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1294      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1295      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1296      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1297      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1298      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1299      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1300      // when committing an eliminated move instruction,
1301      // we must make sure that skip is properly set to false (output from EXU is random value)
1302      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1303      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1304      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1305      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1306      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1307      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1308      // // runahead commit hint
1309      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1310      // runahead_commit.io.clock := clock
1311      // runahead_commit.io.coreid := io.hartId
1312      // runahead_commit.io.index := i.U
1313      // runahead_commit.io.valid := difftest.io.valid &&
1314      //   (commitBranchValid(i) || commitIsStore(i))
1315      // // TODO: is branch or store
1316      // runahead_commit.io.pc    := difftest.io.pc
1317    }
1318  }
1319  else if (env.AlwaysBasicDiff) {
1320    // These are the structures used by difftest only and should be optimized after synthesis.
1321    val dt_eliminatedMove = Mem(RobSize, Bool())
1322    val dt_isRVC = Mem(RobSize, Bool())
1323    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1324    for (i <- 0 until RenameWidth) {
1325      when (canEnqueue(i)) {
1326        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1327        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1328      }
1329    }
1330    for (wb <- exuWBs) {
1331      when (wb.valid) {
1332        val wbIdx = wb.bits.robIdx.value
1333        dt_exuDebug(wbIdx) := wb.bits.debug
1334      }
1335    }
1336    // Always instantiate basic difftest modules.
1337    for (i <- 0 until CommitWidth) {
1338      val commitInfo = io.commits.info(i)
1339      val ptr = deqPtrVec(i).value
1340      val exuOut = dt_exuDebug(ptr)
1341      val eliminatedMove = dt_eliminatedMove(ptr)
1342      val isRVC = dt_isRVC(ptr)
1343
1344      val difftest = Module(new DifftestBasicInstrCommit)
1345      difftest.io.clock   := clock
1346      difftest.io.coreid  := io.hartId
1347      difftest.io.index   := i.U
1348      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1349      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1350      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1351      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1352      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1353      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1354      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1355      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1356    }
1357  }
1358
1359  if (env.EnableDifftest) {
1360    for (i <- 0 until CommitWidth) {
1361      val difftest = Module(new DifftestLoadEvent)
1362      difftest.io.clock  := clock
1363      difftest.io.coreid := io.hartId
1364      difftest.io.index  := i.U
1365
1366      val ptr = deqPtrVec(i).value
1367      val uop = commitDebugUop(i)
1368      val exuOut = debug_exuDebug(ptr)
1369      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1370      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1371      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1372      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1373    }
1374  }
1375
1376  // Always instantiate basic difftest modules.
1377  if (env.EnableDifftest) {
1378    val dt_isXSTrap = Mem(RobSize, Bool())
1379    for (i <- 0 until RenameWidth) {
1380      when (canEnqueue(i)) {
1381        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1382      }
1383    }
1384    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1385    val hitTrap = trapVec.reduce(_||_)
1386    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1387    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1388    val difftest = Module(new DifftestTrapEvent)
1389    difftest.io.clock    := clock
1390    difftest.io.coreid   := io.hartId
1391    difftest.io.valid    := hitTrap
1392    difftest.io.code     := trapCode
1393    difftest.io.pc       := trapPC
1394    difftest.io.cycleCnt := timer
1395    difftest.io.instrCnt := instrCnt
1396    difftest.io.hasWFI   := hasWFI
1397  }
1398  else if (env.AlwaysBasicDiff) {
1399    val dt_isXSTrap = Mem(RobSize, Bool())
1400    for (i <- 0 until RenameWidth) {
1401      when (canEnqueue(i)) {
1402        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1403      }
1404    }
1405    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1406    val hitTrap = trapVec.reduce(_||_)
1407    val difftest = Module(new DifftestBasicTrapEvent)
1408    difftest.io.clock    := clock
1409    difftest.io.coreid   := io.hartId
1410    difftest.io.valid    := hitTrap
1411    difftest.io.cycleCnt := timer
1412    difftest.io.instrCnt := instrCnt
1413  }
1414
1415  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1416  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1417  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1418  val commitLoadVec = VecInit(commitLoadValid)
1419  val commitBranchVec = VecInit(commitBranchValid)
1420  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1421  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1422  val perfEvents = Seq(
1423    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1424    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1425    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1426    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1427    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1428    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1429    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1430    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1431    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1432    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1433    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1434    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1435    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1436    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1437    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1438    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1439    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1440    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1441  )
1442  generatePerfEvent()
1443}
1444