1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.backend.fu.fpu.FPU 26import xiangshan.backend.rob.RobLsqIO 27import xiangshan.cache._ 28import xiangshan.frontend.FtqPtr 29import xiangshan.ExceptionNO._ 30import chisel3.ExcitingUtils 31 32class LqPtr(implicit p: Parameters) extends CircularQueuePtr[LqPtr]( 33 p => p(XSCoreParamsKey).LoadQueueSize 34){ 35} 36 37object LqPtr { 38 def apply(f: Bool, v: UInt)(implicit p: Parameters): LqPtr = { 39 val ptr = Wire(new LqPtr) 40 ptr.flag := f 41 ptr.value := v 42 ptr 43 } 44} 45 46trait HasLoadHelper { this: XSModule => 47 def rdataHelper(uop: MicroOp, rdata: UInt): UInt = { 48 val fpWen = uop.ctrl.fpWen 49 LookupTree(uop.ctrl.fuOpType, List( 50 LSUOpType.lb -> SignExt(rdata(7, 0) , XLEN), 51 LSUOpType.lh -> SignExt(rdata(15, 0), XLEN), 52 /* 53 riscv-spec-20191213: 12.2 NaN Boxing of Narrower Values 54 Any operation that writes a narrower result to an f register must write 55 all 1s to the uppermost FLEN−n bits to yield a legal NaN-boxed value. 56 */ 57 LSUOpType.lw -> Mux(fpWen, FPU.box(rdata, FPU.S), SignExt(rdata(31, 0), XLEN)), 58 LSUOpType.ld -> Mux(fpWen, FPU.box(rdata, FPU.D), SignExt(rdata(63, 0), XLEN)), 59 LSUOpType.lbu -> ZeroExt(rdata(7, 0) , XLEN), 60 LSUOpType.lhu -> ZeroExt(rdata(15, 0), XLEN), 61 LSUOpType.lwu -> ZeroExt(rdata(31, 0), XLEN), 62 )) 63 } 64} 65 66class LqEnqIO(implicit p: Parameters) extends XSBundle { 67 val canAccept = Output(Bool()) 68 val sqCanAccept = Input(Bool()) 69 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 70 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 71 val resp = Vec(exuParameters.LsExuCnt, Output(new LqPtr)) 72} 73 74class LqPaddrWriteBundle(implicit p: Parameters) extends XSBundle { 75 val paddr = Output(UInt(PAddrBits.W)) 76 val lqIdx = Output(new LqPtr) 77} 78 79class LqVaddrWriteBundle(implicit p: Parameters) extends XSBundle { 80 val vaddr = Output(UInt(VAddrBits.W)) 81 val lqIdx = Output(new LqPtr) 82} 83 84class LqTriggerIO(implicit p: Parameters) extends XSBundle { 85 val hitLoadAddrTriggerHitVec = Input(Vec(3, Bool())) 86 val lqLoadAddrTriggerHitVec = Output(Vec(3, Bool())) 87} 88 89class LoadQueueIOBundle(implicit p: Parameters) extends XSBundle { 90 val enq = new LqEnqIO 91 val brqRedirect = Flipped(ValidIO(new Redirect)) 92 val loadOut = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) // select load from lq to load pipeline 93 val loadPaddrIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqPaddrWriteBundle))) 94 val loadVaddrIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqVaddrWriteBundle))) 95 val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LqWriteBundle))) 96 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 97 val s2_load_data_forwarded = Vec(LoadPipelineWidth, Input(Bool())) 98 val s3_delayed_load_error = Vec(LoadPipelineWidth, Input(Bool())) 99 val s2_dcache_require_replay = Vec(LoadPipelineWidth, Input(Bool())) 100 val s3_replay_from_fetch = Vec(LoadPipelineWidth, Input(Bool())) 101 val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load 102 val ldRawDataOut = Vec(2, Output(new LoadDataFromLQBundle)) 103 val load_s1 = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) // TODO: to be renamed 104 val loadViolationQuery = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 105 val rob = Flipped(new RobLsqIO) 106 val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store 107 val refill = Flipped(ValidIO(new Refill)) // TODO: to be renamed 108 val release = Flipped(ValidIO(new Release)) 109 val uncache = new UncacheWordIO 110 val exceptionAddr = new ExceptionAddrIO 111 val lqFull = Output(Bool()) 112 val lqCancelCnt = Output(UInt(log2Up(LoadQueueSize + 1).W)) 113 val trigger = Vec(LoadPipelineWidth, new LqTriggerIO) 114 115 // for load replay (recieve feedback from load pipe line) 116 val replayFast = Vec(LoadPipelineWidth, Flipped(new LoadToLsqFastIO)) 117 val replaySlow = Vec(LoadPipelineWidth, Flipped(new LoadToLsqSlowIO)) 118 119 val storeDataValidVec = Vec(StoreQueueSize, Input(Bool())) 120 121 val tlbReplayDelayCycleCtrl = Vec(4, Input(UInt(ReSelectLen.W))) 122} 123 124// Load Queue 125class LoadQueue(implicit p: Parameters) extends XSModule 126 with HasDCacheParameters 127 with HasCircularQueuePtrHelper 128 with HasLoadHelper 129 with HasPerfEvents 130{ 131 val io = IO(new LoadQueueIOBundle()) 132 133 // dontTouch(io) 134 135 println("LoadQueue: size:" + LoadQueueSize) 136 137 val uop = Reg(Vec(LoadQueueSize, new MicroOp)) 138 // val data = Reg(Vec(LoadQueueSize, new LsRobEntry)) 139 val dataModule = Module(new LoadQueueDataWrapper(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth)) 140 dataModule.io := DontCare 141 // vaddrModule's read port 0 for exception addr, port {1, 2} for debug module, port {3, 4} for load replay 142 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = LoadPipelineWidth + 1 + 2, numWrite = LoadPipelineWidth)) 143 vaddrModule.io := DontCare 144 val vaddrTriggerResultModule = Module(new SyncDataModuleTemplate(Vec(3, Bool()), LoadQueueSize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth)) 145 vaddrTriggerResultModule.io := DontCare 146 val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated 147 val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid 148 val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 149 val released = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been released by dcache 150 val error = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // load data has been corrupted 151 val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request 152 // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result 153 val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 154 val refilling = WireInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB 155 156 /** 157 * used for load replay control 158 */ 159 160 val tlb_hited = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 161 val ld_ld_check_ok = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 162 val st_ld_check_ok = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 163 val cache_bank_no_conflict = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 164 val cache_no_replay = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 165 val forward_data_valid = RegInit(VecInit(List.fill(LoadQueueSize)(true.B))) 166 167 168 /** 169 * used for re-select control 170 */ 171 172 val credit = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(ReSelectLen.W)))) 173 174 // ptrs to control which cycle to choose 175 val block_ptr_tlb = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(2.W)))) 176 val block_ptr_others = RegInit(VecInit(List.fill(LoadQueueSize)(0.U(2.W)))) 177 178 // specific cycles to block 179 val block_cycles_tlb = Reg(Vec(4, UInt(ReSelectLen.W))) 180 block_cycles_tlb := io.tlbReplayDelayCycleCtrl 181 val block_cycles_others = RegInit(VecInit(Seq(0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W), 0.U(ReSelectLen.W)))) 182 183 val sel_blocked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) 184 185 // data forward block 186 val block_sq_idx = RegInit(VecInit(List.fill(LoadQueueSize)(0.U((log2Ceil(StoreQueueSize).W))))) 187 val block_by_data_forward_fail = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) 188 189 val creditUpdate = WireInit(VecInit(List.fill(LoadQueueSize)(0.U(ReSelectLen.W)))) 190 191 credit := creditUpdate 192 193 (0 until LoadQueueSize).map(i => { 194 creditUpdate(i) := Mux(credit(i) > 0.U(ReSelectLen.W), credit(i) - 1.U(ReSelectLen.W), credit(i)) 195 sel_blocked(i) := creditUpdate(i) =/= 0.U(ReSelectLen.W) || credit(i) =/= 0.U(ReSelectLen.W) 196 }) 197 198 (0 until LoadQueueSize).map(i => { 199 block_by_data_forward_fail(i) := Mux(block_by_data_forward_fail(i) === true.B && io.storeDataValidVec(block_sq_idx(i)) === true.B , false.B, block_by_data_forward_fail(i)) 200 }) 201 202 val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst 203 val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst 204 205 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new LqPtr)))) 206 val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr)) 207 val deqPtrExtNext = Wire(new LqPtr) 208 209 val enqPtr = enqPtrExt(0).value 210 val deqPtr = deqPtrExt.value 211 212 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt) 213 val allowEnqueue = validCount <= (LoadQueueSize - LoadPipelineWidth).U 214 215 val deqMask = UIntToMask(deqPtr, LoadQueueSize) 216 val enqMask = UIntToMask(enqPtr, LoadQueueSize) 217 218 val commitCount = RegNext(io.rob.lcommit) 219 220 val release1cycle = io.release 221 val release2cycle = RegNext(io.release) 222 val release2cycle_dup_lsu = RegNext(io.release) 223 224 /** 225 * Enqueue at dispatch 226 * 227 * Currently, LoadQueue only allows enqueue when #emptyEntries > EnqWidth 228 */ 229 io.enq.canAccept := allowEnqueue 230 231 val canEnqueue = io.enq.req.map(_.valid) 232 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 233 for (i <- 0 until io.enq.req.length) { 234 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 235 val lqIdx = enqPtrExt(offset) 236 val index = io.enq.req(i).bits.lqIdx.value 237 when (canEnqueue(i) && !enqCancel(i)) { 238 uop(index) := io.enq.req(i).bits 239 // NOTE: the index will be used when replay 240 uop(index).lqIdx := lqIdx 241 allocated(index) := true.B 242 datavalid(index) := false.B 243 writebacked(index) := false.B 244 released(index) := false.B 245 miss(index) := false.B 246 pending(index) := false.B 247 error(index) := false.B 248 249 /** 250 * used for load replay control 251 */ 252 tlb_hited(index) := true.B 253 ld_ld_check_ok(index) := true.B 254 st_ld_check_ok(index) := true.B 255 cache_bank_no_conflict(index) := true.B 256 cache_no_replay(index) := true.B 257 forward_data_valid(index) := true.B 258 259 /** 260 * used for delaying load(block-ptr to control how many cycles to block) 261 */ 262 credit(index) := 0.U(ReSelectLen.W) 263 block_ptr_tlb(index) := 0.U(2.W) 264 block_ptr_others(index) := 0.U(2.W) 265 266 block_by_data_forward_fail(index) := false.B 267 268 XSError(!io.enq.canAccept || !io.enq.sqCanAccept, s"must accept $i\n") 269 XSError(index =/= lqIdx.value, s"must be the same entry $i\n") 270 } 271 io.enq.resp(i) := lqIdx 272 } 273 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 274 275 val lastCycleRedirect = RegNext(io.brqRedirect) 276 val lastlastCycleRedirect = RegNext(lastCycleRedirect) 277 278 // replay logic 279 // replay is splited into 2 stages 280 281 // stage1: select 2 entries and read their vaddr 282 val s0_block_load_mask = WireInit(VecInit((0 until LoadQueueSize).map(x=>false.B))) 283 val s1_block_load_mask = RegNext(s0_block_load_mask) 284 val s2_block_load_mask = RegNext(s1_block_load_mask) 285 286 val loadReplaySel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 287 val loadReplaySelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 288 289 val loadReplaySelVec = VecInit((0 until LoadQueueSize).map(i => { 290 val blocked = s1_block_load_mask(i) || s2_block_load_mask(i) || sel_blocked(i) || block_by_data_forward_fail(i) 291 allocated(i) && (!tlb_hited(i) || !ld_ld_check_ok(i) || !st_ld_check_ok(i) || !cache_bank_no_conflict(i) || !cache_no_replay(i) || !forward_data_valid(i)) && !blocked 292 })).asUInt() // use uint instead vec to reduce verilog lines 293 294 val remReplayDeqMask = Seq.tabulate(LoadPipelineWidth)(getRemBits(deqMask)(_)) 295 296 // generate lastCycleSelect mask 297 val remReplayFireMask = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(UIntToOH(loadReplaySel(rem)))(rem)) 298 299 val loadReplayRemSelVecFire = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadReplaySelVec)(rem) & ~remReplayFireMask(rem)) 300 val loadReplayRemSelVecNotFire = Seq.tabulate(LoadPipelineWidth)(getRemBits(loadReplaySelVec)(_)) 301 302 val replayRemFire = Seq.tabulate(LoadPipelineWidth)(rem => WireInit(false.B)) 303 304 val loadReplayRemSel = Seq.tabulate(LoadPipelineWidth)(rem => Mux( 305 replayRemFire(rem), 306 getFirstOne(toVec(loadReplayRemSelVecFire(rem)), remReplayDeqMask(rem)), 307 getFirstOne(toVec(loadReplayRemSelVecNotFire(rem)), remReplayDeqMask(rem)) 308 )) 309 310 val loadReplaySelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 311 val loadReplaySelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 312 313 (0 until LoadPipelineWidth).foreach(index => { 314 loadReplaySelGen(index) := ( 315 if (LoadPipelineWidth > 1) Cat(loadReplayRemSel(index), index.U(log2Ceil(LoadPipelineWidth).W)) 316 else loadReplayRemSel(index) 317 ) 318 loadReplaySelVGen(index) := Mux(replayRemFire(index), loadReplayRemSelVecFire(index).asUInt.orR, loadReplayRemSelVecNotFire(index).asUInt.orR) 319 }) 320 321 (0 until LoadPipelineWidth).map(i => { 322 vaddrModule.io.raddr(LoadPipelineWidth + 1 + i) := loadReplaySelGen(i) 323 }) 324 325 (0 until LoadPipelineWidth).map(i => { 326 loadReplaySel(i) := RegNext(loadReplaySelGen(i)) 327 loadReplaySelV(i) := RegNext(loadReplaySelVGen(i), init = false.B) 328 }) 329 330 // stage2: replay to load pipeline (if no load in S0) 331 (0 until LoadPipelineWidth).map(i => { 332 when(replayRemFire(i)) { 333 s0_block_load_mask(loadReplaySel(i)) := true.B 334 } 335 }) 336 337 // init 338 (0 until LoadPipelineWidth).map(i => { 339 replayRemFire(i) := false.B 340 }) 341 342 for(i <- 0 until LoadPipelineWidth) { 343 val replayIdx = loadReplaySel(i) 344 val notRedirectLastCycle = !uop(replayIdx).robIdx.needFlush(RegNext(io.brqRedirect)) 345 346 io.loadOut(i).valid := loadReplaySelV(i) && notRedirectLastCycle 347 348 io.loadOut(i).bits := DontCare 349 io.loadOut(i).bits.uop := uop(replayIdx) 350 io.loadOut(i).bits.vaddr := vaddrModule.io.rdata(LoadPipelineWidth + 1 + i) 351 io.loadOut(i).bits.mask := genWmask(vaddrModule.io.rdata(LoadPipelineWidth + 1 + i), uop(replayIdx).ctrl.fuOpType(1,0)) 352 io.loadOut(i).bits.isFirstIssue := false.B 353 io.loadOut(i).bits.isLoadReplay := true.B 354 355 when(io.loadOut(i).fire) { 356 replayRemFire(i) := true.B 357 } 358 359 } 360 /** 361 * Writeback load from load units 362 * 363 * Most load instructions writeback to regfile at the same time. 364 * However, 365 * (1) For an mmio instruction with exceptions, it writes back to ROB immediately. 366 * (2) For an mmio instruction without exceptions, it does not write back. 367 * The mmio instruction will be sent to lower level when it reaches ROB's head. 368 * After uncache response, it will write back through arbiter with loadUnit. 369 * (3) For cache misses, it is marked miss and sent to dcache later. 370 * After cache refills, it will write back through arbiter with loadUnit. 371 */ 372 for (i <- 0 until LoadPipelineWidth) { 373 dataModule.io.wb.wen(i) := false.B 374 dataModule.io.paddr.wen(i) := false.B 375 vaddrModule.io.wen(i) := false.B 376 vaddrTriggerResultModule.io.wen(i) := false.B 377 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 378 379 // most lq status need to be updated immediately after load writeback to lq 380 // flag bits in lq needs to be updated accurately 381 when(io.loadIn(i).fire()) { 382 when(io.loadIn(i).bits.miss) { 383 XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x mask %x forwardData %x forwardMask: %x mmio %x\n", 384 io.loadIn(i).bits.uop.lqIdx.asUInt, 385 io.loadIn(i).bits.uop.cf.pc, 386 io.loadIn(i).bits.vaddr, 387 io.loadIn(i).bits.paddr, 388 io.loadIn(i).bits.mask, 389 io.loadIn(i).bits.forwardData.asUInt, 390 io.loadIn(i).bits.forwardMask.asUInt, 391 io.loadIn(i).bits.mmio 392 ) 393 }.otherwise { 394 XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x mask %x forwardData %x forwardMask: %x mmio %x\n", 395 io.loadIn(i).bits.uop.lqIdx.asUInt, 396 io.loadIn(i).bits.uop.cf.pc, 397 io.loadIn(i).bits.vaddr, 398 io.loadIn(i).bits.paddr, 399 io.loadIn(i).bits.mask, 400 io.loadIn(i).bits.forwardData.asUInt, 401 io.loadIn(i).bits.forwardMask.asUInt, 402 io.loadIn(i).bits.mmio 403 )} 404 if(EnableFastForward){ 405 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.s2_load_data_forwarded(i)) && 406 !io.loadIn(i).bits.mmio && // mmio data is not valid until we finished uncache access 407 !io.s2_dcache_require_replay(i) // do not writeback if that inst will be resend from rs 408 } else { 409 datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.s2_load_data_forwarded(i)) && 410 !io.loadIn(i).bits.mmio // mmio data is not valid until we finished uncache access 411 } 412 writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 413 414 debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio 415 debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr 416 417 val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio 418 if(EnableFastForward){ 419 miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i) && !io.s2_dcache_require_replay(i) 420 } else { 421 miss(loadWbIndex) := dcacheMissed && !io.s2_load_data_forwarded(i) 422 } 423 pending(loadWbIndex) := io.loadIn(i).bits.mmio 424 released(loadWbIndex) := release2cycle.valid && 425 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) || 426 release1cycle.valid && 427 io.loadIn(i).bits.paddr(PAddrBits-1, DCacheLineOffset) === release1cycle.bits.paddr(PAddrBits-1, DCacheLineOffset) 428 } 429 430 // data bit in lq can be updated when load_s2 valid 431 // when(io.loadIn(i).bits.lq_data_wen){ 432 // val loadWbData = Wire(new LQDataEntry) 433 // loadWbData.paddr := io.loadIn(i).bits.paddr 434 // loadWbData.mask := io.loadIn(i).bits.mask 435 // loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 436 // loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 437 // dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 438 // dataModule.io.wb.wen(i) := true.B 439 440 // // dirty code for load instr 441 // uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest 442 // uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf 443 // uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl 444 // uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 445 446 // vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 447 // vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 448 449 // vaddrTriggerResultModule.io.wen(i) := true.B 450 // } 451 452 // dirty code to reduce load_s2.valid fanout 453 when(io.loadIn(i).bits.lq_data_wen_dup(0)){ 454 val loadWbData = Wire(new LQDataEntry) 455 loadWbData.paddr := io.loadIn(i).bits.paddr 456 loadWbData.mask := io.loadIn(i).bits.mask 457 loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data 458 loadWbData.fwdMask := io.loadIn(i).bits.forwardMask 459 dataModule.io.wbWrite(i, loadWbIndex, loadWbData) 460 dataModule.io.wb.wen(i) := true.B 461 } 462 // dirty code for load instr 463 when(io.loadIn(i).bits.lq_data_wen_dup(1)){ 464 uop(loadWbIndex).pdest := io.loadIn(i).bits.uop.pdest 465 } 466 when(io.loadIn(i).bits.lq_data_wen_dup(2)){ 467 uop(loadWbIndex).cf := io.loadIn(i).bits.uop.cf 468 } 469 when(io.loadIn(i).bits.lq_data_wen_dup(3)){ 470 uop(loadWbIndex).ctrl := io.loadIn(i).bits.uop.ctrl 471 } 472 when(io.loadIn(i).bits.lq_data_wen_dup(4)){ 473 uop(loadWbIndex).debugInfo := io.loadIn(i).bits.uop.debugInfo 474 } 475 when(io.loadIn(i).bits.lq_data_wen_dup(5)){ 476 vaddrTriggerResultModule.io.waddr(i) := loadWbIndex 477 vaddrTriggerResultModule.io.wdata(i) := io.trigger(i).hitLoadAddrTriggerHitVec 478 vaddrTriggerResultModule.io.wen(i) := true.B 479 } 480 481 when(io.loadPaddrIn(i).valid) { 482 dataModule.io.paddr.wen(i) := true.B 483 dataModule.io.paddr.waddr(i) := io.loadPaddrIn(i).bits.lqIdx.value 484 dataModule.io.paddr.wdata(i) := io.loadPaddrIn(i).bits.paddr 485 } 486 487 // update vaddr in load S1 488 when(io.loadVaddrIn(i).valid) { 489 vaddrModule.io.wen(i) := true.B 490 vaddrModule.io.waddr(i) := io.loadVaddrIn(i).bits.lqIdx.value 491 vaddrModule.io.wdata(i) := io.loadVaddrIn(i).bits.vaddr 492 } 493 494 /** 495 * used for feedback and replay 496 */ 497 when(io.replayFast(i).valid){ 498 val idx = io.replayFast(i).ld_idx 499 val needreplay = !io.replayFast(i).ld_ld_check_ok || !io.replayFast(i).st_ld_check_ok || !io.replayFast(i).cache_bank_no_conflict 500 501 ld_ld_check_ok(idx) := io.replayFast(i).ld_ld_check_ok 502 st_ld_check_ok(idx) := io.replayFast(i).st_ld_check_ok 503 cache_bank_no_conflict(idx) := io.replayFast(i).cache_bank_no_conflict 504 505 when(needreplay) { 506 creditUpdate(idx) := block_cycles_others(block_ptr_others(idx)) 507 block_ptr_others(idx) := Mux(block_ptr_others(idx) === 3.U(2.W), block_ptr_others(idx), block_ptr_others(idx) + 1.U(2.W)) 508 // try to replay this load in next cycle 509 s1_block_load_mask(idx) := false.B 510 s2_block_load_mask(idx) := false.B 511 512 // replay this load in next cycle 513 loadReplaySelGen(idx(log2Ceil(LoadPipelineWidth) - 1, 0)) := idx 514 loadReplaySelVGen(idx(log2Ceil(LoadPipelineWidth) - 1, 0)) := true.B 515 } 516 } 517 518 when(io.replaySlow(i).valid){ 519 val idx = io.replaySlow(i).ld_idx 520 val needreplay = !io.replaySlow(i).tlb_hited || !io.replaySlow(i).st_ld_check_ok || !io.replaySlow(i).cache_no_replay || !io.replaySlow(i).forward_data_valid 521 522 tlb_hited(idx) := io.replaySlow(i).tlb_hited 523 st_ld_check_ok(idx) := io.replaySlow(i).st_ld_check_ok 524 cache_no_replay(idx) := io.replaySlow(i).cache_no_replay 525 forward_data_valid(idx) := io.replaySlow(i).forward_data_valid 526 527 val invalid_sq_idx = io.replaySlow(i).data_invalid_sq_idx 528 529 when(needreplay) { 530 creditUpdate(idx) := Mux( !io.replaySlow(i).tlb_hited, block_cycles_tlb(block_ptr_tlb(idx)), 531 Mux(!io.replaySlow(i).cache_no_replay || !io.replaySlow(i).st_ld_check_ok, block_cycles_others(block_ptr_others(idx)), 0.U)) 532 when(!io.replaySlow(i).tlb_hited) { 533 block_ptr_tlb(idx) := Mux(block_ptr_tlb(idx) === 3.U(2.W), block_ptr_tlb(idx), block_ptr_tlb(idx) + 1.U(2.W)) 534 }.elsewhen(!io.replaySlow(i).cache_no_replay || !io.replaySlow(i).st_ld_check_ok) { 535 block_ptr_others(idx) := Mux(block_ptr_others(idx) === 3.U(2.W), block_ptr_others(idx), block_ptr_others(idx) + 1.U(2.W)) 536 } 537 } 538 539 block_by_data_forward_fail(idx) := false.B 540 541 when(!io.replaySlow(i).forward_data_valid) { 542 when(!io.storeDataValidVec(invalid_sq_idx)) { 543 block_by_data_forward_fail(idx) := true.B 544 block_sq_idx(idx) := invalid_sq_idx 545 } 546 } 547 } 548 549 } 550 551 when(io.refill.valid) { 552 XSDebug("miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) 553 } 554 555 // Refill 64 bit in a cycle 556 // Refill data comes back from io.dcache.resp 557 dataModule.io.refill.valid := io.refill.valid 558 dataModule.io.refill.paddr := io.refill.bits.addr 559 dataModule.io.refill.data := io.refill.bits.data 560 561 val s2_dcache_require_replay = WireInit(VecInit((0 until LoadPipelineWidth).map(i =>{ 562 RegNext(io.loadIn(i).fire()) && RegNext(io.s2_dcache_require_replay(i)) 563 }))) 564 dontTouch(s2_dcache_require_replay) 565 566 (0 until LoadQueueSize).map(i => { 567 dataModule.io.refill.refillMask(i) := allocated(i) && miss(i) 568 when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) { 569 datavalid(i) := true.B 570 miss(i) := false.B 571 when(!s2_dcache_require_replay.asUInt.orR){ 572 refilling(i) := true.B 573 } 574 when(io.refill.bits.error) { 575 error(i) := true.B 576 } 577 } 578 }) 579 580 for (i <- 0 until LoadPipelineWidth) { 581 val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value 582 val lastCycleLoadWbIndex = RegNext(loadWbIndex) 583 // update miss state in load s3 584 if(!EnableFastForward){ 585 // s2_dcache_require_replay will be used to update lq flag 1 cycle after for better timing 586 // 587 // io.s2_dcache_require_replay comes from dcache miss req reject, which is quite slow to generate 588 when(s2_dcache_require_replay(i)) { 589 // do not writeback if that inst will be resend from rs 590 // rob writeback will not be triggered by a refill before inst replay 591 miss(lastCycleLoadWbIndex) := false.B // disable refill listening 592 datavalid(lastCycleLoadWbIndex) := false.B // disable refill listening 593 assert(!datavalid(lastCycleLoadWbIndex)) 594 } 595 } 596 // update load error state in load s3 597 when(RegNext(io.loadIn(i).fire()) && io.s3_delayed_load_error(i)){ 598 uop(lastCycleLoadWbIndex).cf.exceptionVec(loadAccessFault) := true.B 599 } 600 // update inst replay from fetch flag in s3 601 when(RegNext(io.loadIn(i).fire()) && io.s3_replay_from_fetch(i)){ 602 uop(lastCycleLoadWbIndex).ctrl.replayInst := true.B 603 } 604 } 605 606 607 // Writeback up to 2 missed load insts to CDB 608 // 609 // Pick 2 missed load (data refilled), write them back to cdb 610 // 2 refilled load will be selected from even/odd entry, separately 611 612 // Stage 0 613 // Generate writeback indexes 614 615 def getRemBits(input: UInt)(rem: Int): UInt = { 616 VecInit((0 until LoadQueueSize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt 617 } 618 619 val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle 620 val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid 621 622 val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => { 623 // allocated(i) && !writebacked(i) && (datavalid(i) || refilling(i)) 624 allocated(i) && !writebacked(i) && datavalid(i) // query refilling will cause bad timing 625 })).asUInt() // use uint instead vec to reduce verilog lines 626 627 val remDeqMask = Seq.tabulate(LoadPipelineWidth)(getRemBits(deqMask)(_)) 628 629 // generate lastCycleSelect mask 630 val remFireMask = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(UIntToOH(loadWbSel(rem)))(rem)) 631 // generate real select vec 632 def toVec(a: UInt): Vec[Bool] = { 633 VecInit(a.asBools) 634 } 635 val loadRemSelVecFire = Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(loadWbSelVec)(rem) & ~remFireMask(rem)) 636 val loadRemSelVecNotFire = Seq.tabulate(LoadPipelineWidth)(getRemBits(loadWbSelVec)(_)) 637 val loadRemSel = Seq.tabulate(LoadPipelineWidth)(rem => Mux( 638 io.ldout(rem).fire(), 639 getFirstOne(toVec(loadRemSelVecFire(rem)), remDeqMask(rem)), 640 getFirstOne(toVec(loadRemSelVecNotFire(rem)), remDeqMask(rem)) 641 )) 642 643 644 val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) 645 val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool())) 646 (0 until LoadPipelineWidth).foreach(index => { 647 loadWbSelGen(index) := ( 648 if (LoadPipelineWidth > 1) Cat(loadRemSel(index), index.U(log2Ceil(LoadPipelineWidth).W)) 649 else loadRemSel(index) 650 ) 651 loadWbSelVGen(index) := Mux(io.ldout(index).fire, loadRemSelVecFire(index).asUInt.orR, loadRemSelVecNotFire(index).asUInt.orR) 652 }) 653 654 (0 until LoadPipelineWidth).map(i => { 655 loadWbSel(i) := RegNext(loadWbSelGen(i)) 656 loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B) 657 when(io.ldout(i).fire()){ 658 // Mark them as writebacked, so they will not be selected in the next cycle 659 writebacked(loadWbSel(i)) := true.B 660 } 661 }) 662 663 // Stage 1 664 // Use indexes generated in cycle 0 to read data 665 // writeback data to cdb 666 (0 until LoadPipelineWidth).map(i => { 667 // data select 668 dataModule.io.wb.raddr(i) := loadWbSelGen(i) 669 val rdata = dataModule.io.wb.rdata(i).data 670 val seluop = uop(loadWbSel(i)) 671 val func = seluop.ctrl.fuOpType 672 val raddr = dataModule.io.wb.rdata(i).paddr 673 val rdataSel = LookupTree(raddr(2, 0), List( 674 "b000".U -> rdata(63, 0), 675 "b001".U -> rdata(63, 8), 676 "b010".U -> rdata(63, 16), 677 "b011".U -> rdata(63, 24), 678 "b100".U -> rdata(63, 32), 679 "b101".U -> rdata(63, 40), 680 "b110".U -> rdata(63, 48), 681 "b111".U -> rdata(63, 56) 682 )) 683 val rdataPartialLoad = rdataHelper(seluop, rdataSel) 684 685 // writeback missed int/fp load 686 // 687 // Int load writeback will finish (if not blocked) in one cycle 688 io.ldout(i).bits.uop := seluop 689 io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr) 690 io.ldout(i).bits.data := rdataPartialLoad // not used 691 io.ldout(i).bits.redirectValid := false.B 692 io.ldout(i).bits.redirect := DontCare 693 io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i)) 694 io.ldout(i).bits.debug.isPerfCnt := false.B 695 io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i)) 696 io.ldout(i).bits.debug.vaddr := vaddrModule.io.rdata(i+1) 697 io.ldout(i).bits.fflags := DontCare 698 io.ldout(i).valid := loadWbSelV(i) 699 700 // merged data, uop and offset for data sel in load_s3 701 io.ldRawDataOut(i).lqData := dataModule.io.wb.rdata(i).data 702 io.ldRawDataOut(i).uop := io.ldout(i).bits.uop 703 io.ldRawDataOut(i).addrOffset := dataModule.io.wb.rdata(i).paddr 704 705 when(io.ldout(i).fire()) { 706 XSInfo("int load miss write to cbd robidx %d lqidx %d pc 0x%x mmio %x\n", 707 io.ldout(i).bits.uop.robIdx.asUInt, 708 io.ldout(i).bits.uop.lqIdx.asUInt, 709 io.ldout(i).bits.uop.cf.pc, 710 debug_mmio(loadWbSel(i)) 711 ) 712 } 713 714 }) 715 716 /** 717 * Load commits 718 * 719 * When load commited, mark it as !allocated and move deqPtrExt forward. 720 */ 721 (0 until CommitWidth).map(i => { 722 when(commitCount > i.U){ 723 allocated((deqPtrExt+i.U).value) := false.B 724 XSError(!allocated((deqPtrExt+i.U).value), s"why commit invalid entry $i?\n") 725 } 726 }) 727 728 def getFirstOne(mask: Vec[Bool], startMask: UInt) = { 729 val length = mask.length 730 val highBits = (0 until length).map(i => mask(i) & ~startMask(i)) 731 val highBitsUint = Cat(highBits.reverse) 732 PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt)) 733 } 734 735 def getOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 736 assert(valid.length == bits.length) 737 assert(isPow2(valid.length)) 738 if (valid.length == 1) { 739 (valid, bits) 740 } else if (valid.length == 2) { 741 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 742 for (i <- res.indices) { 743 res(i).valid := valid(i) 744 res(i).bits := bits(i) 745 } 746 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 747 (Seq(oldest.valid), Seq(oldest.bits)) 748 } else { 749 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 750 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 751 getOldest(left._1 ++ right._1, left._2 ++ right._2) 752 } 753 } 754 755 def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = { 756 assert(valid.length == uop.length) 757 val length = valid.length 758 (0 until length).map(i => { 759 (0 until length).map(j => { 760 Mux(valid(i) && valid(j), 761 isAfter(uop(i).robIdx, uop(j).robIdx), 762 Mux(!valid(i), true.B, false.B)) 763 }) 764 }) 765 } 766 767 768 /** 769 * Store-Load Memory violation detection 770 * 771 * When store writes back, it searches LoadQueue for younger load instructions 772 * with the same load physical address. They loaded wrong data and need re-execution. 773 * 774 * Cycle 0: Store Writeback 775 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 776 * Cycle 1: Redirect Generation 777 * There're up to 2 possible redirect requests. 778 * Choose the oldest load (part 1). 779 * Cycle 2: Redirect Fire 780 * Choose the oldest load (part 2). 781 * Prepare redirect request according to the detected violation. 782 * Fire redirect request (if valid) 783 */ 784 785 // stage 0: lq lq 786 // | | (paddr match) 787 // stage 1: lq lq 788 // | | 789 // | | 790 // | | 791 // stage 2: lq lq 792 // | | 793 // -------------------- 794 // | 795 // rollback req 796 io.load_s1 := DontCare 797def detectRollback(i: Int) = { 798 val startIndex = io.storeIn(i).bits.uop.lqIdx.value 799 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 800 val xorMask = lqIdxMask ^ enqMask 801 val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag 802 val stToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 803 804 // check if load already in lq needs to be rolledback 805 dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr 806 dataModule.io.violation(i).mask := io.storeIn(i).bits.mask 807 val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask) 808 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => { 809 allocated(j) && stToEnqPtrMask(j) && (datavalid(j) || miss(j)) 810 }))) 811 val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => { 812 addrMaskMatch(j) && entryNeedCheck(j) 813 })) 814 val lqViolation = lqViolationVec.asUInt().orR() && RegNext(!io.storeIn(i).bits.miss) 815 val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask)) 816 val lqViolationUop = uop(lqViolationIndex) 817 // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag 818 // lqViolationUop.lqIdx.value := lqViolationIndex 819 XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n") 820 821 XSDebug( 822 lqViolation, 823 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 824 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 825 ) 826 827 (lqViolation, lqViolationUop) 828 } 829 830 def rollbackSel(a: Valid[MicroOpRbExt], b: Valid[MicroOpRbExt]): ValidIO[MicroOpRbExt] = { 831 Mux( 832 a.valid, 833 Mux( 834 b.valid, 835 Mux(isAfter(a.bits.uop.robIdx, b.bits.uop.robIdx), b, a), // a,b both valid, sel oldest 836 a // sel a 837 ), 838 b // sel b 839 ) 840 } 841 842 // S2: select rollback (part1) and generate rollback request 843 // rollback check 844 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 845 val rollbackLq = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 846 // store ftq index for store set update 847 val stFtqIdxS2 = Wire(Vec(StorePipelineWidth, new FtqPtr)) 848 val stFtqOffsetS2 = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 849 for (i <- 0 until StorePipelineWidth) { 850 val detectedRollback = detectRollback(i) 851 rollbackLq(i).valid := detectedRollback._1 && RegNext(io.storeIn(i).valid) 852 rollbackLq(i).bits.uop := detectedRollback._2 853 rollbackLq(i).bits.flag := i.U 854 stFtqIdxS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqPtr) 855 stFtqOffsetS2(i) := RegNext(io.storeIn(i).bits.uop.cf.ftqOffset) 856 } 857 858 val rollbackLqVReg = rollbackLq.map(x => RegNext(x.valid)) 859 val rollbackLqReg = rollbackLq.map(x => RegEnable(x.bits, x.valid)) 860 861 // S3: select rollback (part2), generate rollback request, then fire rollback request 862 // Note that we use robIdx - 1.U to flush the load instruction itself. 863 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 864 865 // select uop in parallel 866 val lqs = getOldest(rollbackLqVReg, rollbackLqReg) 867 val rollbackUopExt = lqs._2(0) 868 val stFtqIdxS3 = RegNext(stFtqIdxS2) 869 val stFtqOffsetS3 = RegNext(stFtqOffsetS2) 870 val rollbackUop = rollbackUopExt.uop 871 val rollbackStFtqIdx = stFtqIdxS3(rollbackUopExt.flag) 872 val rollbackStFtqOffset = stFtqOffsetS3(rollbackUopExt.flag) 873 874 // check if rollback request is still valid in parallel 875 io.rollback.bits.robIdx := rollbackUop.robIdx 876 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 877 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 878 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 879 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 880 io.rollback.bits.level := RedirectLevel.flush 881 io.rollback.bits.interrupt := DontCare 882 io.rollback.bits.cfiUpdate := DontCare 883 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 884 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 885 // io.rollback.bits.pc := DontCare 886 887 io.rollback.valid := rollbackLqVReg.reduce(_|_) && 888 (!lastCycleRedirect.valid || isBefore(rollbackUop.robIdx, lastCycleRedirect.bits.robIdx)) && 889 (!lastlastCycleRedirect.valid || isBefore(rollbackUop.robIdx, lastlastCycleRedirect.bits.robIdx)) 890 891 when(io.rollback.valid) { 892 // XSDebug("Mem rollback: pc %x robidx %d\n", io.rollback.bits.cfi, io.rollback.bits.robIdx.asUInt) 893 } 894 895 /** 896 * Load-Load Memory violation detection 897 * 898 * When load arrives load_s1, it searches LoadQueue for younger load instructions 899 * with the same load physical address. If younger load has been released (or observed), 900 * the younger load needs to be re-execed. 901 * 902 * For now, if re-exec it found to be needed in load_s1, we mark the older load as replayInst, 903 * the two loads will be replayed if the older load becomes the head of rob. 904 * 905 * When dcache releases a line, mark all writebacked entrys in load queue with 906 * the same line paddr as released. 907 */ 908 909 // Load-Load Memory violation query 910 val deqRightMask = UIntToMask.rightmask(deqPtr, LoadQueueSize) 911 (0 until LoadPipelineWidth).map(i => { 912 dataModule.io.release_violation(i).paddr := io.loadViolationQuery(i).req.bits.paddr 913 io.loadViolationQuery(i).req.ready := true.B 914 io.loadViolationQuery(i).resp.valid := RegNext(io.loadViolationQuery(i).req.fire()) 915 // Generate real violation mask 916 // Note that we use UIntToMask.rightmask here 917 val startIndex = io.loadViolationQuery(i).req.bits.uop.lqIdx.value 918 val lqIdxMask = UIntToMask(startIndex, LoadQueueSize) 919 val xorMask = lqIdxMask ^ enqMask 920 val sameFlag = io.loadViolationQuery(i).req.bits.uop.lqIdx.flag === enqPtrExt(0).flag 921 val ldToEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask) 922 val ldld_violation_mask_gen_1 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 923 ldToEnqPtrMask(j) && // the load is younger than current load 924 allocated(j) && // entry is valid 925 released(j) && // cacheline is released 926 (datavalid(j) || miss(j)) // paddr is valid 927 }))) 928 val ldld_violation_mask_gen_2 = WireInit(VecInit((0 until LoadQueueSize).map(j => { 929 dataModule.io.release_violation(i).match_mask(j)// addr match 930 // addr match result is slow to generate, we RegNext() it 931 }))) 932 val ldld_violation_mask = RegNext(ldld_violation_mask_gen_1).asUInt & RegNext(ldld_violation_mask_gen_2).asUInt 933 dontTouch(ldld_violation_mask) 934 ldld_violation_mask.suggestName("ldldViolationMask_" + i) 935 io.loadViolationQuery(i).resp.bits.have_violation := ldld_violation_mask.orR 936 }) 937 938 // "released" flag update 939 // 940 // When io.release.valid (release1cycle.valid), it uses the last ld-ld paddr cam port to 941 // update release flag in 1 cycle 942 943 when(release1cycle.valid){ 944 // Take over ld-ld paddr cam port 945 dataModule.io.release_violation.takeRight(1)(0).paddr := release1cycle.bits.paddr 946 io.loadViolationQuery.takeRight(1)(0).req.ready := false.B 947 } 948 949 when(release2cycle.valid){ 950 // If a load comes in that cycle, we can not judge if it has ld-ld violation 951 // We replay that load inst from RS 952 io.loadViolationQuery.map(i => i.req.ready := 953 // use lsu side release2cycle_dup_lsu paddr for better timing 954 !i.req.bits.paddr(PAddrBits-1, DCacheLineOffset) === release2cycle_dup_lsu.bits.paddr(PAddrBits-1, DCacheLineOffset) 955 ) 956 // io.loadViolationQuery.map(i => i.req.ready := false.B) // For better timing 957 } 958 959 (0 until LoadQueueSize).map(i => { 960 when(RegNext(dataModule.io.release_violation.takeRight(1)(0).match_mask(i) && 961 allocated(i) && 962 datavalid(i) && 963 release1cycle.valid 964 )){ 965 // Note: if a load has missed in dcache and is waiting for refill in load queue, 966 // its released flag still needs to be set as true if addr matches. 967 released(i) := true.B 968 } 969 }) 970 971 /** 972 * Memory mapped IO / other uncached operations 973 * 974 * States: 975 * (1) writeback from store units: mark as pending 976 * (2) when they reach ROB's head, they can be sent to uncache channel 977 * (3) response from uncache channel: mark as datavalid 978 * (4) writeback to ROB (and other units): mark as writebacked 979 * (5) ROB commits the instruction: same as normal instructions 980 */ 981 //(2) when they reach ROB's head, they can be sent to uncache channel 982 val lqTailMmioPending = WireInit(pending(deqPtr)) 983 val lqTailAllocated = WireInit(allocated(deqPtr)) 984 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 985 val uncacheState = RegInit(s_idle) 986 switch(uncacheState) { 987 is(s_idle) { 988 when(RegNext(io.rob.pendingld && lqTailMmioPending && lqTailAllocated)) { 989 uncacheState := s_req 990 } 991 } 992 is(s_req) { 993 when(io.uncache.req.fire()) { 994 uncacheState := s_resp 995 } 996 } 997 is(s_resp) { 998 when(io.uncache.resp.fire()) { 999 uncacheState := s_wait 1000 } 1001 } 1002 is(s_wait) { 1003 when(RegNext(io.rob.commit)) { 1004 uncacheState := s_idle // ready for next mmio 1005 } 1006 } 1007 } 1008 io.uncache.req.valid := uncacheState === s_req 1009 1010 dataModule.io.uncache.raddr := deqPtrExtNext.value 1011 1012 io.uncache.req.bits.cmd := MemoryOpConstants.M_XRD 1013 io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr 1014 io.uncache.req.bits.data := dataModule.io.uncache.rdata.data 1015 io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask 1016 io.uncache.req.bits.id := RegNext(deqPtrExtNext.value) 1017 io.uncache.req.bits.instrtype := DontCare 1018 io.uncache.req.bits.atomic := true.B 1019 1020 io.uncache.resp.ready := true.B 1021 1022 when (io.uncache.req.fire()) { 1023 pending(deqPtr) := false.B 1024 1025 XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n", 1026 uop(deqPtr).cf.pc, 1027 io.uncache.req.bits.addr, 1028 io.uncache.req.bits.data, 1029 io.uncache.req.bits.cmd, 1030 io.uncache.req.bits.mask 1031 ) 1032 } 1033 1034 // (3) response from uncache channel: mark as datavalid 1035 dataModule.io.uncache.wen := false.B 1036 when(io.uncache.resp.fire()){ 1037 datavalid(deqPtr) := true.B 1038 dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0)) 1039 dataModule.io.uncache.wen := true.B 1040 1041 XSDebug("uncache resp: data %x\n", io.refill.bits.data) 1042 } 1043 1044 // Read vaddr for mem exception 1045 // no inst will be commited 1 cycle before tval update 1046 vaddrModule.io.raddr(0) := (deqPtrExt + commitCount).value 1047 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 1048 1049 // Read vaddr for debug 1050 (0 until LoadPipelineWidth).map(i => { 1051 vaddrModule.io.raddr(i+1) := loadWbSel(i) 1052 }) 1053 1054 (0 until LoadPipelineWidth).map(i => { 1055 vaddrTriggerResultModule.io.raddr(i) := loadWbSelGen(i) 1056 io.trigger(i).lqLoadAddrTriggerHitVec := Mux( 1057 loadWbSelV(i), 1058 vaddrTriggerResultModule.io.rdata(i), 1059 VecInit(Seq.fill(3)(false.B)) 1060 ) 1061 }) 1062 1063 // misprediction recovery / exception redirect 1064 // invalidate lq term using robIdx 1065 val needCancel = Wire(Vec(LoadQueueSize, Bool())) 1066 for (i <- 0 until LoadQueueSize) { 1067 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) 1068 when (needCancel(i)) { 1069 allocated(i) := false.B 1070 } 1071 } 1072 1073 /** 1074 * update pointers 1075 */ 1076 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 1077 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 1078 val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 1079 when (lastCycleRedirect.valid) { 1080 // we recover the pointers in the next cycle after redirect 1081 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 1082 }.otherwise { 1083 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1084 } 1085 1086 deqPtrExtNext := deqPtrExt + commitCount 1087 deqPtrExt := deqPtrExtNext 1088 1089 io.lqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 1090 1091 /** 1092 * misc 1093 */ 1094 // perf counter 1095 QueuePerf(LoadQueueSize, validCount, !allowEnqueue) 1096 io.lqFull := !allowEnqueue 1097 XSPerfAccumulate("rollback", io.rollback.valid) // rollback redirect generated 1098 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1099 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 1100 XSPerfAccumulate("refill", io.refill.valid) 1101 XSPerfAccumulate("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))) 1102 XSPerfAccumulate("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))) 1103 XSPerfAccumulate("utilization_miss", PopCount((0 until LoadQueueSize).map(i => allocated(i) && miss(i)))) 1104 1105 if (env.EnableTopDown) { 1106 val stall_loads_bound = WireDefault(0.B) 1107 ExcitingUtils.addSink(stall_loads_bound, "stall_loads_bound", ExcitingUtils.Perf) 1108 val have_miss_entry = (allocated zip miss).map(x => x._1 && x._2).reduce(_ || _) 1109 val l1d_loads_bound = stall_loads_bound && !have_miss_entry 1110 ExcitingUtils.addSource(l1d_loads_bound, "l1d_loads_bound", ExcitingUtils.Perf) 1111 XSPerfAccumulate("l1d_loads_bound", l1d_loads_bound) 1112 val stall_l1d_load_miss = stall_loads_bound && have_miss_entry 1113 ExcitingUtils.addSource(stall_l1d_load_miss, "stall_l1d_load_miss", ExcitingUtils.Perf) 1114 ExcitingUtils.addSink(WireInit(0.U), "stall_l1d_load_miss", ExcitingUtils.Perf) 1115 } 1116 1117 val perfValidCount = RegNext(validCount) 1118 1119 val perfEvents = Seq( 1120 ("rollback ", io.rollback.valid), 1121 ("mmioCycle ", uncacheState =/= s_idle), 1122 ("mmio_Cnt ", io.uncache.req.fire()), 1123 ("refill ", io.refill.valid), 1124 ("writeback_success", PopCount(VecInit(io.ldout.map(i => i.fire())))), 1125 ("writeback_blocked", PopCount(VecInit(io.ldout.map(i => i.valid && !i.ready)))), 1126 ("ltq_1_4_valid ", (perfValidCount < (LoadQueueSize.U/4.U))), 1127 ("ltq_2_4_valid ", (perfValidCount > (LoadQueueSize.U/4.U)) & (perfValidCount <= (LoadQueueSize.U/2.U))), 1128 ("ltq_3_4_valid ", (perfValidCount > (LoadQueueSize.U/2.U)) & (perfValidCount <= (LoadQueueSize.U*3.U/4.U))), 1129 ("ltq_4_4_valid ", (perfValidCount > (LoadQueueSize.U*3.U/4.U))) 1130 ) 1131 generatePerfEvent() 1132 1133 // debug info 1134 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr) 1135 1136 def PrintFlag(flag: Bool, name: String): Unit = { 1137 when(flag) { 1138 XSDebug(false, true.B, name) 1139 }.otherwise { 1140 XSDebug(false, true.B, " ") 1141 } 1142 } 1143 1144 for (i <- 0 until LoadQueueSize) { 1145 XSDebug(i + " pc %x pa %x ", uop(i).cf.pc, debug_paddr(i)) 1146 PrintFlag(allocated(i), "a") 1147 PrintFlag(allocated(i) && datavalid(i), "v") 1148 PrintFlag(allocated(i) && writebacked(i), "w") 1149 PrintFlag(allocated(i) && miss(i), "m") 1150 PrintFlag(allocated(i) && pending(i), "p") 1151 XSDebug(false, true.B, "\n") 1152 } 1153 1154} 1155