xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision d91483a658064c7276ee0181b0c527a3e2a7d2ee)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33
34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
35  val ssid = UInt(SSIDWidth.W)
36  val waitAllStore = Bool()
37}
38
39class DebugLsInfo(implicit p: Parameters) extends XSBundle{
40  val s1 = new Bundle{
41    val isTlbFirstMiss = Bool() // in s1
42    val isBankConflict = Bool() // in s1
43    val isLoadToLoadForward = Bool()
44    val isReplayFast = Bool()
45  }
46  val s2 = new Bundle{
47    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
48    val isForwardFail = Bool() // in s2
49    val isReplaySlow = Bool()
50    val isLoadReplayTLBMiss = Bool()
51    val isLoadReplayCacheMiss = Bool()
52  }
53  val replayCnt = UInt(XLEN.W)
54
55  def s1SignalEnable(ena: DebugLsInfo) = {
56    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
57    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
58    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
59    when(ena.s1.isReplayFast) {
60      s1.isReplayFast := true.B
61      replayCnt := replayCnt + 1.U
62    }
63  }
64
65  def s2SignalEnable(ena: DebugLsInfo) = {
66    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
67    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
68    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
69    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
70    when(ena.s2.isReplaySlow) {
71      s2.isReplaySlow := true.B
72      replayCnt := replayCnt + 1.U
73    }
74  }
75}
76
77object DebugLsInfo{
78  def init(implicit p: Parameters): DebugLsInfo = {
79    val lsInfo = Wire(new DebugLsInfo)
80    lsInfo.s1.isTlbFirstMiss := false.B
81    lsInfo.s1.isBankConflict := false.B
82    lsInfo.s1.isLoadToLoadForward := false.B
83    lsInfo.s1.isReplayFast := false.B
84    lsInfo.s2.isDcacheFirstMiss := false.B
85    lsInfo.s2.isForwardFail := false.B
86    lsInfo.s2.isReplaySlow := false.B
87    lsInfo.s2.isLoadReplayTLBMiss := false.B
88    lsInfo.s2.isLoadReplayCacheMiss := false.B
89    lsInfo.replayCnt := 0.U
90    lsInfo
91  }
92}
93
94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
95  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
96  val s1_robIdx = UInt(log2Ceil(RobSize).W)
97  val s2_robIdx = UInt(log2Ceil(RobSize).W)
98}
99
100class DebugLSIO(implicit p: Parameters) extends XSBundle {
101  val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle))
102}
103
104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
105  entries
106) with HasCircularQueuePtrHelper {
107
108  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
109
110  def needFlush(redirect: Valid[Redirect]): Bool = {
111    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
112    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
113  }
114
115  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
116}
117
118object RobPtr {
119  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
120    val ptr = Wire(new RobPtr)
121    ptr.flag := f
122    ptr.value := v
123    ptr
124  }
125}
126
127class RobCSRIO(implicit p: Parameters) extends XSBundle {
128  val intrBitSet = Input(Bool())
129  val trapTarget = Input(UInt(VAddrBits.W))
130  val isXRet     = Input(Bool())
131  val wfiEvent   = Input(Bool())
132
133  val fflags     = Output(Valid(UInt(5.W)))
134  val dirty_fs   = Output(Bool())
135  val perfinfo   = new Bundle {
136    val retiredInstr = Output(UInt(3.W))
137  }
138
139  val vcsrFlag   = Output(Bool())
140}
141
142class RobLsqIO(implicit p: Parameters) extends XSBundle {
143  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
144  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
145  val pendingld = Output(Bool())
146  val pendingst = Output(Bool())
147  val commit = Output(Bool())
148}
149
150class RobEnqIO(implicit p: Parameters) extends XSBundle {
151  val canAccept = Output(Bool())
152  val isEmpty = Output(Bool())
153  // valid vector, for robIdx gen and walk
154  val needAlloc = Vec(RenameWidth, Input(Bool()))
155  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
156  val resp = Vec(RenameWidth, Output(new RobPtr))
157}
158
159class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
160
161class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
162  val io = IO(new Bundle {
163    // for commits/flush
164    val state = Input(UInt(2.W))
165    val deq_v = Vec(CommitWidth, Input(Bool()))
166    val deq_w = Vec(CommitWidth, Input(Bool()))
167    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
168    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
169    val intrBitSetReg = Input(Bool())
170    val hasNoSpecExec = Input(Bool())
171    val interrupt_safe = Input(Bool())
172    val blockCommit = Input(Bool())
173    // output: the CommitWidth deqPtr
174    val out = Vec(CommitWidth, Output(new RobPtr))
175    val next_out = Vec(CommitWidth, Output(new RobPtr))
176  })
177
178  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
179
180  // for exceptions (flushPipe included) and interrupts:
181  // only consider the first instruction
182  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
183  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
184  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
185
186  // for normal commits: only to consider when there're no exceptions
187  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
188  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
189  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
190  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
191  // when io.intrBitSetReg or there're possible exceptions in these instructions,
192  // only one instruction is allowed to commit
193  val allowOnlyOne = commit_exception || io.intrBitSetReg
194  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
195
196  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
197  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
198
199  deqPtrVec := deqPtrVec_next
200
201  io.next_out := deqPtrVec_next
202  io.out      := deqPtrVec
203
204  when (io.state === 0.U) {
205    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
206  }
207
208}
209
210class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
211  val io = IO(new Bundle {
212    // for input redirect
213    val redirect = Input(Valid(new Redirect))
214    // for enqueue
215    val allowEnqueue = Input(Bool())
216    val hasBlockBackward = Input(Bool())
217    val enq = Vec(RenameWidth, Input(Bool()))
218    val out = Output(Vec(RenameWidth, new RobPtr))
219  })
220
221  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
222
223  // enqueue
224  val canAccept = io.allowEnqueue && !io.hasBlockBackward
225  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
226
227  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
228    when(io.redirect.valid) {
229      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
230    }.otherwise {
231      ptr := ptr + dispatchNum
232    }
233  }
234
235  io.out := enqPtrVec
236
237}
238
239class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
240  // val valid = Bool()
241  val robIdx = new RobPtr
242  val exceptionVec = ExceptionVec()
243  val flushPipe = Bool()
244  val isVset = Bool()
245  val replayInst = Bool() // redirect to that inst itself
246  val singleStep = Bool() // TODO add frontend hit beneath
247  val crossPageIPFFix = Bool()
248  val trigger = new TriggerCf
249
250//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
251//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
252  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
253  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
254  // only exceptions are allowed to writeback when enqueue
255  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
256}
257
258class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
259  val io = IO(new Bundle {
260    val redirect = Input(Valid(new Redirect))
261    val flush = Input(Bool())
262    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
263    // csr + load + store
264    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
265    val out = ValidIO(new RobExceptionInfo)
266    val state = ValidIO(new RobExceptionInfo)
267  })
268
269  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
270    assert(valid.length == bits.length)
271    assert(isPow2(valid.length))
272    if (valid.length == 1) {
273      (valid, bits)
274    } else if (valid.length == 2) {
275      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
276      for (i <- res.indices) {
277        res(i).valid := valid(i)
278        res(i).bits := bits(i)
279      }
280      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
281      (Seq(oldest.valid), Seq(oldest.bits))
282    } else {
283      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
284      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
285      getOldest(left._1 ++ right._1, left._2 ++ right._2)
286    }
287  }
288
289  val currentValid = RegInit(false.B)
290  val current = Reg(new RobExceptionInfo)
291
292  // orR the exceptionVec
293  val lastCycleFlush = RegNext(io.flush)
294  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
295  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
296
297  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
298  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
299  val csr_wb_bits = io.wb(0).bits
300  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
301  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
302  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
303  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
304
305  // s1: compare last four and current flush
306  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
307  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
308  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
309  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
310  val s1_out_bits = RegNext(compare_bits)
311  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
312
313  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
314  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
315
316  // s2: compare the input exception with the current one
317  // priorities:
318  // (1) system reset
319  // (2) current is valid: flush, remain, merge, update
320  // (3) current is not valid: s1 or enq
321  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
322  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
323  when (currentValid) {
324    when (current_flush) {
325      currentValid := Mux(s1_flush, false.B, s1_out_valid)
326    }
327    when (s1_out_valid && !s1_flush) {
328      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
329        current := s1_out_bits
330      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
331        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
332        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
333        current.replayInst := s1_out_bits.replayInst || current.replayInst
334        current.singleStep := s1_out_bits.singleStep || current.singleStep
335        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
336      }
337    }
338  }.elsewhen (s1_out_valid && !s1_flush) {
339    currentValid := true.B
340    current := s1_out_bits
341  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
342    currentValid := true.B
343    current := enq_bits
344  }
345
346  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
347  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
348  io.state.valid := currentValid
349  io.state.bits  := current
350
351}
352
353class RobFlushInfo(implicit p: Parameters) extends XSBundle {
354  val ftqIdx = new FtqPtr
355  val robIdx = new RobPtr
356  val ftqOffset = UInt(log2Up(PredictWidth).W)
357  val replayInst = Bool()
358}
359
360class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
361
362  lazy val module = new RobImp(this)(p, params)
363  //
364  //  override def generateWritebackIO(
365  //    thisMod: Option[HasWritebackSource] = None,
366  //    thisModImp: Option[HasWritebackSourceImp] = None
367  //  ): Unit = {
368  //    val sources = writebackSinksImp(thisMod, thisModImp)
369  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
370  //  }
371  //}
372}
373
374class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
375  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
376
377  val io = IO(new Bundle() {
378    val hartId = Input(UInt(8.W))
379    val redirect = Input(Valid(new Redirect))
380    val enq = new RobEnqIO
381    val flushOut = ValidIO(new Redirect)
382    val exception = ValidIO(new ExceptionInfo)
383    // exu + brq
384    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
385    val commits = Output(new RobCommitIO)
386    val lsq = new RobLsqIO
387    val robDeqPtr = Output(new RobPtr)
388    val csr = new RobCSRIO
389    val robFull = Output(Bool())
390    val cpu_halt = Output(Bool())
391    val wfi_enable = Input(Bool())
392  })
393
394  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
395  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
396  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
397  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
398  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
399
400  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
401  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
402  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
403  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
404  val numExuWbPorts = exuWBs.length
405  val numStdWbPorts = stdWBs.length
406
407
408  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
409//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
410//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
411//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
412
413
414  // instvalid field
415  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
416  // writeback status
417  val writebacked = Mem(RobSize, Bool())
418  val store_data_writebacked = Mem(RobSize, Bool())
419  // data for redirect, exception, etc.
420  val flagBkup = Mem(RobSize, Bool())
421  // some instructions are not allowed to trigger interrupts
422  // They have side effects on the states of the processor before they write back
423  val interrupt_safe = Mem(RobSize, Bool())
424
425  // data for debug
426  // Warn: debug_* prefix should not exist in generated verilog.
427  val debug_microOp = Mem(RobSize, new DynInst)
428  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
429  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
430
431  // pointers
432  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
433  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
434  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
435
436  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
437  val allowEnqueue = RegInit(true.B)
438
439  val enqPtr = enqPtrVec.head
440  val deqPtr = deqPtrVec(0)
441  val walkPtr = walkPtrVec(0)
442
443  val isEmpty = enqPtr === deqPtr
444  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
445
446  /**
447    * states of Rob
448    */
449  val s_idle :: s_walk :: Nil = Enum(2)
450  val state = RegInit(s_idle)
451
452  /**
453    * Data Modules
454    *
455    * CommitDataModule: data from dispatch
456    * (1) read: commits/walk/exception
457    * (2) write: enqueue
458    *
459    * WritebackData: data from writeback
460    * (1) read: commits/walk/exception
461    * (2) write: write back from exe units
462    */
463  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
464  val dispatchDataRead = dispatchData.io.rdata
465
466  val exceptionGen = Module(new ExceptionGen(params))
467  val exceptionDataRead = exceptionGen.io.state
468  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
469
470  io.robDeqPtr := deqPtr
471
472  /**
473    * Enqueue (from dispatch)
474    */
475  // special cases
476  val hasBlockBackward = RegInit(false.B)
477  val hasWaitForward = RegInit(false.B)
478  val doingSvinval = RegInit(false.B)
479  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
480  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
481  when (isEmpty) { hasBlockBackward:= false.B }
482  // When any instruction commits, hasNoSpecExec should be set to false.B
483  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
484
485  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
486  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
487  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
488  val hasWFI = RegInit(false.B)
489  io.cpu_halt := hasWFI
490  // WFI Timeout: 2^20 = 1M cycles
491  val wfi_cycles = RegInit(0.U(20.W))
492  when (hasWFI) {
493    wfi_cycles := wfi_cycles + 1.U
494  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
495    wfi_cycles := 0.U
496  }
497  val wfi_timeout = wfi_cycles.andR
498  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
499    hasWFI := false.B
500  }
501
502  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
503  io.enq.canAccept := allowEnqueue && !hasBlockBackward
504  io.enq.resp      := allocatePtrVec
505  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
506  val timer = GTimer()
507  for (i <- 0 until RenameWidth) {
508    // we don't check whether io.redirect is valid here since redirect has higher priority
509    when (canEnqueue(i)) {
510      val enqUop = io.enq.req(i).bits
511      val enqIndex = allocatePtrVec(i).value
512      // store uop in data module and debug_microOp Vec
513      debug_microOp(enqIndex) := enqUop
514      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
515      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
516      debug_microOp(enqIndex).debugInfo.selectTime := timer
517      debug_microOp(enqIndex).debugInfo.issueTime := timer
518      debug_microOp(enqIndex).debugInfo.writebackTime := timer
519      when (enqUop.blockBackward) {
520        hasBlockBackward := true.B
521      }
522      when (enqUop.waitForward) {
523        hasWaitForward := true.B
524      }
525      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
526      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
527      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
528      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
529      {
530        doingSvinval := true.B
531      }
532      // the end instruction of Svinval enqs so clear doingSvinval
533      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
534      {
535        doingSvinval := false.B
536      }
537      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
538      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
539      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
540        hasWFI := true.B
541      }
542    }
543  }
544  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
545  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
546
547  when (!io.wfi_enable) {
548    hasWFI := false.B
549  }
550  // sel vsetvl's flush position
551  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
552  val vsetvlState = RegInit(vs_idle)
553
554  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
555  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
556  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
557
558  val enq0            = io.enq.req(0)
559  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
560  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
561  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
562  // for vs_idle
563  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
564  // for vs_waitVinstr
565  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
566  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
567  when(vsetvlState === vs_idle){
568    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
569    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
570    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
571  }.elsewhen(vsetvlState === vs_waitVinstr){
572    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
573    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
574    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
575  }
576
577  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
578  when(vsetvlState === vs_idle){
579    when(enq0IsVsetFlush){
580      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
581    }
582  }.elsewhen(vsetvlState === vs_waitVinstr){
583    when(io.redirect.valid){
584      vsetvlState := vs_idle
585    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
586      vsetvlState := vs_waitFlush
587    }
588  }.elsewhen(vsetvlState === vs_waitFlush){
589    when(io.redirect.valid){
590      vsetvlState := vs_idle
591    }
592  }
593
594  /**
595    * Writeback (from execution units)
596    */
597  for (wb <- exuWBs) {
598    when (wb.valid) {
599      val wbIdx = wb.bits.robIdx.value
600      debug_exuData(wbIdx) := wb.bits.data
601      debug_exuDebug(wbIdx) := wb.bits.debug
602      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
603      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
604      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
605      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
606
607      // debug for lqidx and sqidx
608      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
609      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
610
611      val debug_Uop = debug_microOp(wbIdx)
612      XSInfo(true.B,
613        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
614        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
615        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
616      )
617    }
618  }
619
620  val writebackNum = PopCount(exuWBs.map(_.valid))
621  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
622
623
624  /**
625    * RedirectOut: Interrupt and Exceptions
626    */
627  val deqDispatchData = dispatchDataRead(0)
628  val debug_deqUop = debug_microOp(deqPtr.value)
629
630  val intrBitSetReg = RegNext(io.csr.intrBitSet)
631  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
632  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
633  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
634    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
635  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
636  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
637  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
638
639  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
640  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
641  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
642
643  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
644
645  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
646  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
647
648  // io.flushOut will trigger redirect at the next cycle.
649  // Block any redirect or commit at the next cycle.
650  val lastCycleFlush = RegNext(io.flushOut.valid)
651
652  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
653  io.flushOut.bits := DontCare
654  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
655  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
656  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
657  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
658  io.flushOut.bits.interrupt := true.B
659  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
660  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
661  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
662  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
663
664  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
665  io.exception.valid                := RegNext(exceptionHappen)
666  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
667  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
668  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
669  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
670  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
671  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
672  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
673//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
674
675  XSDebug(io.flushOut.valid,
676    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
677    p"excp $exceptionEnable flushPipe $isFlushPipe " +
678    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
679
680
681  /**
682    * Commits (and walk)
683    * They share the same width.
684    */
685  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
686  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
687  val walkFinished = walkCounter <= CommitWidth.U
688
689  require(RenameWidth <= CommitWidth)
690
691  // wiring to csr
692  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
693    val v = io.commits.commitValid(i)
694    val info = io.commits.info(i)
695    (v & info.wflags, v & info.fpWen)
696  }).unzip
697  val fflags = Wire(Valid(UInt(5.W)))
698  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
699  fflags.bits := wflags.zip(fflagsDataRead).map({
700    case (w, f) => Mux(w, f, 0.U)
701  }).reduce(_|_)
702  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
703
704  // when mispredict branches writeback, stop commit in the next 2 cycles
705  // TODO: don't check all exu write back
706  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
707    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
708  ))).orR
709  val misPredBlockCounter = Reg(UInt(3.W))
710  misPredBlockCounter := Mux(misPredWb,
711    "b111".U,
712    misPredBlockCounter >> 1.U
713  )
714  val misPredBlock = misPredBlockCounter(0)
715  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
716
717  io.commits.isWalk := state === s_walk
718  io.commits.isCommit := state === s_idle && !blockCommit
719  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
720  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
721  // store will be commited iff both sta & std have been writebacked
722  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
723  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
724  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
725  val allowOnlyOneCommit = commit_exception || intrBitSetReg
726  // for instructions that may block others, we don't allow them to commit
727  for (i <- 0 until CommitWidth) {
728    // defaults: state === s_idle and instructions commit
729    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
730    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
731    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
732    io.commits.info(i)  := dispatchDataRead(i)
733
734    when (state === s_walk) {
735      io.commits.walkValid(i) := shouldWalkVec(i)
736      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
737        XSError(!walk_v(i), s"why not $i???\n")
738      }
739    }
740
741    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
742      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
743      debug_microOp(deqPtrVec(i).value).pc,
744      io.commits.info(i).rfWen,
745      io.commits.info(i).ldest,
746      io.commits.info(i).pdest,
747      io.commits.info(i).old_pdest,
748      debug_exuData(deqPtrVec(i).value),
749      fflagsDataRead(i)
750    )
751    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
752      debug_microOp(walkPtrVec(i).value).pc,
753      io.commits.info(i).rfWen,
754      io.commits.info(i).ldest,
755      debug_exuData(walkPtrVec(i).value)
756    )
757  }
758  if (env.EnableDifftest) {
759    io.commits.info.map(info => dontTouch(info.pc))
760  }
761
762  // sync fflags/dirty_fs to csr
763  io.csr.fflags := RegNext(fflags)
764  io.csr.dirty_fs := RegNext(dirty_fs)
765
766  // sync v csr to csr
767//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
768
769  // commit load/store to lsq
770  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
771  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
772  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
773  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
774  // indicate a pending load or store
775  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
776  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
777  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
778
779  /**
780    * state changes
781    * (1) redirect: switch to s_walk
782    * (2) walk: when walking comes to the end, switch to s_idle
783    */
784  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
785  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
786  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
787  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
788  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
789  state := state_next
790
791  /**
792    * pointers and counters
793    */
794  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
795  deqPtrGenModule.io.state := state
796  deqPtrGenModule.io.deq_v := commit_v
797  deqPtrGenModule.io.deq_w := commit_w
798  deqPtrGenModule.io.exception_state := exceptionDataRead
799  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
800  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
801  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
802  deqPtrGenModule.io.blockCommit := blockCommit
803  deqPtrVec := deqPtrGenModule.io.out
804  val deqPtrVec_next = deqPtrGenModule.io.next_out
805
806  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
807  enqPtrGenModule.io.redirect := io.redirect
808  enqPtrGenModule.io.allowEnqueue := allowEnqueue
809  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
810  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
811  enqPtrVec := enqPtrGenModule.io.out
812
813  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
814  // next walkPtrVec:
815  // (1) redirect occurs: update according to state
816  // (2) walk: move forwards
817  val walkPtrVec_next = Mux(io.redirect.valid,
818    deqPtrVec_next,
819    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
820  )
821  walkPtrVec := walkPtrVec_next
822
823  val numValidEntries = distanceBetween(enqPtr, deqPtr)
824  val isLastUopVec = io.commits.info.map(_.lastUop)
825  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
826
827  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
828
829  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
830  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
831  when (io.redirect.valid) {
832    // full condition:
833    // +& is used here because:
834    // When rob is full and the tail instruction causes a misprediction,
835    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
836    // is RobSize - 1.
837    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
838    // Previously we use `+` to count the walk distance and it causes overflows
839    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
840    // The width of walkCounter also needs to be changed.
841    // empty condition:
842    // When the last instruction in ROB commits and causes a flush, a redirect
843    // will be raised later. In such circumstances, the redirect robIdx is before
844    // the deqPtrVec_next(0) and will cause underflow.
845    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
846                       redirectWalkDistance +& !io.redirect.bits.flushItself())
847  }.elsewhen (state === s_walk) {
848    walkCounter := walkCounter - thisCycleWalkCount
849    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
850  }
851
852
853  /**
854    * States
855    * We put all the stage bits changes here.
856
857    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
858    * All states: (1) valid; (2) writebacked; (3) flagBkup
859    */
860  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
861
862  // redirect logic writes 6 valid
863  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
864  val redirectTail = Reg(new RobPtr)
865  val redirectIdle :: redirectBusy :: Nil = Enum(2)
866  val redirectState = RegInit(redirectIdle)
867  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
868  when(redirectState === redirectBusy) {
869    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
870    redirectHeadVec zip invMask foreach {
871      case (redirectHead, inv) => when(inv) {
872        valid(redirectHead.value) := false.B
873      }
874    }
875    when(!invMask.last) {
876      redirectState := redirectIdle
877    }
878  }
879  when(io.redirect.valid) {
880    redirectState := redirectBusy
881    when(redirectState === redirectIdle) {
882      redirectTail := enqPtr
883    }
884    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
885      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
886    }
887  }
888  // enqueue logic writes 6 valid
889  for (i <- 0 until RenameWidth) {
890    when (canEnqueue(i) && !io.redirect.valid) {
891      valid(allocatePtrVec(i).value) := true.B
892    }
893  }
894  // dequeue logic writes 6 valid
895  for (i <- 0 until CommitWidth) {
896    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
897    when (commitValid) {
898      valid(commitReadAddr(i)) := false.B
899    }
900  }
901
902  // status field: writebacked
903  // enqueue logic set 6 writebacked to false
904  for (i <- 0 until RenameWidth) {
905    when (canEnqueue(i)) {
906      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
907      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
908      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
909      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
910      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
911      store_data_writebacked(allocatePtrVec(i).value) := !isStu
912    }
913  }
914  when (exceptionGen.io.out.valid) {
915    val wbIdx = exceptionGen.io.out.bits.robIdx.value
916    writebacked(wbIdx) := true.B
917    store_data_writebacked(wbIdx) := true.B
918  }
919  // writeback logic set numWbPorts writebacked to true
920  for (wb <- exuWBs) {
921    when (wb.valid) {
922      val wbIdx = wb.bits.robIdx.value
923      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
924      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
925      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
926      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
927      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
928      writebacked(wbIdx) := !block_wb
929    }
930  }
931  // store data writeback logic mark store as data_writebacked
932  for (wb <- stdWBs) {
933    when(RegNext(wb.valid)) {
934      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
935    }
936  }
937
938  // flagBkup
939  // enqueue logic set 6 flagBkup at most
940  for (i <- 0 until RenameWidth) {
941    when (canEnqueue(i)) {
942      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
943    }
944  }
945
946  // interrupt_safe
947  for (i <- 0 until RenameWidth) {
948    // We RegNext the updates for better timing.
949    // Note that instructions won't change the system's states in this cycle.
950    when (RegNext(canEnqueue(i))) {
951      // For now, we allow non-load-store instructions to trigger interrupts
952      // For MMIO instructions, they should not trigger interrupts since they may
953      // be sent to lower level before it writes back.
954      // However, we cannot determine whether a load/store instruction is MMIO.
955      // Thus, we don't allow load/store instructions to trigger an interrupt.
956      // TODO: support non-MMIO load-store instructions to trigger interrupts
957      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
958      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
959    }
960  }
961
962  /**
963    * read and write of data modules
964    */
965  val commitReadAddr_next = Mux(state_next === s_idle,
966    VecInit(deqPtrVec_next.map(_.value)),
967    VecInit(walkPtrVec_next.map(_.value))
968  )
969  dispatchData.io.wen := canEnqueue
970  dispatchData.io.waddr := allocatePtrVec.map(_.value)
971  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
972    wdata.ldest := req.ldest
973    wdata.rfWen := req.rfWen
974    wdata.fpWen := req.fpWen
975    wdata.vecWen := req.vecWen
976    wdata.wflags := req.fpu.wflags
977    wdata.commitType := req.commitType
978    wdata.pdest := req.pdest
979    wdata.old_pdest := req.oldPdest
980    wdata.ftqIdx := req.ftqPtr
981    wdata.ftqOffset := req.ftqOffset
982    wdata.isMove := req.eliminatedMove
983    wdata.pc := req.pc
984    wdata.vtype := req.vtype
985    wdata.isVset := req.isVset
986    wdata.firstUop := req.firstUop
987    wdata.lastUop := req.lastUop
988//    wdata.vconfig := req.vconfig
989  }
990  dispatchData.io.raddr := commitReadAddr_next
991
992  exceptionGen.io.redirect <> io.redirect
993  exceptionGen.io.flush := io.flushOut.valid
994  for (i <- 0 until RenameWidth) {
995    exceptionGen.io.enq(i).valid := canEnqueue(i)
996    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
997    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
998    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
999    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1000    exceptionGen.io.enq(i).bits.replayInst := false.B
1001    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1002    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1003    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1004    exceptionGen.io.enq(i).bits.trigger.clear()
1005    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1006  }
1007
1008  println(s"ExceptionGen:")
1009  println(s"num of exceptions: ${params.numException}")
1010  require(exceptionWBs.length == exceptionGen.io.wb.length,
1011    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1012      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1013  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1014    exc_wb.valid                := wb.valid
1015    exc_wb.bits.robIdx          := wb.bits.robIdx
1016    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1017    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1018    exc_wb.bits.isVset          := false.B
1019    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1020    exc_wb.bits.singleStep      := false.B
1021    exc_wb.bits.crossPageIPFFix := false.B
1022    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1023//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1024//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1025//      s"replayInst ${configs.exists(_.replayInst)}")
1026  }
1027
1028  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1029    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
1030  )
1031  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
1032  for(i <- fflagsWBs.indices){
1033    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
1034    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
1035    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
1036  }
1037  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1038  fflagsDataRead := fflagsDataModule.io.rdata
1039
1040
1041  val instrCntReg = RegInit(0.U(64.W))
1042  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1043  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1044  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1045  val instrCnt = instrCntReg + retireCounter
1046  instrCntReg := instrCnt
1047  io.csr.perfinfo.retiredInstr := retireCounter
1048  io.robFull := !allowEnqueue
1049
1050  /**
1051    * debug info
1052    */
1053  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1054  XSDebug("")
1055  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1056  for(i <- 0 until RobSize){
1057    XSDebug(false, !valid(i), "-")
1058    XSDebug(false, valid(i) && writebacked(i), "w")
1059    XSDebug(false, valid(i) && !writebacked(i), "v")
1060  }
1061  XSDebug(false, true.B, "\n")
1062
1063  for(i <- 0 until RobSize) {
1064    if(i % 4 == 0) XSDebug("")
1065    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1066    XSDebug(false, !valid(i), "- ")
1067    XSDebug(false, valid(i) && writebacked(i), "w ")
1068    XSDebug(false, valid(i) && !writebacked(i), "v ")
1069    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1070  }
1071
1072  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1073  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1074
1075  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1076  XSPerfAccumulate("clock_cycle", 1.U)
1077  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1078  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1079  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1080  val commitIsMove = commitDebugUop.map(_.isMove)
1081  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1082  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1083  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1084  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1085  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1086  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1087  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1088  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1089  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1090  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1091  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1092  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1093  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1094  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1095  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1096  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1097  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1098  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1099  XSPerfAccumulate("walkCycle", state === s_walk)
1100  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1101  val deqUopCommitType = io.commits.info(0).commitType
1102  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1103  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1104  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1105  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1106  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1107  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1108  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1109  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1110  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1111  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1112  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1113  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1114  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1115    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1116  }
1117  for (fuType <- FuType.functionNameMap.keys) {
1118    val fuName = FuType.functionNameMap(fuType)
1119    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1120    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1121    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1122    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1123    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1124    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1125    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1126    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1127    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1128    if (fuType == FuType.fmac) {
1129      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1130      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1131      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1132      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1133    }
1134  }
1135
1136  //difftest signals
1137  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1138
1139  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1140  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1141
1142  for(i <- 0 until CommitWidth) {
1143    val idx = deqPtrVec(i).value
1144    wdata(i) := debug_exuData(idx)
1145    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1146  }
1147
1148  if (env.EnableDifftest) {
1149    for (i <- 0 until CommitWidth) {
1150      val difftest = Module(new DifftestInstrCommit)
1151      // assgin default value
1152      difftest.io := DontCare
1153
1154      difftest.io.clock    := clock
1155      difftest.io.coreid   := io.hartId
1156      difftest.io.index    := i.U
1157
1158      val ptr = deqPtrVec(i).value
1159      val uop = commitDebugUop(i)
1160      val exuOut = debug_exuDebug(ptr)
1161      val exuData = debug_exuData(ptr)
1162      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1163      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1164      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1165      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1166      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1167      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1168      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1169      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1170      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1171      // when committing an eliminated move instruction,
1172      // we must make sure that skip is properly set to false (output from EXU is random value)
1173      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1174      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1175      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1176      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1177      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1178      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1179      // // runahead commit hint
1180      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1181      // runahead_commit.io.clock := clock
1182      // runahead_commit.io.coreid := io.hartId
1183      // runahead_commit.io.index := i.U
1184      // runahead_commit.io.valid := difftest.io.valid &&
1185      //   (commitBranchValid(i) || commitIsStore(i))
1186      // // TODO: is branch or store
1187      // runahead_commit.io.pc    := difftest.io.pc
1188    }
1189  }
1190  else if (env.AlwaysBasicDiff) {
1191    // These are the structures used by difftest only and should be optimized after synthesis.
1192    val dt_eliminatedMove = Mem(RobSize, Bool())
1193    val dt_isRVC = Mem(RobSize, Bool())
1194    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1195    for (i <- 0 until RenameWidth) {
1196      when (canEnqueue(i)) {
1197        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1198        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1199      }
1200    }
1201    for (wb <- exuWBs) {
1202      when (wb.valid) {
1203        val wbIdx = wb.bits.robIdx.value
1204        dt_exuDebug(wbIdx) := wb.bits.debug
1205      }
1206    }
1207    // Always instantiate basic difftest modules.
1208    for (i <- 0 until CommitWidth) {
1209      val commitInfo = io.commits.info(i)
1210      val ptr = deqPtrVec(i).value
1211      val exuOut = dt_exuDebug(ptr)
1212      val eliminatedMove = dt_eliminatedMove(ptr)
1213      val isRVC = dt_isRVC(ptr)
1214
1215      val difftest = Module(new DifftestBasicInstrCommit)
1216      difftest.io.clock   := clock
1217      difftest.io.coreid  := io.hartId
1218      difftest.io.index   := i.U
1219      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1220      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1221      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1222      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1223      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1224      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1225      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1226      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1227    }
1228  }
1229
1230  if (env.EnableDifftest) {
1231    for (i <- 0 until CommitWidth) {
1232      val difftest = Module(new DifftestLoadEvent)
1233      difftest.io.clock  := clock
1234      difftest.io.coreid := io.hartId
1235      difftest.io.index  := i.U
1236
1237      val ptr = deqPtrVec(i).value
1238      val uop = commitDebugUop(i)
1239      val exuOut = debug_exuDebug(ptr)
1240      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1241      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1242      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1243      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1244    }
1245  }
1246
1247  // Always instantiate basic difftest modules.
1248  if (env.EnableDifftest) {
1249    val dt_isXSTrap = Mem(RobSize, Bool())
1250    for (i <- 0 until RenameWidth) {
1251      when (canEnqueue(i)) {
1252        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1253      }
1254    }
1255    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1256    val hitTrap = trapVec.reduce(_||_)
1257    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1258    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1259    val difftest = Module(new DifftestTrapEvent)
1260    difftest.io.clock    := clock
1261    difftest.io.coreid   := io.hartId
1262    difftest.io.valid    := hitTrap
1263    difftest.io.code     := trapCode
1264    difftest.io.pc       := trapPC
1265    difftest.io.cycleCnt := timer
1266    difftest.io.instrCnt := instrCnt
1267    difftest.io.hasWFI   := hasWFI
1268  }
1269  else if (env.AlwaysBasicDiff) {
1270    val dt_isXSTrap = Mem(RobSize, Bool())
1271    for (i <- 0 until RenameWidth) {
1272      when (canEnqueue(i)) {
1273        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1274      }
1275    }
1276    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1277    val hitTrap = trapVec.reduce(_||_)
1278    val difftest = Module(new DifftestBasicTrapEvent)
1279    difftest.io.clock    := clock
1280    difftest.io.coreid   := io.hartId
1281    difftest.io.valid    := hitTrap
1282    difftest.io.cycleCnt := timer
1283    difftest.io.instrCnt := instrCnt
1284  }
1285
1286  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1287  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1288  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1289  val commitLoadVec = VecInit(commitLoadValid)
1290  val commitBranchVec = VecInit(commitBranchValid)
1291  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1292  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1293  val perfEvents = Seq(
1294    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1295    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1296    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1297    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1298    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1299    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1300    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1301    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1302    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1303    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1304    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1305    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1306    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1307    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1308    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1309    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1310    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1311    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1312  )
1313  generatePerfEvent()
1314}
1315