1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.FuType 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33 34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 35 val ssid = UInt(SSIDWidth.W) 36 val waitAllStore = Bool() 37} 38 39class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 40 val s1 = new Bundle{ 41 val isTlbFirstMiss = Bool() // in s1 42 val isBankConflict = Bool() // in s1 43 val isLoadToLoadForward = Bool() 44 val isReplayFast = Bool() 45 } 46 val s2 = new Bundle{ 47 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 48 val isForwardFail = Bool() // in s2 49 val isReplaySlow = Bool() 50 val isLoadReplayTLBMiss = Bool() 51 val isLoadReplayCacheMiss = Bool() 52 } 53 val replayCnt = UInt(XLEN.W) 54 55 def s1SignalEnable(ena: DebugLsInfo) = { 56 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 57 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 58 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 59 when(ena.s1.isReplayFast) { 60 s1.isReplayFast := true.B 61 replayCnt := replayCnt + 1.U 62 } 63 } 64 65 def s2SignalEnable(ena: DebugLsInfo) = { 66 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 67 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 68 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 69 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 70 when(ena.s2.isReplaySlow) { 71 s2.isReplaySlow := true.B 72 replayCnt := replayCnt + 1.U 73 } 74 } 75} 76 77object DebugLsInfo{ 78 def init(implicit p: Parameters): DebugLsInfo = { 79 val lsInfo = Wire(new DebugLsInfo) 80 lsInfo.s1.isTlbFirstMiss := false.B 81 lsInfo.s1.isBankConflict := false.B 82 lsInfo.s1.isLoadToLoadForward := false.B 83 lsInfo.s1.isReplayFast := false.B 84 lsInfo.s2.isDcacheFirstMiss := false.B 85 lsInfo.s2.isForwardFail := false.B 86 lsInfo.s2.isReplaySlow := false.B 87 lsInfo.s2.isLoadReplayTLBMiss := false.B 88 lsInfo.s2.isLoadReplayCacheMiss := false.B 89 lsInfo.replayCnt := 0.U 90 lsInfo 91 } 92} 93 94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 95 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 96 val s1_robIdx = UInt(log2Ceil(RobSize).W) 97 val s2_robIdx = UInt(log2Ceil(RobSize).W) 98} 99 100class DebugLSIO(implicit p: Parameters) extends XSBundle { 101 val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle)) 102} 103 104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 105 entries 106) with HasCircularQueuePtrHelper { 107 108 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 109 110 def needFlush(redirect: Valid[Redirect]): Bool = { 111 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 112 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 113 } 114 115 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 116} 117 118object RobPtr { 119 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 120 val ptr = Wire(new RobPtr) 121 ptr.flag := f 122 ptr.value := v 123 ptr 124 } 125} 126 127class RobCSRIO(implicit p: Parameters) extends XSBundle { 128 val intrBitSet = Input(Bool()) 129 val trapTarget = Input(UInt(VAddrBits.W)) 130 val isXRet = Input(Bool()) 131 val wfiEvent = Input(Bool()) 132 133 val fflags = Output(Valid(UInt(5.W))) 134 val dirty_fs = Output(Bool()) 135 val perfinfo = new Bundle { 136 val retiredInstr = Output(UInt(3.W)) 137 } 138 139 val vcsrFlag = Output(Bool()) 140} 141 142class RobLsqIO(implicit p: Parameters) extends XSBundle { 143 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 144 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 145 val pendingld = Output(Bool()) 146 val pendingst = Output(Bool()) 147 val commit = Output(Bool()) 148} 149 150class RobEnqIO(implicit p: Parameters) extends XSBundle { 151 val canAccept = Output(Bool()) 152 val isEmpty = Output(Bool()) 153 // valid vector, for robIdx gen and walk 154 val needAlloc = Vec(RenameWidth, Input(Bool())) 155 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 156 val resp = Vec(RenameWidth, Output(new RobPtr)) 157} 158 159class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 160 161class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 162 val io = IO(new Bundle { 163 // for commits/flush 164 val state = Input(UInt(2.W)) 165 val deq_v = Vec(CommitWidth, Input(Bool())) 166 val deq_w = Vec(CommitWidth, Input(Bool())) 167 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 168 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 169 val intrBitSetReg = Input(Bool()) 170 val hasNoSpecExec = Input(Bool()) 171 val interrupt_safe = Input(Bool()) 172 val blockCommit = Input(Bool()) 173 // output: the CommitWidth deqPtr 174 val out = Vec(CommitWidth, Output(new RobPtr)) 175 val next_out = Vec(CommitWidth, Output(new RobPtr)) 176 }) 177 178 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 179 180 // for exceptions (flushPipe included) and interrupts: 181 // only consider the first instruction 182 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 183 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 184 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 185 186 // for normal commits: only to consider when there're no exceptions 187 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 188 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 189 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 190 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 191 // when io.intrBitSetReg or there're possible exceptions in these instructions, 192 // only one instruction is allowed to commit 193 val allowOnlyOne = commit_exception || io.intrBitSetReg 194 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 195 196 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 197 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 198 199 deqPtrVec := deqPtrVec_next 200 201 io.next_out := deqPtrVec_next 202 io.out := deqPtrVec 203 204 when (io.state === 0.U) { 205 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 206 } 207 208} 209 210class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 211 val io = IO(new Bundle { 212 // for input redirect 213 val redirect = Input(Valid(new Redirect)) 214 // for enqueue 215 val allowEnqueue = Input(Bool()) 216 val hasBlockBackward = Input(Bool()) 217 val enq = Vec(RenameWidth, Input(Bool())) 218 val out = Output(Vec(RenameWidth, new RobPtr)) 219 }) 220 221 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 222 223 // enqueue 224 val canAccept = io.allowEnqueue && !io.hasBlockBackward 225 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 226 227 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 228 when(io.redirect.valid) { 229 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 230 }.otherwise { 231 ptr := ptr + dispatchNum 232 } 233 } 234 235 io.out := enqPtrVec 236 237} 238 239class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 240 // val valid = Bool() 241 val robIdx = new RobPtr 242 val exceptionVec = ExceptionVec() 243 val flushPipe = Bool() 244 val isVset = Bool() 245 val replayInst = Bool() // redirect to that inst itself 246 val singleStep = Bool() // TODO add frontend hit beneath 247 val crossPageIPFFix = Bool() 248 val trigger = new TriggerCf 249 250// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 251// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 252 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 253 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 254 // only exceptions are allowed to writeback when enqueue 255 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 256} 257 258class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 259 val io = IO(new Bundle { 260 val redirect = Input(Valid(new Redirect)) 261 val flush = Input(Bool()) 262 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 263 // csr + load + store 264 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 265 val out = ValidIO(new RobExceptionInfo) 266 val state = ValidIO(new RobExceptionInfo) 267 }) 268 269 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 270 assert(valid.length == bits.length) 271 assert(isPow2(valid.length)) 272 if (valid.length == 1) { 273 (valid, bits) 274 } else if (valid.length == 2) { 275 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 276 for (i <- res.indices) { 277 res(i).valid := valid(i) 278 res(i).bits := bits(i) 279 } 280 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 281 (Seq(oldest.valid), Seq(oldest.bits)) 282 } else { 283 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 284 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 285 getOldest(left._1 ++ right._1, left._2 ++ right._2) 286 } 287 } 288 289 val currentValid = RegInit(false.B) 290 val current = Reg(new RobExceptionInfo) 291 292 // orR the exceptionVec 293 val lastCycleFlush = RegNext(io.flush) 294 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 295 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 296 297 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 298 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 299 val csr_wb_bits = io.wb(0).bits 300 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 301 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 302 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 303 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 304 305 // s1: compare last four and current flush 306 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 307 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 308 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 309 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 310 val s1_out_bits = RegNext(compare_bits) 311 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 312 313 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 314 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 315 316 // s2: compare the input exception with the current one 317 // priorities: 318 // (1) system reset 319 // (2) current is valid: flush, remain, merge, update 320 // (3) current is not valid: s1 or enq 321 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 322 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 323 when (currentValid) { 324 when (current_flush) { 325 currentValid := Mux(s1_flush, false.B, s1_out_valid) 326 } 327 when (s1_out_valid && !s1_flush) { 328 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 329 current := s1_out_bits 330 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 331 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 332 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 333 current.replayInst := s1_out_bits.replayInst || current.replayInst 334 current.singleStep := s1_out_bits.singleStep || current.singleStep 335 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 336 } 337 } 338 }.elsewhen (s1_out_valid && !s1_flush) { 339 currentValid := true.B 340 current := s1_out_bits 341 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 342 currentValid := true.B 343 current := enq_bits 344 } 345 346 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 347 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 348 io.state.valid := currentValid 349 io.state.bits := current 350 351} 352 353class RobFlushInfo(implicit p: Parameters) extends XSBundle { 354 val ftqIdx = new FtqPtr 355 val robIdx = new RobPtr 356 val ftqOffset = UInt(log2Up(PredictWidth).W) 357 val replayInst = Bool() 358} 359 360class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 361 362 lazy val module = new RobImp(this)(p, params) 363 // 364 // override def generateWritebackIO( 365 // thisMod: Option[HasWritebackSource] = None, 366 // thisModImp: Option[HasWritebackSourceImp] = None 367 // ): Unit = { 368 // val sources = writebackSinksImp(thisMod, thisModImp) 369 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 370 // } 371 //} 372} 373 374class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 375 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 376 377 val io = IO(new Bundle() { 378 val hartId = Input(UInt(8.W)) 379 val redirect = Input(Valid(new Redirect)) 380 val enq = new RobEnqIO 381 val flushOut = ValidIO(new Redirect) 382 val exception = ValidIO(new ExceptionInfo) 383 // exu + brq 384 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 385 val commits = Output(new RobCommitIO) 386 val lsq = new RobLsqIO 387 val robDeqPtr = Output(new RobPtr) 388 val csr = new RobCSRIO 389 val robFull = Output(Bool()) 390 val cpu_halt = Output(Bool()) 391 val wfi_enable = Input(Bool()) 392 }) 393 394 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 395 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 396 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 397 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 398 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 399 400 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 401 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 402 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 403 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 404 val numExuWbPorts = exuWBs.length 405 val numStdWbPorts = stdWBs.length 406 407 408 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 409// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 410// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 411// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 412 413 414 // instvalid field 415 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 416 // writeback status 417 val writebacked = Mem(RobSize, Bool()) 418 val store_data_writebacked = Mem(RobSize, Bool()) 419 // data for redirect, exception, etc. 420 val flagBkup = Mem(RobSize, Bool()) 421 // some instructions are not allowed to trigger interrupts 422 // They have side effects on the states of the processor before they write back 423 val interrupt_safe = Mem(RobSize, Bool()) 424 425 // data for debug 426 // Warn: debug_* prefix should not exist in generated verilog. 427 val debug_microOp = Mem(RobSize, new DynInst) 428 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 429 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 430 431 // pointers 432 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 433 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 434 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 435 436 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 437 val allowEnqueue = RegInit(true.B) 438 439 val enqPtr = enqPtrVec.head 440 val deqPtr = deqPtrVec(0) 441 val walkPtr = walkPtrVec(0) 442 443 val isEmpty = enqPtr === deqPtr 444 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 445 446 /** 447 * states of Rob 448 */ 449 val s_idle :: s_walk :: Nil = Enum(2) 450 val state = RegInit(s_idle) 451 452 /** 453 * Data Modules 454 * 455 * CommitDataModule: data from dispatch 456 * (1) read: commits/walk/exception 457 * (2) write: enqueue 458 * 459 * WritebackData: data from writeback 460 * (1) read: commits/walk/exception 461 * (2) write: write back from exe units 462 */ 463 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 464 val dispatchDataRead = dispatchData.io.rdata 465 466 val exceptionGen = Module(new ExceptionGen(params)) 467 val exceptionDataRead = exceptionGen.io.state 468 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 469 470 io.robDeqPtr := deqPtr 471 472 /** 473 * Enqueue (from dispatch) 474 */ 475 // special cases 476 val hasBlockBackward = RegInit(false.B) 477 val hasWaitForward = RegInit(false.B) 478 val doingSvinval = RegInit(false.B) 479 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 480 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 481 when (isEmpty) { hasBlockBackward:= false.B } 482 // When any instruction commits, hasNoSpecExec should be set to false.B 483 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 484 485 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 486 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 487 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 488 val hasWFI = RegInit(false.B) 489 io.cpu_halt := hasWFI 490 // WFI Timeout: 2^20 = 1M cycles 491 val wfi_cycles = RegInit(0.U(20.W)) 492 when (hasWFI) { 493 wfi_cycles := wfi_cycles + 1.U 494 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 495 wfi_cycles := 0.U 496 } 497 val wfi_timeout = wfi_cycles.andR 498 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 499 hasWFI := false.B 500 } 501 502 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 503 io.enq.canAccept := allowEnqueue && !hasBlockBackward 504 io.enq.resp := allocatePtrVec 505 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 506 val timer = GTimer() 507 for (i <- 0 until RenameWidth) { 508 // we don't check whether io.redirect is valid here since redirect has higher priority 509 when (canEnqueue(i)) { 510 val enqUop = io.enq.req(i).bits 511 val enqIndex = allocatePtrVec(i).value 512 // store uop in data module and debug_microOp Vec 513 debug_microOp(enqIndex) := enqUop 514 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 515 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 516 debug_microOp(enqIndex).debugInfo.selectTime := timer 517 debug_microOp(enqIndex).debugInfo.issueTime := timer 518 debug_microOp(enqIndex).debugInfo.writebackTime := timer 519 when (enqUop.blockBackward) { 520 hasBlockBackward := true.B 521 } 522 when (enqUop.waitForward) { 523 hasWaitForward := true.B 524 } 525 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 526 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 527 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 528 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 529 { 530 doingSvinval := true.B 531 } 532 // the end instruction of Svinval enqs so clear doingSvinval 533 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 534 { 535 doingSvinval := false.B 536 } 537 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 538 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 539 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 540 hasWFI := true.B 541 } 542 } 543 } 544 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 545 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 546 547 when (!io.wfi_enable) { 548 hasWFI := false.B 549 } 550 // sel vsetvl's flush position 551 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 552 val vsetvlState = RegInit(vs_idle) 553 554 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 555 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 556 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 557 558 val enq0 = io.enq.req(0) 559 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 560 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 561 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 562 // for vs_idle 563 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 564 // for vs_waitVinstr 565 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 566 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 567 when(vsetvlState === vs_idle){ 568 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 569 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 570 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 571 }.elsewhen(vsetvlState === vs_waitVinstr){ 572 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 573 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 574 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 575 } 576 577 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 578 when(vsetvlState === vs_idle){ 579 when(enq0IsVsetFlush){ 580 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 581 } 582 }.elsewhen(vsetvlState === vs_waitVinstr){ 583 when(io.redirect.valid){ 584 vsetvlState := vs_idle 585 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 586 vsetvlState := vs_waitFlush 587 } 588 }.elsewhen(vsetvlState === vs_waitFlush){ 589 when(io.redirect.valid){ 590 vsetvlState := vs_idle 591 } 592 } 593 594 /** 595 * Writeback (from execution units) 596 */ 597 for (wb <- exuWBs) { 598 when (wb.valid) { 599 val wbIdx = wb.bits.robIdx.value 600 debug_exuData(wbIdx) := wb.bits.data 601 debug_exuDebug(wbIdx) := wb.bits.debug 602 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 603 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 604 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 605 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 606 607 // debug for lqidx and sqidx 608 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 609 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 610 611 val debug_Uop = debug_microOp(wbIdx) 612 XSInfo(true.B, 613 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 614 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 615 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 616 ) 617 } 618 } 619 620 val writebackNum = PopCount(exuWBs.map(_.valid)) 621 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 622 623 624 /** 625 * RedirectOut: Interrupt and Exceptions 626 */ 627 val deqDispatchData = dispatchDataRead(0) 628 val debug_deqUop = debug_microOp(deqPtr.value) 629 630 val intrBitSetReg = RegNext(io.csr.intrBitSet) 631 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 632 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 633 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 634 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 635 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 636 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 637 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 638 639 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 640 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 641 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 642 643 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 644 645 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 646 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 647 648 // io.flushOut will trigger redirect at the next cycle. 649 // Block any redirect or commit at the next cycle. 650 val lastCycleFlush = RegNext(io.flushOut.valid) 651 652 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 653 io.flushOut.bits := DontCare 654 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 655 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 656 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 657 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 658 io.flushOut.bits.interrupt := true.B 659 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 660 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 661 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 662 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 663 664 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 665 io.exception.valid := RegNext(exceptionHappen) 666 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 667 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 668 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 669 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 670 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 671 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 672 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 673// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 674 675 XSDebug(io.flushOut.valid, 676 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 677 p"excp $exceptionEnable flushPipe $isFlushPipe " + 678 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 679 680 681 /** 682 * Commits (and walk) 683 * They share the same width. 684 */ 685 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 686 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 687 val walkFinished = walkCounter <= CommitWidth.U 688 689 require(RenameWidth <= CommitWidth) 690 691 // wiring to csr 692 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 693 val v = io.commits.commitValid(i) 694 val info = io.commits.info(i) 695 (v & info.wflags, v & info.fpWen) 696 }).unzip 697 val fflags = Wire(Valid(UInt(5.W))) 698 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 699 fflags.bits := wflags.zip(fflagsDataRead).map({ 700 case (w, f) => Mux(w, f, 0.U) 701 }).reduce(_|_) 702 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 703 704 // when mispredict branches writeback, stop commit in the next 2 cycles 705 // TODO: don't check all exu write back 706 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 707 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 708 ))).orR 709 val misPredBlockCounter = Reg(UInt(3.W)) 710 misPredBlockCounter := Mux(misPredWb, 711 "b111".U, 712 misPredBlockCounter >> 1.U 713 ) 714 val misPredBlock = misPredBlockCounter(0) 715 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 716 717 io.commits.isWalk := state === s_walk 718 io.commits.isCommit := state === s_idle && !blockCommit 719 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 720 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 721 // store will be commited iff both sta & std have been writebacked 722 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 723 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 724 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 725 val allowOnlyOneCommit = commit_exception || intrBitSetReg 726 // for instructions that may block others, we don't allow them to commit 727 for (i <- 0 until CommitWidth) { 728 // defaults: state === s_idle and instructions commit 729 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 730 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 731 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 732 io.commits.info(i) := dispatchDataRead(i) 733 734 when (state === s_walk) { 735 io.commits.walkValid(i) := shouldWalkVec(i) 736 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 737 XSError(!walk_v(i), s"why not $i???\n") 738 } 739 } 740 741 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 742 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 743 debug_microOp(deqPtrVec(i).value).pc, 744 io.commits.info(i).rfWen, 745 io.commits.info(i).ldest, 746 io.commits.info(i).pdest, 747 io.commits.info(i).old_pdest, 748 debug_exuData(deqPtrVec(i).value), 749 fflagsDataRead(i) 750 ) 751 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 752 debug_microOp(walkPtrVec(i).value).pc, 753 io.commits.info(i).rfWen, 754 io.commits.info(i).ldest, 755 debug_exuData(walkPtrVec(i).value) 756 ) 757 } 758 if (env.EnableDifftest) { 759 io.commits.info.map(info => dontTouch(info.pc)) 760 } 761 762 // sync fflags/dirty_fs to csr 763 io.csr.fflags := RegNext(fflags) 764 io.csr.dirty_fs := RegNext(dirty_fs) 765 766 // sync v csr to csr 767// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 768 769 // commit load/store to lsq 770 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 771 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 772 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 773 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 774 // indicate a pending load or store 775 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 776 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 777 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 778 779 /** 780 * state changes 781 * (1) redirect: switch to s_walk 782 * (2) walk: when walking comes to the end, switch to s_idle 783 */ 784 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 785 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 786 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 787 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 788 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 789 state := state_next 790 791 /** 792 * pointers and counters 793 */ 794 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 795 deqPtrGenModule.io.state := state 796 deqPtrGenModule.io.deq_v := commit_v 797 deqPtrGenModule.io.deq_w := commit_w 798 deqPtrGenModule.io.exception_state := exceptionDataRead 799 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 800 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 801 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 802 deqPtrGenModule.io.blockCommit := blockCommit 803 deqPtrVec := deqPtrGenModule.io.out 804 val deqPtrVec_next = deqPtrGenModule.io.next_out 805 806 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 807 enqPtrGenModule.io.redirect := io.redirect 808 enqPtrGenModule.io.allowEnqueue := allowEnqueue 809 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 810 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 811 enqPtrVec := enqPtrGenModule.io.out 812 813 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 814 // next walkPtrVec: 815 // (1) redirect occurs: update according to state 816 // (2) walk: move forwards 817 val walkPtrVec_next = Mux(io.redirect.valid, 818 deqPtrVec_next, 819 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 820 ) 821 walkPtrVec := walkPtrVec_next 822 823 val numValidEntries = distanceBetween(enqPtr, deqPtr) 824 val isLastUopVec = io.commits.info.map(_.lastUop) 825 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 826 827 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 828 829 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 830 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 831 when (io.redirect.valid) { 832 // full condition: 833 // +& is used here because: 834 // When rob is full and the tail instruction causes a misprediction, 835 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 836 // is RobSize - 1. 837 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 838 // Previously we use `+` to count the walk distance and it causes overflows 839 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 840 // The width of walkCounter also needs to be changed. 841 // empty condition: 842 // When the last instruction in ROB commits and causes a flush, a redirect 843 // will be raised later. In such circumstances, the redirect robIdx is before 844 // the deqPtrVec_next(0) and will cause underflow. 845 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 846 redirectWalkDistance +& !io.redirect.bits.flushItself()) 847 }.elsewhen (state === s_walk) { 848 walkCounter := walkCounter - thisCycleWalkCount 849 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 850 } 851 852 853 /** 854 * States 855 * We put all the stage bits changes here. 856 857 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 858 * All states: (1) valid; (2) writebacked; (3) flagBkup 859 */ 860 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 861 862 // redirect logic writes 6 valid 863 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 864 val redirectTail = Reg(new RobPtr) 865 val redirectIdle :: redirectBusy :: Nil = Enum(2) 866 val redirectState = RegInit(redirectIdle) 867 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 868 when(redirectState === redirectBusy) { 869 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 870 redirectHeadVec zip invMask foreach { 871 case (redirectHead, inv) => when(inv) { 872 valid(redirectHead.value) := false.B 873 } 874 } 875 when(!invMask.last) { 876 redirectState := redirectIdle 877 } 878 } 879 when(io.redirect.valid) { 880 redirectState := redirectBusy 881 when(redirectState === redirectIdle) { 882 redirectTail := enqPtr 883 } 884 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 885 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 886 } 887 } 888 // enqueue logic writes 6 valid 889 for (i <- 0 until RenameWidth) { 890 when (canEnqueue(i) && !io.redirect.valid) { 891 valid(allocatePtrVec(i).value) := true.B 892 } 893 } 894 // dequeue logic writes 6 valid 895 for (i <- 0 until CommitWidth) { 896 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 897 when (commitValid) { 898 valid(commitReadAddr(i)) := false.B 899 } 900 } 901 902 // status field: writebacked 903 // enqueue logic set 6 writebacked to false 904 for (i <- 0 until RenameWidth) { 905 when (canEnqueue(i)) { 906 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 907 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 908 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 909 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 910 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 911 store_data_writebacked(allocatePtrVec(i).value) := !isStu 912 } 913 } 914 when (exceptionGen.io.out.valid) { 915 val wbIdx = exceptionGen.io.out.bits.robIdx.value 916 writebacked(wbIdx) := true.B 917 store_data_writebacked(wbIdx) := true.B 918 } 919 // writeback logic set numWbPorts writebacked to true 920 for (wb <- exuWBs) { 921 when (wb.valid) { 922 val wbIdx = wb.bits.robIdx.value 923 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 924 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 925 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 926 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 927 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 928 writebacked(wbIdx) := !block_wb 929 } 930 } 931 // store data writeback logic mark store as data_writebacked 932 for (wb <- stdWBs) { 933 when(RegNext(wb.valid)) { 934 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 935 } 936 } 937 938 // flagBkup 939 // enqueue logic set 6 flagBkup at most 940 for (i <- 0 until RenameWidth) { 941 when (canEnqueue(i)) { 942 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 943 } 944 } 945 946 // interrupt_safe 947 for (i <- 0 until RenameWidth) { 948 // We RegNext the updates for better timing. 949 // Note that instructions won't change the system's states in this cycle. 950 when (RegNext(canEnqueue(i))) { 951 // For now, we allow non-load-store instructions to trigger interrupts 952 // For MMIO instructions, they should not trigger interrupts since they may 953 // be sent to lower level before it writes back. 954 // However, we cannot determine whether a load/store instruction is MMIO. 955 // Thus, we don't allow load/store instructions to trigger an interrupt. 956 // TODO: support non-MMIO load-store instructions to trigger interrupts 957 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 958 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 959 } 960 } 961 962 /** 963 * read and write of data modules 964 */ 965 val commitReadAddr_next = Mux(state_next === s_idle, 966 VecInit(deqPtrVec_next.map(_.value)), 967 VecInit(walkPtrVec_next.map(_.value)) 968 ) 969 dispatchData.io.wen := canEnqueue 970 dispatchData.io.waddr := allocatePtrVec.map(_.value) 971 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 972 wdata.ldest := req.ldest 973 wdata.rfWen := req.rfWen 974 wdata.fpWen := req.fpWen 975 wdata.vecWen := req.vecWen 976 wdata.wflags := req.fpu.wflags 977 wdata.commitType := req.commitType 978 wdata.pdest := req.pdest 979 wdata.old_pdest := req.oldPdest 980 wdata.ftqIdx := req.ftqPtr 981 wdata.ftqOffset := req.ftqOffset 982 wdata.isMove := req.eliminatedMove 983 wdata.pc := req.pc 984 wdata.vtype := req.vtype 985 wdata.isVset := req.isVset 986 wdata.firstUop := req.firstUop 987 wdata.lastUop := req.lastUop 988// wdata.vconfig := req.vconfig 989 } 990 dispatchData.io.raddr := commitReadAddr_next 991 992 exceptionGen.io.redirect <> io.redirect 993 exceptionGen.io.flush := io.flushOut.valid 994 for (i <- 0 until RenameWidth) { 995 exceptionGen.io.enq(i).valid := canEnqueue(i) 996 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 997 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 998 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 999 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1000 exceptionGen.io.enq(i).bits.replayInst := false.B 1001 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1002 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1003 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1004 exceptionGen.io.enq(i).bits.trigger.clear() 1005 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1006 } 1007 1008 println(s"ExceptionGen:") 1009 println(s"num of exceptions: ${params.numException}") 1010 require(exceptionWBs.length == exceptionGen.io.wb.length, 1011 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1012 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1013 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1014 exc_wb.valid := wb.valid 1015 exc_wb.bits.robIdx := wb.bits.robIdx 1016 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1017 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1018 exc_wb.bits.isVset := false.B 1019 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1020 exc_wb.bits.singleStep := false.B 1021 exc_wb.bits.crossPageIPFFix := false.B 1022 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1023// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1024// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1025// s"replayInst ${configs.exists(_.replayInst)}") 1026 } 1027 1028 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1029 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 1030 ) 1031 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 1032 for(i <- fflagsWBs.indices){ 1033 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 1034 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 1035 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 1036 } 1037 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1038 fflagsDataRead := fflagsDataModule.io.rdata 1039 1040 1041 val instrCntReg = RegInit(0.U(64.W)) 1042 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1043 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1044 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1045 val instrCnt = instrCntReg + retireCounter 1046 instrCntReg := instrCnt 1047 io.csr.perfinfo.retiredInstr := retireCounter 1048 io.robFull := !allowEnqueue 1049 1050 /** 1051 * debug info 1052 */ 1053 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1054 XSDebug("") 1055 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1056 for(i <- 0 until RobSize){ 1057 XSDebug(false, !valid(i), "-") 1058 XSDebug(false, valid(i) && writebacked(i), "w") 1059 XSDebug(false, valid(i) && !writebacked(i), "v") 1060 } 1061 XSDebug(false, true.B, "\n") 1062 1063 for(i <- 0 until RobSize) { 1064 if(i % 4 == 0) XSDebug("") 1065 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1066 XSDebug(false, !valid(i), "- ") 1067 XSDebug(false, valid(i) && writebacked(i), "w ") 1068 XSDebug(false, valid(i) && !writebacked(i), "v ") 1069 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1070 } 1071 1072 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1073 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1074 1075 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1076 XSPerfAccumulate("clock_cycle", 1.U) 1077 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1078 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1079 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1080 val commitIsMove = commitDebugUop.map(_.isMove) 1081 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1082 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1083 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1084 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1085 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1086 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1087 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1088 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1089 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1090 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1091 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1092 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1093 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1094 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1095 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1096 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1097 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1098 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1099 XSPerfAccumulate("walkCycle", state === s_walk) 1100 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1101 val deqUopCommitType = io.commits.info(0).commitType 1102 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1103 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1104 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1105 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1106 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1107 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1108 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1109 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1110 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1111 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1112 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1113 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1114 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1115 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1116 } 1117 for (fuType <- FuType.functionNameMap.keys) { 1118 val fuName = FuType.functionNameMap(fuType) 1119 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1120 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1121 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1122 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1123 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1124 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1125 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1126 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1127 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1128 if (fuType == FuType.fmac) { 1129 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1130 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1131 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1132 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1133 } 1134 } 1135 1136 //difftest signals 1137 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1138 1139 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1140 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1141 1142 for(i <- 0 until CommitWidth) { 1143 val idx = deqPtrVec(i).value 1144 wdata(i) := debug_exuData(idx) 1145 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1146 } 1147 1148 if (env.EnableDifftest) { 1149 for (i <- 0 until CommitWidth) { 1150 val difftest = Module(new DifftestInstrCommit) 1151 // assgin default value 1152 difftest.io := DontCare 1153 1154 difftest.io.clock := clock 1155 difftest.io.coreid := io.hartId 1156 difftest.io.index := i.U 1157 1158 val ptr = deqPtrVec(i).value 1159 val uop = commitDebugUop(i) 1160 val exuOut = debug_exuDebug(ptr) 1161 val exuData = debug_exuData(ptr) 1162 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1163 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1164 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1165 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1166 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1167 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1168 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1169 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1170 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1171 // when committing an eliminated move instruction, 1172 // we must make sure that skip is properly set to false (output from EXU is random value) 1173 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1174 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1175 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1176 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1177 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1178 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1179 // // runahead commit hint 1180 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1181 // runahead_commit.io.clock := clock 1182 // runahead_commit.io.coreid := io.hartId 1183 // runahead_commit.io.index := i.U 1184 // runahead_commit.io.valid := difftest.io.valid && 1185 // (commitBranchValid(i) || commitIsStore(i)) 1186 // // TODO: is branch or store 1187 // runahead_commit.io.pc := difftest.io.pc 1188 } 1189 } 1190 else if (env.AlwaysBasicDiff) { 1191 // These are the structures used by difftest only and should be optimized after synthesis. 1192 val dt_eliminatedMove = Mem(RobSize, Bool()) 1193 val dt_isRVC = Mem(RobSize, Bool()) 1194 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1195 for (i <- 0 until RenameWidth) { 1196 when (canEnqueue(i)) { 1197 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1198 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1199 } 1200 } 1201 for (wb <- exuWBs) { 1202 when (wb.valid) { 1203 val wbIdx = wb.bits.robIdx.value 1204 dt_exuDebug(wbIdx) := wb.bits.debug 1205 } 1206 } 1207 // Always instantiate basic difftest modules. 1208 for (i <- 0 until CommitWidth) { 1209 val commitInfo = io.commits.info(i) 1210 val ptr = deqPtrVec(i).value 1211 val exuOut = dt_exuDebug(ptr) 1212 val eliminatedMove = dt_eliminatedMove(ptr) 1213 val isRVC = dt_isRVC(ptr) 1214 1215 val difftest = Module(new DifftestBasicInstrCommit) 1216 difftest.io.clock := clock 1217 difftest.io.coreid := io.hartId 1218 difftest.io.index := i.U 1219 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1220 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1221 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1222 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1223 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1224 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1225 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1226 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1227 } 1228 } 1229 1230 if (env.EnableDifftest) { 1231 for (i <- 0 until CommitWidth) { 1232 val difftest = Module(new DifftestLoadEvent) 1233 difftest.io.clock := clock 1234 difftest.io.coreid := io.hartId 1235 difftest.io.index := i.U 1236 1237 val ptr = deqPtrVec(i).value 1238 val uop = commitDebugUop(i) 1239 val exuOut = debug_exuDebug(ptr) 1240 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1241 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1242 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1243 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1244 } 1245 } 1246 1247 // Always instantiate basic difftest modules. 1248 if (env.EnableDifftest) { 1249 val dt_isXSTrap = Mem(RobSize, Bool()) 1250 for (i <- 0 until RenameWidth) { 1251 when (canEnqueue(i)) { 1252 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1253 } 1254 } 1255 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1256 val hitTrap = trapVec.reduce(_||_) 1257 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1258 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1259 val difftest = Module(new DifftestTrapEvent) 1260 difftest.io.clock := clock 1261 difftest.io.coreid := io.hartId 1262 difftest.io.valid := hitTrap 1263 difftest.io.code := trapCode 1264 difftest.io.pc := trapPC 1265 difftest.io.cycleCnt := timer 1266 difftest.io.instrCnt := instrCnt 1267 difftest.io.hasWFI := hasWFI 1268 } 1269 else if (env.AlwaysBasicDiff) { 1270 val dt_isXSTrap = Mem(RobSize, Bool()) 1271 for (i <- 0 until RenameWidth) { 1272 when (canEnqueue(i)) { 1273 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1274 } 1275 } 1276 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1277 val hitTrap = trapVec.reduce(_||_) 1278 val difftest = Module(new DifftestBasicTrapEvent) 1279 difftest.io.clock := clock 1280 difftest.io.coreid := io.hartId 1281 difftest.io.valid := hitTrap 1282 difftest.io.cycleCnt := timer 1283 difftest.io.instrCnt := instrCnt 1284 } 1285 1286 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1287 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1288 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1289 val commitLoadVec = VecInit(commitLoadValid) 1290 val commitBranchVec = VecInit(commitBranchValid) 1291 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1292 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1293 val perfEvents = Seq( 1294 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1295 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1296 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1297 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1298 ("rob_commitUop ", ifCommit(commitCnt) ), 1299 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1300 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1301 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1302 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1303 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1304 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1305 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1306 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1307 ("rob_walkCycle ", (state === s_walk) ), 1308 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1309 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1310 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1311 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1312 ) 1313 generatePerfEvent() 1314} 1315