1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.backend.fu.fpu.FPU 25import xiangshan.backend.rob.RobLsqIO 26import xiangshan.cache._ 27import xiangshan.frontend.FtqPtr 28 29 30class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 31 p => p(XSCoreParamsKey).LoadQueueSize 32){ 33 override def cloneType = (new LqPtr).asInstanceOf[this.type] 34} 35 36object LqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 38 val ptr = Wire(new LqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45trait HasLoadHelper { this: XSModule => 46 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 47 val fpWen = uop.ctrl.fpWen 48 LookupTree(uop.ctrl.fuOpType, List( 49 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 50 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 51 /* 52 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 53 Any operation that writes a narrower result to an f register must write 54 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 55 */ 56 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 57 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 58 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 59 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 60 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 61 )) 62 } 63} 64 65class LqEnqIO(implicit p: Parameters) extends XSBundle { 66 val canAccept = Output(Bool()) 67 val sqCanAccept = Input(Bool()) 68 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 69 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 70 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 71} 72 73class LqTriggerIO(implicit p: Parameters) extends XSBundle { 74 val hitLoadAddrTriggerHitVec = Input(Vec(3, Bool())) 75 val lqLoadAddrTriggerHitVec = Output(Vec(3, Bool())) 76} 77 78// Load Queue 79class LoadQueue(implicit p: Parameters) extends XSModule 80 with HasDCacheParameters 81 with HasCircularQueuePtrHelper 82 with HasLoadHelper 83 with HasPerfEvents 84{ 85 val io = IO(new Bundle() { 86 val enq = new LqEnqIO 87 val brqRedirect = Flipped(ValidIO(new Redirect)) 88 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle))) 89 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 90 val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool())) 91 val needReplayFromRS = Vec(LoadPipelineWidth, Input(Bool())) 92 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 93 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 94 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 95 val rob = Flipped(new RobLsqIO) 96 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 97 val dcache = Flipped(ValidIO(new Refill)) // TODO: to be renamed 98 val release = Flipped(ValidIO(new Release)) 99 val uncache = new DCacheWordIO 100 val exceptionAddr = new ExceptionAddrIO 101 val lqFull = Output(Bool()) 102 val trigger = Vec(LoadPipelineWidth, new LqTriggerIO) 103 }) 104 105 println("LoadQueue: size:" + LoadQueueSize) 106 107 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 108 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 109 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 110 dataModule.io := DontCare 111 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 3, numWrite = LoadPipelineWidth)) 112 vaddrModule.io := DontCare 113 val vaddrTriggerResultModule = Module(new SyncDataModuleTemplate(Vec(3, Bool()), LoadQueueSize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth)) 114 vaddrTriggerResultModule.io := DontCare 115 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 116 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 117 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 118 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 119 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 120 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 121 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 122 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 123 124 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 125 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 126 127 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 128 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 129 val deqPtrExtNext = Wire(new LqPtr) 130 val allowEnqueue = RegInit(true.B) 131 132 val enqPtr = enqPtrExt(0).value 133 val deqPtr = deqPtrExt.value 134 135 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 136 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 137 138 val commitCount = RegNext(io.rob.lcommit) 139 140 /** 141 * Enqueue at dispatch 142 * 143 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 144 */ 145 io.enq.canAccept := allowEnqueue 146 147 for (i <- 0 until io.enq.req.length) { 148 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 149 val lqIdx = enqPtrExt(offset) 150 val index = lqIdx.value 151 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid) { 152 uop(index) := io.enq.req(i).bits 153 allocated(index) := true.B 154 datavalid(index) := false.B 155 writebacked(index) := false.B 156 released(index) := false.B 157 miss(index) := false.B 158 // listening(index) := false.B 159 pending(index) := false.B 160 } 161 io.enq.resp(i) := lqIdx 162 } 163 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 164 165 /** 166 * Writeback load from load units 167 * 168 * Most load instructions writeback to regfile at the same time. 169 * However, 170 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 171 * (2) For an mmio instruction without exceptions, it does not write back. 172 * The mmio instruction will be sent to lower level when it reaches ROB's head. 173 * After uncache response, it will write back through arbiter with loadUnit. 174 * (3) For cache misses, it is marked miss and sent to dcache later. 175 * After cache refills, it will write back through arbiter with loadUnit. 176 */ 177 for (i <- 0 until LoadPipelineWidth) { 178 dataModule.io.wb.wen(i) := false.B 179 vaddrTriggerResultModule.io.wen(i) := false.B 180 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 181 when(io.loadIn(i).fire()) { 182 when(io.loadIn(i).bits.miss) { 183 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 184 io.loadIn(i).bits.uop.lqIdx.asUInt, 185 io.loadIn(i).bits.uop.cf.pc, 186 io.loadIn(i).bits.vaddr, 187 io.loadIn(i).bits.paddr, 188 io.loadIn(i).bits.data, 189 io.loadIn(i).bits.mask, 190 io.loadIn(i).bits.forwardData.asUInt, 191 io.loadIn(i).bits.forwardMask.asUInt, 192 io.loadIn(i).bits.mmio 193 ) 194 }.otherwise { 195 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n", 196 io.loadIn(i).bits.uop.lqIdx.asUInt, 197 io.loadIn(i).bits.uop.cf.pc, 198 io.loadIn(i).bits.vaddr, 199 io.loadIn(i).bits.paddr, 200 io.loadIn(i).bits.data, 201 io.loadIn(i).bits.mask, 202 io.loadIn(i).bits.forwardData.asUInt, 203 io.loadIn(i).bits.forwardMask.asUInt, 204 io.loadIn(i).bits.mmio 205 )} 206 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && 207 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 208 !io.needReplayFromRS(i) // do not writeback if that inst will be resend from rs 209 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 210 211 val loadWbData = Wire(new LQDataEntry) 212 loadWbData.paddr := io.loadIn(i).bits.paddr 213 loadWbData.mask := io.loadIn(i).bits.mask 214 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 215 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 216 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 217 dataModule.io.wb.wen(i) := true.B 218 219 vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 220 vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 221 vaddrTriggerResultModule.io.wen(i) := true.B 222 223 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 224 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 225 226 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 227 miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i) && !io.needReplayFromRS(i) 228 pending(loadWbIndex) := io.loadIn(i).bits.mmio 229 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 230 // update replayInst (replay from fetch) bit, 231 // for replayInst may be set to true in load pipeline 232 uop(loadWbIndex).ctrl.replayInst := io.loadIn(i).bits.uop.ctrl.replayInst 233 } 234 // vaddrModule write is delayed, as vaddrModule will not be read right after write 235 vaddrModule.io.waddr(i) := RegNext(loadWbIndex) 236 vaddrModule.io.wdata(i) := RegNext(io.loadIn(i).bits.vaddr) 237 vaddrModule.io.wen(i) := RegNext(io.loadIn(i).fire()) 238 } 239 240 when(io.dcache.valid) { 241 XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data) 242 } 243 244 // Refill 64 bit in a cycle 245 // Refill data comes back from io.dcache.resp 246 dataModule.io.refill.valid := io.dcache.valid 247 dataModule.io.refill.paddr := io.dcache.bits.addr 248 dataModule.io.refill.data := io.dcache.bits.data 249 250 (0 until LoadQueueSize).map(i => { 251 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 252 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 253 datavalid(i) := true.B 254 miss(i) := false.B 255 refilling(i) := true.B 256 } 257 }) 258 259 // Writeback up to 2 missed load insts to CDB 260 // 261 // Pick 2 missed load (data refilled), write them back to cdb 262 // 2 refilled load will be selected from even/odd entry, separately 263 264 // Stage 0 265 // Generate writeback indexes 266 267 def getEvenBits(input: UInt): UInt = { 268 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt 269 } 270 def getOddBits(input: UInt): UInt = { 271 VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt 272 } 273 274 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 275 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 276 277 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 278 allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 279 })).asUInt() // use uint instead vec to reduce verilog lines 280 val evenDeqMask = getEvenBits(deqMask) 281 val oddDeqMask = getOddBits(deqMask) 282 // generate lastCycleSelect mask 283 val evenFireMask = getEvenBits(UIntToOH(loadWbSel(0))) 284 val oddFireMask = getOddBits(UIntToOH(loadWbSel(1))) 285 // generate real select vec 286 def toVec(a: UInt): Vec[Bool] = { 287 VecInit(a.asBools) 288 } 289 val loadEvenSelVecFire = getEvenBits(loadWbSelVec) & ~evenFireMask 290 val loadOddSelVecFire = getOddBits(loadWbSelVec) & ~oddFireMask 291 val loadEvenSelVecNotFire = getEvenBits(loadWbSelVec) 292 val loadOddSelVecNotFire = getOddBits(loadWbSelVec) 293 val loadEvenSel = Mux( 294 io.ldout(0).fire(), 295 getFirstOne(toVec(loadEvenSelVecFire), evenDeqMask), 296 getFirstOne(toVec(loadEvenSelVecNotFire), evenDeqMask) 297 ) 298 val loadOddSel= Mux( 299 io.ldout(1).fire(), 300 getFirstOne(toVec(loadOddSelVecFire), oddDeqMask), 301 getFirstOne(toVec(loadOddSelVecNotFire), oddDeqMask) 302 ) 303 304 305 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 306 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 307 loadWbSelGen(0) := Cat(loadEvenSel, 0.U(1.W)) 308 loadWbSelVGen(0):= Mux(io.ldout(0).fire(), loadEvenSelVecFire.asUInt.orR, loadEvenSelVecNotFire.asUInt.orR) 309 loadWbSelGen(1) := Cat(loadOddSel, 1.U(1.W)) 310 loadWbSelVGen(1) := Mux(io.ldout(1).fire(), loadOddSelVecFire.asUInt.orR, loadOddSelVecNotFire.asUInt.orR) 311 312 (0 until LoadPipelineWidth).map(i => { 313 loadWbSel(i) := RegNext(loadWbSelGen(i)) 314 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 315 when(io.ldout(i).fire()){ 316 // Mark them as writebacked, so they will not be selected in the next cycle 317 writebacked(loadWbSel(i)) := true.B 318 } 319 }) 320 321 // Stage 1 322 // Use indexes generated in cycle 0 to read data 323 // writeback data to cdb 324 (0 until LoadPipelineWidth).map(i => { 325 // data select 326 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 327 val rdata = dataModule.io.wb.rdata(i).data 328 val seluop = uop(loadWbSel(i)) 329 val func = seluop.ctrl.fuOpType 330 val raddr = dataModule.io.wb.rdata(i).paddr 331 val rdataSel = LookupTree(raddr(2, 0), List( 332 "b000".U -> rdata(63, 0), 333 "b001".U -> rdata(63, 8), 334 "b010".U -> rdata(63, 16), 335 "b011".U -> rdata(63, 24), 336 "b100".U -> rdata(63, 32), 337 "b101".U -> rdata(63, 40), 338 "b110".U -> rdata(63, 48), 339 "b111".U -> rdata(63, 56) 340 )) 341 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 342 343 // writeback missed int/fp load 344 // 345 // Int load writeback will finish (if not blocked) in one cycle 346 io.ldout(i).bits.uop := seluop 347 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 348 io.ldout(i).bits.data := rdataPartialLoad 349 io.ldout(i).bits.redirectValid := false.B 350 io.ldout(i).bits.redirect := DontCare 351 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 352 io.ldout(i).bits.debug.isPerfCnt := false.B 353 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 354 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 355 io.ldout(i).bits.fflags := DontCare 356 io.ldout(i).valid := loadWbSelV(i) 357 358 when(io.ldout(i).fire()) { 359 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 360 io.ldout(i).bits.uop.robIdx.asUInt, 361 io.ldout(i).bits.uop.lqIdx.asUInt, 362 io.ldout(i).bits.uop.cf.pc, 363 debug_mmio(loadWbSel(i)) 364 ) 365 } 366 367 }) 368 369 /** 370 * Load commits 371 * 372 * When load commited, mark it as !allocated and move deqPtrExt forward. 373 */ 374 (0 until CommitWidth).map(i => { 375 when(commitCount > i.U){ 376 allocated((deqPtrExt+i.U).value) := false.B 377 } 378 }) 379 380 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 381 val length = mask.length 382 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 383 val highBitsUint = Cat(highBits.reverse) 384 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 385 } 386 387 def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = { 388 assert(valid.length == uop.length) 389 assert(valid.length == 2) 390 Mux(valid(0) && valid(1), 391 Mux(isAfter(uop(0).robIdx, uop(1).robIdx), uop(1), uop(0)), 392 Mux(valid(0) && !valid(1), uop(0), uop(1))) 393 } 394 395 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 396 assert(valid.length == uop.length) 397 val length = valid.length 398 (0 until length).map(i => { 399 (0 until length).map(j => { 400 Mux(valid(i) && valid(j), 401 isAfter(uop(i).robIdx, uop(j).robIdx), 402 Mux(!valid(i), true.B, false.B)) 403 }) 404 }) 405 } 406 407 /** 408 * Store-Load Memory violation detection 409 * 410 * When store writes back, it searches LoadQueue for younger load instructions 411 * with the same load physical address. They loaded wrong data and need re-execution. 412 * 413 * Cycle 0: Store Writeback 414 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 415 * Besides, load instructions in LoadUnit_S1 and S2 are also checked. 416 * Cycle 1: Redirect Generation 417 * There're three possible types of violations, up to 6 possible redirect requests. 418 * Choose the oldest load (part 1). (4 + 2) -> (1 + 2) 419 * Cycle 2: Redirect Fire 420 * Choose the oldest load (part 2). (3 -> 1) 421 * Prepare redirect request according to the detected violation. 422 * Fire redirect request (if valid) 423 */ 424 425 // stage 0: lq l1 wb l1 wb lq 426 // | | | | | | (paddr match) 427 // stage 1: lq l1 wb l1 wb lq 428 // | | | | | | 429 // | |------------| | 430 // | | | 431 // stage 2: lq l1wb lq 432 // | | | 433 // -------------------- 434 // | 435 // rollback req 436 io.load_s1 := DontCare 437 def detectRollback(i: Int) = { 438 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 439 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 440 val xorMask = lqIdxMask ^ enqMask 441 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 442 val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 443 444 // check if load already in lq needs to be rolledback 445 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 446 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 447 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 448 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 449 allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j)) 450 }))) 451 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 452 addrMaskMatch(j) && entryNeedCheck(j) 453 })) 454 val lqViolation = lqViolationVec.asUInt().orR() 455 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 456 val lqViolationUop = uop(lqViolationIndex) 457 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 458 // lqViolationUop.lqIdx.value := lqViolationIndex 459 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 460 461 // when l/s writeback to rob together, check if rollback is needed 462 val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 463 io.loadIn(j).valid && 464 isAfter(io.loadIn(j).bits.uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 465 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) && 466 (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR 467 }))) 468 val wbViolation = wbViolationVec.asUInt().orR() 469 val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop)))) 470 XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n") 471 472 // check if rollback is needed for load in l1 473 val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => { 474 io.load_s1(j).valid && // L1 valid 475 isAfter(io.load_s1(j).uop.robIdx, io.storeIn(i).bits.uop.robIdx) && 476 io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) && 477 (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR 478 }))) 479 val l1Violation = l1ViolationVec.asUInt().orR() 480 val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop)))) 481 XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n") 482 483 XSDebug( 484 l1Violation, 485 "need rollback (l1 load) pc %x robidx %d target %x\n", 486 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, l1ViolationUop.robIdx.asUInt 487 ) 488 XSDebug( 489 lqViolation, 490 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 491 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 492 ) 493 XSDebug( 494 wbViolation, 495 "need rollback (ld/st wb together) pc %x robidx %d target %x\n", 496 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, wbViolationUop.robIdx.asUInt 497 ) 498 499 ((lqViolation, lqViolationUop), (wbViolation, wbViolationUop), (l1Violation, l1ViolationUop)) 500 } 501 502 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 503 Mux( 504 a.valid, 505 Mux( 506 b.valid, 507 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 508 a // sel a 509 ), 510 b // sel b 511 ) 512 } 513 val lastCycleRedirect = RegNext(io.brqRedirect) 514 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 515 516 // S2: select rollback (part1) and generate rollback request 517 // rollback check 518 // Wb/L1 rollback seq check is done in s2 519 val rollbackWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 520 val rollbackL1 = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 521 val rollbackL1Wb = Wire(Vec(StorePipelineWidth*2, Valid(new MicroOpRbExt))) 522 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 523 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 524 // store ftq index for store set update 525 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 526 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 527 for (i <- 0 until StorePipelineWidth) { 528 val detectedRollback = detectRollback(i) 529 rollbackLq(i).valid := detectedRollback._1._1 && RegNext(io.storeIn(i).valid) 530 rollbackLq(i).bits.uop := detectedRollback._1._2 531 rollbackLq(i).bits.flag := i.U 532 rollbackWb(i).valid := detectedRollback._2._1 && RegNext(io.storeIn(i).valid) 533 rollbackWb(i).bits.uop := detectedRollback._2._2 534 rollbackWb(i).bits.flag := i.U 535 rollbackL1(i).valid := detectedRollback._3._1 && RegNext(io.storeIn(i).valid) 536 rollbackL1(i).bits.uop := detectedRollback._3._2 537 rollbackL1(i).bits.flag := i.U 538 rollbackL1Wb(2*i) := rollbackL1(i) 539 rollbackL1Wb(2*i+1) := rollbackWb(i) 540 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 541 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 542 } 543 544 val rollbackL1WbSelected = ParallelOperation(rollbackL1Wb, rollbackSel) 545 val rollbackL1WbVReg = RegNext(rollbackL1WbSelected.valid) 546 val rollbackL1WbReg = RegEnable(rollbackL1WbSelected.bits, rollbackL1WbSelected.valid) 547 val rollbackLq0VReg = RegNext(rollbackLq(0).valid) 548 val rollbackLq0Reg = RegEnable(rollbackLq(0).bits, rollbackLq(0).valid) 549 val rollbackLq1VReg = RegNext(rollbackLq(1).valid) 550 val rollbackLq1Reg = RegEnable(rollbackLq(1).bits, rollbackLq(1).valid) 551 552 // S3: select rollback (part2), generate rollback request, then fire rollback request 553 // Note that we use robIdx - 1.U to flush the load instruction itself. 554 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 555 556 // FIXME: this is ugly 557 val rollbackValidVec = Seq(rollbackL1WbVReg, rollbackLq0VReg, rollbackLq1VReg) 558 val rollbackUopExtVec = Seq(rollbackL1WbReg, rollbackLq0Reg, rollbackLq1Reg) 559 560 // select uop in parallel 561 val mask = getAfterMask(rollbackValidVec, rollbackUopExtVec.map(i => i.uop)) 562 val oneAfterZero = mask(1)(0) 563 val rollbackUopExt = Mux(oneAfterZero && mask(2)(0), 564 rollbackUopExtVec(0), 565 Mux(!oneAfterZero && mask(2)(1), rollbackUopExtVec(1), rollbackUopExtVec(2))) 566 val stFtqIdxS3 = RegNext(stFtqIdxS2) 567 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 568 val rollbackUop = rollbackUopExt.uop 569 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 570 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 571 572 // check if rollback request is still valid in parallel 573 val rollbackValidVecChecked = Wire(Vec(3, Bool())) 574 for(((v, uop), idx) <- rollbackValidVec.zip(rollbackUopExtVec.map(i => i.uop)).zipWithIndex) { 575 rollbackValidVecChecked(idx) := v && 576 (!lastCycleRedirect.valid || isBefore(uop.robIdx, lastCycleRedirect.bits.robIdx)) && 577 (!lastlastCycleRedirect.valid || isBefore(uop.robIdx, lastlastCycleRedirect.bits.robIdx)) 578 } 579 580 io.rollback.bits.robIdx := rollbackUop.robIdx 581 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 582 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 583 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 584 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 585 io.rollback.bits.level := RedirectLevel.flush 586 io.rollback.bits.interrupt := DontCare 587 io.rollback.bits.cfiUpdate := DontCare 588 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 589 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 590 // io.rollback.bits.pc := DontCare 591 592 io.rollback.valid := rollbackValidVecChecked.asUInt.orR 593 594 when(io.rollback.valid) { 595 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 596 } 597 598 /** 599 * Load-Load Memory violation detection 600 * 601 * When load arrives load_s1, it searches LoadQueue for younger load instructions 602 * with the same load physical address. If younger load has been released (or observed), 603 * the younger load needs to be re-execed. 604 * 605 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 606 * the two loads will be replayed if the older load becomes the head of rob. 607 * 608 * When dcache releases a line, mark all writebacked entrys in load queue with 609 * the same line paddr as released. 610 */ 611 612 // Load-Load Memory violation query 613 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 614 (0 until LoadPipelineWidth).map(i => { 615 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 616 io.loadViolationQuery(i).req.ready := true.B 617 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 618 // Generate real violation mask 619 // Note that we use UIntToMask.rightmask here 620 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 621 val lqIdxMask = UIntToMask.rightmask(startIndex, LoadQueueSize) 622 val xorMask = lqIdxMask ^ deqRightMask 623 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === deqPtrExt.flag 624 val toDeqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 625 val ldld_violation_mask = WireInit(VecInit((0 until LoadQueueSize).map(j => { 626 dataModule.io.release_violation(i).match_mask(j) && // addr match 627 toDeqPtrMask(j) && // the load is younger than current load 628 allocated(j) && // entry is valid 629 released(j) && // cacheline is released 630 (datavalid(j) || miss(j)) // paddr is valid 631 }))) 632 dontTouch(ldld_violation_mask) 633 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 634 io.loadViolationQuery(i).resp.bits.have_violation := RegNext(ldld_violation_mask.asUInt.orR) 635 }) 636 637 // "released" flag update 638 // 639 // When io.release.valid, it uses the last ld-ld paddr cam port to 640 // update release flag in 1 cycle 641 when(io.release.valid){ 642 // Take over ld-ld paddr cam port 643 dataModule.io.release_violation.takeRight(1)(0).paddr := io.release.bits.paddr 644 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 645 // If a load needs that cam port, replay it from rs 646 } 647 648 (0 until LoadQueueSize).map(i => { 649 when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && 650 allocated(i) && 651 writebacked(i) && 652 io.release.valid 653 )){ 654 // Note: if a load has missed in dcache and is waiting for refill in load queue, 655 // its released flag still needs to be set as true if addr matches. 656 released(i) := true.B 657 } 658 }) 659 660 /** 661 * Memory mapped IO / other uncached operations 662 * 663 * States: 664 * (1) writeback from store units: mark as pending 665 * (2) when they reach ROB's head, they can be sent to uncache channel 666 * (3) response from uncache channel: mark as datavalid 667 * (4) writeback to ROB (and other units): mark as writebacked 668 * (5) ROB commits the instruction: same as normal instructions 669 */ 670 //(2) when they reach ROB's head, they can be sent to uncache channel 671 val lqTailMmioPending = WireInit(pending(deqPtr)) 672 val lqTailAllocated = WireInit(allocated(deqPtr)) 673 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 674 val uncacheState = RegInit(s_idle) 675 switch(uncacheState) { 676 is(s_idle) { 677 when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) { 678 uncacheState := s_req 679 } 680 } 681 is(s_req) { 682 when(io.uncache.req.fire()) { 683 uncacheState := s_resp 684 } 685 } 686 is(s_resp) { 687 when(io.uncache.resp.fire()) { 688 uncacheState := s_wait 689 } 690 } 691 is(s_wait) { 692 when(RegNext(io.rob.commit)) { 693 uncacheState := s_idle // ready for next mmio 694 } 695 } 696 } 697 io.uncache.req.valid := uncacheState === s_req 698 699 dataModule.io.uncache.raddr := deqPtrExtNext.value 700 701 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 702 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 703 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 704 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 705 706 io.uncache.req.bits.id := DontCare 707 io.uncache.req.bits.instrtype := DontCare 708 709 io.uncache.resp.ready := true.B 710 711 when (io.uncache.req.fire()) { 712 pending(deqPtr) := false.B 713 714 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 715 uop(deqPtr).cf.pc, 716 io.uncache.req.bits.addr, 717 io.uncache.req.bits.data, 718 io.uncache.req.bits.cmd, 719 io.uncache.req.bits.mask 720 ) 721 } 722 723 // (3) response from uncache channel: mark as datavalid 724 dataModule.io.uncache.wen := false.B 725 when(io.uncache.resp.fire()){ 726 datavalid(deqPtr) := true.B 727 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 728 dataModule.io.uncache.wen := true.B 729 730 XSDebug("uncache resp: data %x\n", io.dcache.bits.data) 731 } 732 733 // Read vaddr for mem exception 734 // no inst will be commited 1 cycle before tval update 735 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 736 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 737 738 // Read vaddr for debug 739 (0 until LoadPipelineWidth).map(i => { 740 vaddrModule.io.raddr(i+1) := loadWbSel(i) 741 }) 742 743 (0 until LoadPipelineWidth).map(i => { 744 vaddrTriggerResultModule.io.raddr(i) := loadWbSel(i) 745 io.trigger(i).lqLoadAddrTriggerHitVec := vaddrTriggerResultModule.io.rdata(i) 746 }) 747 748 // misprediction recovery / exception redirect 749 // invalidate lq term using robIdx 750 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 751 for (i <- 0 until LoadQueueSize) { 752 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 753 when (needCancel(i)) { 754 allocated(i) := false.B 755 } 756 } 757 758 /** 759 * update pointers 760 */ 761 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 762 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 763 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 764 when (lastCycleRedirect.valid) { 765 // we recover the pointers in the next cycle after redirect 766 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 767 }.otherwise { 768 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 769 } 770 771 deqPtrExtNext := deqPtrExt + commitCount 772 deqPtrExt := deqPtrExtNext 773 774 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 775 776 allowEnqueue := validCount + enqNumber <= (LoadQueueSize - io.enq.req.length).U 777 778 /** 779 * misc 780 */ 781 // perf counter 782 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 783 io.lqFull := !allowEnqueue 784 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 785 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 786 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 787 XSPerfAccumulate("refill", io.dcache.valid) 788 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 789 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 790 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 791 792 val perfEvents = Seq( 793 ("rollback ", io.rollback.valid ), 794 ("mmioCycle ", uncacheState =/= s_idle ), 795 ("mmio_Cnt ", io.uncache.req.fire() ), 796 ("refill ", io.dcache.valid ), 797 ("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire()))) ), 798 ("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready))) ), 799 ("ltq_1_4_valid ", (validCount < (LoadQueueSize.U/4.U)) ), 800 ("ltq_2_4_valid ", (validCount > (LoadQueueSize.U/4.U)) & (validCount <= (LoadQueueSize.U/2.U)) ), 801 ("ltq_3_4_valid ", (validCount > (LoadQueueSize.U/2.U)) & (validCount <= (LoadQueueSize.U*3.U/4.U))), 802 ("ltq_4_4_valid ", (validCount > (LoadQueueSize.U*3.U/4.U)) ) 803 ) 804 generatePerfEvent() 805 806 // debug info 807 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 808 809 def PrintFlag(flag: Bool, name: String): Unit = { 810 when(flag) { 811 XSDebug(false, true.B, name) 812 }.otherwise { 813 XSDebug(false, true.B, " ") 814 } 815 } 816 817 for (i <- 0 until LoadQueueSize) { 818 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 819 PrintFlag(allocated(i), "a") 820 PrintFlag(allocated(i) && datavalid(i), "v") 821 PrintFlag(allocated(i) && writebacked(i), "w") 822 PrintFlag(allocated(i) && miss(i), "m") 823 PrintFlag(allocated(i) && pending(i), "p") 824 XSDebug(false, true.B, "\n") 825 } 826 827} 828